
������� ���	�
�	���������� ��� ���
� ���������������
��� �����
� �!���������"� ����# �	�$�

%'&)(+*-,/.1032547678:9+;=<?>A@B&=,/CEDF472HGI8J(
KMLONEPRQJSUTWVYXOZ\[^]WZ`_aLOVWN^XOScbdLOZ3e\f`bcTWZRfgTahEijTUPJXOVWScNkTaZ\Sl Z:bdm1TWVahgbdScnkLo_EiYT`p XOq/XOVoTgrtsYTaq/XOVvuwrMiEx

%y43z{HGI*c|}{�~�&�(:>A2HC-*���4�D�,7&)C-8x�p�TofaScVabdfvX�p\x�Z��Ob�Z�TvTWVab�Z��kiYT�PJXOVWScNkTaZ:S�)� T�KMb�ScnHKtLOpdp�Tc��T^L�_�S � T�KMb�Scn l Z\b�m1TaVWhWb�Scn�L�_�sYTaq!�\LOVvuwrMs��

(Proc. IFIP Int’l Conf. on Testing of Communicating Systems
(TestCom), Ottawa, Canada, Sept. 1, 2000)

Abstract The UD’s and CCNY’s ongoing research to generate conformance tests for the
Army network protocol MIL-STD 188-220 addressed test generation when mul-
tiple timers are running simultaneously. A test sequence may become unre-
alizable if there are conflicting conditions based on a protocol’s timers. This
problem is handled in the hitherto generated tests by manually expanding a pro-
tocol’s extended FSM based on the set of conflicting timers, resulting in test
sequences that are far from minimum-length. Similar inconsistencies, but based
on arbitrary linear variables, are present in the extended FSMs modeling VHDL
specifications. This paper presents an efficient solution to the conflicting timers
problem that eliminates the redundancies of manual state expansion. CCNY’s
inconsistency removal algorithms are applied to a new model for testing proto-
cols with multiple timers, in which complex timing dependencies are captured
by simple linear expressions. This test generation technique is expected to sig-
nificantly shorten the test sequences without compromising their fault coverage.

Keywords: conformance testing; test case generation; timing constraints; timer testing

�
Prepared through collaborative participation in the Advanced Telecommunication Information Distribu-

tion Research Program (ATIRP) Consortium sponsored by the U.S. Army Research Laboratory under the
Federated Laboratory Program, Cooperative Agreement DAAL01-96-2-0002. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation thereon.

�j� �����������¡ £¢y���/� �
The on-going collaboration between the City College of the City Univer-

sity of New York (CCNY) and the University of Delaware (UD) [7] focuses
on the generation of test cases automatically from Estelle specifications. Tests
are being generated for the US Department of Defense (DoD)/Joint protocol—
military standard developed in the US Army, Navy and Marine Corps systems
for mobile combat network radios [7]. Within this effort, several theoretical
problems have been investigated, including generation of test sequences unin-
terrupted by active timers [21], and the improvement of test coverage by using
the semicontrollable interfaces [8].

This paper studies the problem of test case generation for network protocols
with timers, where a test sequence may become unrealizable due to conflicting
conditions based on a protocol’s timers. This problem is termed the conflicting
timers problem.

The research has been motivated by the ongoing effort to generate tests for
MIL-STD 188-220. The protocol’s Datalink Layer defines several timers that
can run concurrently and affect the protocol’s behavior. For example, BUSY
and ACK timers may be running independently in FRAME BUFFERED state.
If either timer is running, a buffered frame cannot be transmitted. If ACK timer
expires while BUSY timer is not running, a buffered frame is retransmitted.
If, however, ACK timer expires while BUSY timer is running, no output is
generated.

In the test cases delivered to the US Army Communications-Electronics
Command (CECOM), such conflicts are handled by manually expanding EF-
SMs based on the set of conflicting timers. This procedure results in test se-
quences that are far from minimum-length [7]. Similar conflicts, but based
on arbitrary linear variables, are present in EFSM models of VHDL specifica-
tions [19]. Uyar and Duale present algorithms for detecting [19] and remov-
ing [5, 20] such inconsistencies in VHDL specifications. Current research at
UD and CCNY focuses on adapting these algorithms to eliminate inconsis-
tencies caused by a protocol’s conflicting timers, with a view to applying the
methodology to conformance test generation for MIL-STD 188-220.

This paper presents a new model for testing real-time protocols with multi-
ple timers, which captures complex timing dependencies by using simple linear
expressions. This modeling technique, combined with the CCNY’s inconsis-
tency removal algorithms, is expected to significantly shorten test sequences
without compromising their fault coverage.

The proposed solution is expected to have a broader application due to a re-
cent proliferation of protocols with real-time requirements [12, 15]. The func-
tional errors in such protocols are usually caused by the unsatisfiability of time
constraints and (possibly conflicting) conditions involving timers; therefore,

significant research is required to develop efficient algorithms for test genera-
tion for such protocols. The results presented here are expected to contribute
towards achieving this goal.

¤�� ¥!����¦¨§ª©¬« �¡©¬®�������!�7���
Suppose that a protocol specification defines a set of timers ¯ °±³²a´¶µJ·J¸J¸J¸:·¹²`´�º »3º½¼

, such that a timer
²`´®¾

may be started and stopped by arbi-
trary transitions defined in the specification. Each timer

²a´¬¾
can be associated

with a boolean variable ¿ ¾ whose value is true if
²`´ ¾

is running, and false if²a´�¾
is not running. Let À be a time formula obtained from variables ¿ µJ·J¸J¸J¸:· ¿�Á

by using logical operands Â , Ã , and Ä . Suppose that a specification contains
transitions with time conditions of a form “if À ” for some time formula À . It
is clear that there may exist infeasible paths in an FSM modeling a protocol,
if two or more edges in a path have inconsistent conditions. For example, for
transitions Å µ : if (¿ ¾) then

±RÆjµ:¼
and Å:Ç : if (ÄÈ¿ ¾) then

±RÆ Ç ¼ , a path (Å µ³· Å³Ç)
is inconsistent unless the action of

Æ µ
in Å µ sets ¿ ¾ to false (which happens

when timer
²`´®¾

expires in transition Å µ). The solution to the above problem is
expected to allow generating low-cost tests free of such conflicts.

The conflicting timers problem is a special case of the feasibility problem of
test sequences, which is an open research problem for the general case [9, 18].
However, there are two simplifying features of the conflicting timers problem:
(1) time variables are linear, and (2) time-keeping variable values implicitly
increase with time. By considering these features, we expect to find an efficient
solution to this special case.

¤��¹� É¡©¬��©¬��Ê�§"Ê	¥!¥!���yÊ	¢yË
The goal of the presented technique is to achieve at least the following fault

coverage: cover every state transition at least once. During the testing of a sys-
tem with multiple timers, when a node Ì\Í is visited, an efficient test sequence
should either (1) traverse as many self-loops as possible before a timeout or
(2) leave Ì³Í immediately through a non-timeout transition. Once the maxi-
mum allowable number of self-loops are traversed, a test sequence may leaveÌ Í through any outgoing transition. Such an approach does not let perform full
reachability analysis; however, it can be easily proven that considering only
the above two cases is sufficient to include at least one feasible path for each
transition (if such a feasible path is not prohibited by the original specification).

In general, the goal of an optimization is to generate a low-cost test sequence
that follows the above guidelines, satisfies time conditions of all composite
edges and is not disrupted by timeout events during traversal (i.e., contains
only feasible transitions). In Section 3., a model will be introduced that allows
the generation of test sequences satisfying the above criteria.

¤��a¤ ��©¬§ªÊ¶��©Î� Ï ����Ð
Conformance test generation is an active research area [1, 3, 9, 11, 14, 17,

18]. The related work on testing systems with timing dependencies focuses
on testing the so-called Timed Automata (TA) [2, 16], which are a formalism
primarily used in system verification. However, there is relatively little work
reported in the literature on successful application of timed automata to con-
formance testing. (Other FDTs, such as ET-LOTOS [13], can also be used to
describe timed systems.)

Springintveld et al. [16] present the first published theoretical framework for
testing timed automata. En-Nouaary et al. [6] introduce a method based on the
state characterization technique using a timed extension of the Wp-method [9].
Higashino et al. [10] define several kinds of test sequence executability for
real-time systems and present an algorithm for verifying if a test sequence
is executable. Cardell-Oliver and Glover [4] propose a method based on the
model of Timed Transition Systems (TTSs) [2].

A major goal of these methods is to limit the number of tests, which
otherwise may become prohibitively large; hence, each technique offers a
means to reduce the test suite size. The reader may consult the relevant pa-
pers [4, 6, 10, 16] for more details.

The new model presented in this paper offers several advantages over the
TA-based modeling:Ñ it is tailored-designed only for testing purposes, which does not require

to perform full reachability analysis;Ñ it allows more intuitive modeling of an IUT and testing procedure (each
input/output exchange is assigned certain time to realize; there are no
instantaneous transitions as in TA);Ñ it makes it possible to define a timer length as a constant or variable
rather than a fixed value as in TA, with which many properties such as
service delivery, proper timeout settings, etc. can be modeled and tested.

Ò�� ����Ó¡©¬§"«Ô� �¡©¬§�Õ� � ��©!Ö×�!�M��ÉÖ�Ø�Ö×��©Î«ÙÖ�Ï ����Ë �!�M«Ú©Î��Ö
A protocol can be modeled as a deterministic, completely speci-

fied FSM (Mealy) represented by a directed graph ÛIÜgÝ ·1ÞFß and a
set of timers ¯ ° ±³²`´!µJ·J¸J¸J¸:·¹²`´ º »3º ¼

. As part of this model,
we also introduce a set of constants and the set of variables à °± ¿ µ³·+á�µJ·J¸J¸J¸:· ¿ º »3º�·+átº »3ºâ·1ã�µ³·J¸J¸J¸\·1ã�º äYºd·¹²¹å µ¹æ�µ ·J¸J¸J¸³·¹²�º äjº æ çéè ê7è ¼ , as defined below.

For each timer
²`´ ¾

, we introduce the following parameters:Ñ ¿ ¾ìë¶±:ít·³îR¼ —boolean variable indicating if the timer is running. ¿ ¾ ° î
if
²`´�¾

is running; ¿ ¾ ° í otherwiseÑ�ï ¾ìëñðÕò —the timeout value (i.e., timer length) for
²`´ó¾

Ñ áJ¾¶ë�ðÕòYôõ±:íM¼�ô¨±�ö}÷ø¼ —time-keeping variable denoting the current
time of

²`´�¾
. If
í¡ù
áJ¾ ú ï ¾ , then

²`´�¾
is running; if

á³¾ û ï ¾ oráJ¾ ° ö}÷ ,
²`´�¾

is not running. (It is expired or stopped).
áR¾

is set to 0
when

²`´�¾
is started; it is set to

ö}÷
when

²`´ü¾
is stopped or has expired.

Let us define ý^þFÜ�¿ µ³·J¸J¸J¸³· ¿ º »3º ß as the set of all boolean expressions on¿ µJ·J¸J¸J¸:· ¿ º »3º . Let a time formula À be defined as an element of
Þìÿ

.
A transition Å�� ëñÞ is associated with the following parameters:Ñ�� � ëóðÕò —the time needed to traverse Å �Ñ time condition

� À ��� — Å � can trigger only if its associated time formulaÀ � is satisfied; if no time formula is associated with Å � , its time condition
is
�wî � . For example, if Å � ’s time condition involves À � ° ¿ µ Â�ÄÈ¿�� ,

the transition can trigger only if
²a´ µ

is running and
²a´ � is not running,

regardless of the state of other timersÑ action list
±RÆ � æ�µ³·OÆ � æ Ç ·J¸J¸J¸-¼ —each action

Æ � æ Á is an ordered pair Ü
	 ëà ·����������� Ü
	 ßIë ýjþªÜ�à ·¹ðÎ·�±���·³ö�·��=·���¼Rß , where
���������� Ü
	 ß belongs to

the set of all linear expressions involving à , the set of real numbers
ð

,
and arithmetic operands. Expression

���������� Ü
	 ß is used to update 	 ’s
value, e.g., the two actions of

± ¿ µ ° î��+á Ç}° á Ç � ��¼ start timer
²a´!µ

and
increment the value of the time-keeping variable associated with timer²`´ Ç by 5 units

The following parameters are defined for each state ÌRÍ ë Ý :Ñ�� åÍ ë�ðÕò —the time needed to traverse a self-loop of ÌRÍ . The major-
ity of self-loops are inopportune transitions, whose traversal times are
therefore comparable and can be approximated with � åÍÑ�! åÍ æ "—a set of merged non-timeout self-loops of Ì\Í sharing the same
time condition

� À Í æ " � , where
îªù$#�ù&% Í . (A self-loop that starts/stops

a timer cannot be merged with others)Ñ % Í —the number of sets of ! åÍ æ " for node Ì³ÍÑ ²¹åÍ æ "—the number of untested self-loops in ! åÍ æ " . ²¹åÍ æ " is initialized to ' ! åÍ æ " 'Ñ ã Í ë!±:ít·³î�·)(�¼ —the ‘exit’ condition for state Ì:Í . If
ã Íé° í , no transition

outgoing from Ì Í and no timeout transition in Ì Í may be traversed; ifã ÍI° î , a test sequence may leave Ì:Í through an outgoing non-timeout
transition; if

ã Í5° (, any outgoing transitions (including timeouts) may
be traversed

In the next three sections, the time-related behavior of the IUT will be mod-
eled by defining proper time constraints and actions for various types of tran-
sitions defined in the specification.

Ò��¹� �¶Ø�¥!©�Ö��� ����Ê	��Ö������/� ��Ö
In general, the model distinguishes four types of transitions:

Ñ Type 1: timeout transition Å
¾
� Ü�ÌJÍ · Ì+* ß , defined for each timer

²a´Õ¾
(Å
¾
� may

be a self-loop, i.e., ,ó°.-)Ñ Type 2: non-timeout non-self-loop transition Å � Ü�Ì�Í · Ì+* ß , where ,0/°.-Ñ Type 3: merged self-loop transition Å Í æ " Ü�ÌJÍ · ÌJÍ ß , defined for each nodeÌJÍ and each set ! åÍ æ "Ñ Type 4: merged self-loop transition Å
¾
Í æ " Ü�Ì Í · Ì Í ß , defined for each nodeÌJÍ , each set ! åÍ æ " that contains more than one self-loop, and each timer²`´�¾

While visiting Ì³Í , if there is enough time to test all self-loops of ! åÍ æ " before

any timer expires, Å Í æ " (Type 3) will be traversed; otherwise, Å
¾
Í æ " (Type 4) will

be traversed with
²`´®¾

expiring before all self-loops of ! åÍ æ " can be tested.

Ò��a¤ ¢ � ���	�M�!�/� ��Ö
A number of timing constraints must be appended to the time conditions for

all transitions, as defined below.
For each timeout transition Å

¾
� Ü�ÌJÍ · Ì+* ß (Type 1), the following condition

holds for each timer
²`´ Á213 ¾ : ‘exit’ condition for timeouts in Ì Í true AND timer²a´�¾

running AND (timer
²a´ Á not running OR

²`´®¾
expires before

²a´ Á), which
is formalized as:
� Ü ã Í5°ì° (=ß Â�Ü�¿ ¾ °ì° î:ß Â Ü¹Ü�¿ ¾ °ì° í�ß Ã Ü ï ¾×öyáJ¾�ú ï Á öyá Á ß¹ß �54� Ü ã Íé°ì° (=ß Â�Ü�¿ ¾ °ì° î:ß Â Ü ï ¾×öyáJ¾éú ï Á ö á Á ß �
For each non-timeout non-self-loop Å6�¹Ü�Ì Í · Ì * ß (Type 2), the following condi-

tion holds for each timer
²a´ Á : ‘exit’ condition for Ì³Í true AND (timer

²`´ Á not
running OR there is time left to

²`´ Á ’s timeout). Formally, this condition is:
� Ü ã Í87 í�ß Â�Ü¹Ü�¿ ¾ °ì° í�ß Ã�Ü á Á ú ï Á ß¹ß �94 � Ü ã Í:7 í�ß Â�Ü á Á ú ï Á ß ���
For each merged self-loop transition Å Í æ " (Type 3), the following condition

holds for each timer
²`´ Á : there are untested self-loops in ! åÍ æ " AND (timer²a´ Á not running OR all untested self-loops of ! åÍ æ " can be tested before

²a´ Á
expires). For each Å Í æ " , all self-loops ! åÍ æ " can be tested by traversing Å Í æ " . This
condition can be formalized as:

� Ü ² åÍ æ " 7 í�ß Â�Ü¹Ü�¿ ¾ °ì° í�ß Ã�Ü ² åÍ æ " � � åÍ ú ï Á öyá Á ß¹ß �;4� Ü ² åÍ æ " 7 í�ß Â�Ü ² åÍ æ " � � åÍ ú ï Á öyá Á ß �
For each merged self-loop transition Å

¾
Í æ " (Type 4), the following condition

holds for each timer
²`´ Á213 ¾ : there are untested self-loops in ! åÍ æ " AND (timer²a´�¾

running AND there is enough time left before
²`´ó¾

expires to test at least
one but not all untested self-loops in ! åÍ æ ") AND (timer

²a´ Á not running OR

²a´�¾
expires before

²`´ Á). In other words, only some of the self-loops of ! åÍ æ "
can be tested by traversing Å

¾
Í æ " . Formally, this condition is:

� Ü ² åÍ æ " 7 í�ß Â�Ü¹Ü�¿ ¾ °ì° î:ß Â Ü � åÍ ú ï ¾×öyáJ¾ìú ² åÍ æ " � � åÍ ß¹ß Â�Ü¹Ü�¿�Á3°ì° í�ß Ã
Ü ï ¾×ö áJ¾�ú ï Á ö�á Á ß¹ß �<4 � Ü ² åÍ æ " 7 í�ß Â�Ü�¿ ¾ °ì° î:ß Â

Ü � åÍ ú ï ¾×öyáJ¾éú�² åÍ æ " � � åÍ ß Â Ü ï ¾�ö�áJ¾éú ï Á ö á Á ß �
Ò��gÒ Ê	¢y���/� ��Ö

A number of actions must be appended to the action lists for all transitions,
as defined below.

For each timeout transition Å
¾
� Ü�ÌJÍ · Ì+* ß (Type 1), for each =>/°@? :Ñ set variable ¿ ¾ to 0 indicating timer expiry: ¿ ¾ ° íÑ increment

²`´ Á ’s current time by the sum of Å � ’s traversal time and the
amount of time left until

²`´Õ¾
’s timeout:

á ÁH° á Á � � � �BA:��C Ü ít· ï ¾Èö�áJ¾:ßÑ set
²`´�¾

’s time-keeping variable:
á:¾ ° ö}÷

Since ‘
A:��C

’ is not a linear action, to utilize any test generation technique that
allows only linear actions (as in [20]), Å

¾
� should be split into Å

¾
� æ�µ and Å

¾
� æ Ç as

follows:

Å
¾
� æ�µED � Ü ã Íé°ì° (=ß Â�Ü�¿ ¾ °ì° î:ß Â Ü áJ¾ìû ï ¾:ß Â�Ü ï ¾×öyáJ¾ìú ï Á ö�á Á ß �± ¿ ¾ ° íF�+á Á3° á Á � � � �+á ¾ ° öH÷ø¼
Å
¾
� æ Ç D � Ü ã Íé°ì° (=ß Â�Ü�¿ ¾ °ì° î:ß Â Ü áJ¾ìú ï ¾:ß Â�Ü ï ¾×öyáJ¾ìú ï Á ö�á Á ß �± ¿ ¾ ° íF�+á Á3° á Á � � � � ï ¾ ö á ¾ �+á ¾ ° öH÷ø¼

The above concept is illustrated in Figure 1. Timer
²a´ ¾

is started at timeáJ¾ ° í . After
á³¾

reaches a value of
áHG¾

, the two feasible transitions are Å µ
and Å Ç . Consider the case where Å µ triggers and

á ¾
is advanced to a value ofá µ¾ ° á G¾ � � µ�ú ï ¾ . In this case,

²`´®¾
’s timeout corresponds to traversing Å

¾
� æ Ç ,

which advances all timers by � � � ï ¾Hö�á µ¾ . In the case where Å\Ç triggers,
á³¾

is advanced to a value of
á Ç¾ ° á G¾ � � ÇI7 ï ¾ , with

²`´�¾
’s timeout modeled by

Å
¾
� æ�µ . All timers will be advanced by Å

¾
� æ�µ only by its execution time � � , because

timer
²a´®¾

expired while Å\Ç was being traversed.
In addition, a non-self-loop Å

¾
� should set the ‘exit’ condition for its end stateÌ * to 1 by the appended action of
±:ã * ° îR¼ .

For each non-timeout non-self-loop Å � Ü�ÌJÍ · Ì+* ß (Type 2):Ñ set the ‘exit’ condition for Å � ’s end state Ì+* to true:
ã *�° îÑ for each = , increment

²a´ Á ’s current time by Å � ’s traversal time:
á Á'°á Á � � �

For each merged self-loop transition Å Í æ " (Type 3):Ñ set the ‘exit’ condition for state Ì\Í to false:
ã Íé° í

Dj ci

c1

c2

fj0
0

fj1 fj2

fj
ci

J b �OQJVvTLK
Time dependencies in timeout transition MON P .

Ñ for each = , increment
²a´ Á ’s current time by the time needed to traverse

all untested self-loops in ! åÍ æ " : á Á3° á Á �¨²wåÍ æ " � � åÍÑ set the number of untested self-loops in ! åÍ æ " to 0:
² åÍ æ " ° í

If no self-loops can be traversed (i.e., there are no untested self-loops of Ì=Í
whose time condition is satisfied),

ã Í should be set to 2 (from either 0 or 1),
enabling timeouts and all outgoing transitions in ÌRÍ . In this case,

ã Í will be
set to 2 by a so-called observer self-loop transition Q³Í , with the the following
condition:

for each
#
:
� Ü ã Í úR(=ß Â�Ü ² åÍ æ " °ì° í Ã�Ü ² åÍ æ " 7 í Â�Ä^À Í æ " ß¹ß � (1.1)

and an action
±:ã Í�° (�¼ . Condition (1.1) is satisfied when all self-loops of Ì�Í

whose time condition is satisfied are tested (if there are no self-loops defined
for Ì Í , the condition is trivially true).

For each merged self-loop transition Å
¾
Í æ " (Type 4):Ñ set the ‘exit’ condition for state Ì\Í to true:

ã Íé° (Ñ for each = , increment
²a´ Á ’s current time by the time needed to traverse

all of the untested self-loops in ! åÍ æ " that can be tested before
²`´Õ¾

ex-
pires:

á Á�° á Á � � åÍ �TS Ü ï ¾}öyáJ¾:ß�� � åÍ�UÑ decrement the number of untested self-loops:
²�åÍ æ " ° ²¹åÍ æ " öBS Ü ï ¾MöHáJ¾:ß�� � åÍ+U

The ‘exit’ condition
ã Í works as follows. A test sequence comes to stateÌ�Í through an incoming edge, which sets

ã Í to 1. Then the test sequence
may leave immediately through an outgoing non-timeout edge, or take Type 3
and/or Type 4 edges. Once Type 3 edge is taken, it sets

ã Í to 0, preventing a
test sequence from leaving a state and timeouts from occurring. Then the test
sequence may include either a Type 4 edge (which sets

ã Í to 2, thus enabling
timeouts and outgoing edges) or traverse further Type 3 edges. If neither Type 3
nor Type 4 edges can be traversed (this includes the case where none are defined
for ÌJÍ), the observer edge Q�Í sets

ã Í to 2.
Condition (1.1) results in

(çWV
parallel edges due to the presence of

% Í num-
ber of “OR” statements. Clearly, the technique does not scale well. To prevent
the exponential growth of the number of parallel edges, Q:Í will be replaced

with the set of vertices and edges as depicted in Figure 2. The appended con-
ditions and actions of the edges in Figure 2 are derived from (1.1) as follows:

QYXÍ æ " D �oã Í úR(Â ² åÍ æ " °ì° í � ±)¼=· ZQOÍ D �wî � ±:ã Í5° (�¼ (1.2)

Q X XÍ æ " D �oã Í úR(Â�Ü ² åÍ æ " 7 í Â�ÄjÀ Í æ " ß � ±)¼ (1.3)

Condition (1.1) is satisfied when a feasible path exists from Ì Í to [Í æ ç\V . Since
the edges of Q XÍ æ Á and Q X XÍ æ Á are mutually exclusive, only one such a path is pos-
sible. The outgoing edge of [�Í æ ç V , i.e.,

ZQOÍ , sets the ‘exit’ condition to true.

vp

sp

vp

Wp,1

s'p,1 s''p,1

Wp,2

Wp,Mp
...

s'p,2

s''p,2

s'p,Mps''p,Mp

šp

...
J b��OQJVoT^]

Graph extension to make an observer transition _ V scalable.

`�� «Ù� �¡©¬§ �ø©Î��M��©¬« ©¬���
`��¹� «Ô���	�MIØ¡�M��É ��� ��§F�M��©¬Ê	� Ê	¢y���/� ��Ö

As can be seen, Type 4 actions are non-linear, since the number of self-loop
traversals before a timeout is computed in Å

¾
Í æ " ’s actions by rounding down a

fractional value to an integer a�° S Ü ï ¾MöHáJ¾³ß�� � åÍ+U . Since VHDL inconsistencies
removal algorithms are applicable only to linear actions, this nonlinearity will
be removed by avoiding the computation of a . Instead, a test sequence is forced
to traverse one of a number of extra edges with the index of the traversed extra
edge equal to a .

To employ this idea, the following steps are taken. Let us first note that b Í æ " ,
the number of self-loops of ! Í æ " that can be traversed in any Type 4 transition,
is upper bounded by the cardinality of ! åÍ æ " and the maximum number of self-
loop traversals allowed by timers, as defined in (1.4). The maximum number
of self-loop traversals at any time during the execution of a test sequence is
therefore obtained by (1.4).

b	° A:��CÍ æ " b åÍ æ " · where b åÍ æ " ° Adcfe Ü�' ! åÍ æ " ' ö î�·�A:��CÁ6g º »3º S ï Á � �
åÍ U ß (1.4)

Having computed the value of b , we define additional variables ï , � å , a , andh , and extend graph ÛªÜgÝ ·1ÞFß with two vertices i µ and i�Ç , as depicted in Fig-

ure 3. Next, each Å
¾
Í æ " Ü�Ì�Í · ÌJÍ ß is replaced with jÅ

¾
Í æ " Ü�Ì�Í · i µ�ß , with the unchanged

conditions, and the following actions:Ñ memorize which set of ! Í æ " is represented: h °0, ¸k#Ñ set the cost of a self-loop traversal: � å ° � åÍÑ set the time remaining until timeout: ï ° ï ¾×öyáJ¾

vp

ej
p,l

vpu1 u2

h1

hm

hZ

...

...

êj
p,l

êp,l

J b �OQJVvTLl
Graph extension to remove nonlinear actions.

Vertices i µ and i�Ç are connected with extra edges m µ³·J¸J¸J¸³· mon , with the fol-
lowing condition for mop : there is enough time left before a timer expires to
test
´

but not
´q��î

untested self-loops. Using the additional variables, this
condition can be formalized as

��´r�¡î 7 ï � � å�û�´ � . The action of m�p sets
the value of a to m p ’s index

´
:
± a'° ´¶¼ . In this way, since the conditions

of m µ³·J¸J¸J¸³· m�n are mutually exclusive, only one transition m�p indicating the
proper number

´
of allowed self-loop traversals will be traversed (setting a to

a value of
´

).
Finally,

% Í edges of jÅ Í æ " Ü
i�Ç · Ì�Í ß are added from i�Ç to each ÌJÍ with Type 4
edges, with the condition of

� h °ì°s, ¸k# � , which allows a test sequence that left
Ì�Í through jÅ

¾
Í æ " to return to the same Ì³Í , and decrement the proper

² åÍ æ " . The

linear actions of jÅ Í æ " replace the nonlinear actions of Å
¾
Í æ " as follows:Ñ set ‘exit’ condition for Ì Í to true:

ã Í ° (Ñ for each = , increment
²a´ Á ’s current time by the time needed to traverse

all of the untested self-loops in ! åÍ æ " that can be tested before timeout:á Á�° á Á � � å � aÑ decrement the number of untested self-loops:
²�åÍ æ " ° ²¹åÍ æ " ö a

`��a¤ �¡©Î§ªÊ¬Ø¡�M��É Ö���Ê��'� � �!�M«Ú©Î��Ö
Every transition Å�� has the appended conditions and actions as defined in

Section 3.. In addition, if Å � stops timer
²`´®¾

, the actions of
± ¿ ¾ ° íF�+áJ¾ °ö}÷ø¼

must be appended to Å � ’s action list. If Å � starts timer
²a´Õ¾

, the two
actions of

± ¿ ¾ ° î��+áJ¾ ° íM¼ must be appended to Å � ’s action list.
To have good test coverage, a test sequence should traverse all feasible tran-

sitions of an IUT. Some edges in the IUT graph are reachable only if a transi-
tion(s) that starts a timer is delayed in the test sequence by certain amount of

time. The action of delaying such transitions allows us to explore various or-
dering of timers’ expirations by causing certain timers to expire before others.

(b) (c)(a)

ci Dj ci Djdi
m

Da - fa

ci Djdi
m

Da - fa

J b��OQJVoTut
Delaying transition M P : (a) all timers inactive, no delay; (b) vxwzy to expire first, delay

less than { y}|T~�y ; (c) vxw y to expire first, delay greater than { y�|�~�y cannot be applied due tov
w y ’s timeout.

Suppose that Å���° Ü�Ì Í · Ì * ß starts timer
²`´ ¾

. Before Å�� is traversed, one of
the timers—say

²a´ �
—is to expire first. Let � p� be the amount of time by whichÅ � is delayed in this case. It is clear that if Å � is to be traversed instead of

²a´��
’s

timeout, � p� must be less than ï �Hö á�� (Figure 4 (b)). In the case where none
of the timers are running before traversing Å � (Figure 4 (a)), � p� may be set to 0
because time passage does not affect system behavior if all timers are inactive.

Based on the above observations, each Å � will be replaced by two sets of
transitions. The first one, which handles the case with � p� set to 0 where all
timers are inactive before traversing Å � , contains transition Å G� . Transition Å G� has
the following appended condition for each timer

²`´ Á : timer
²`´ Á not running.

Formally, this condition is
� ¿ Á�°ì° í � .

The second set, which handles the case where � p� is upper bounded by a
running timer

²`´ �
with the shortest time to expire, contains transitions Å �� ,

defined for each � D î ù � ú ' ¯�' . The transitions Å �� have the following
appended condition that holds for each timer

²a´ Á+13 � : timer
²a´��

running AND
timer

²a´��
is to expire before

²a´ Á . Formally, this condition is:� Ü�¿ � °ì° î:ß Â�Ü ï �}öyá��éú ï Á öyá Á ß �
Each Å �� also has the following appended action:Ñ for each = , increment

²`´ Á ’s current time by the introduced delay:
á Áì°á Á � � p� , where

íIù � p� ú ï ��öyá��
In the above conversion, Å � is replaced with ' ¯�' �'î transitions, out of which

only one has a consistent condition, i.e., Å G� if no timer is running, or Å �� for a
particular

²a´ �
that is to expire first.

The delay of � p� is involved in actions as a parameter with lower (
í
) and

upper (ï ��öÎá��) bounds. During an application of the inconsistencies removal
algorithm, the two inequalities of � p� û í and � p� ú ï ��ö®á�� must be included
in the consistency check of conditions involving � p� . The actual instantiation
of � p� , i.e., assigning a particular value from between � p� ’s bounds, takes place
after generating a test sequence.

��� Ê	¥!¥!§F�/¢yÊ¶�!�/� � ��� ©��	Ê	«Ú¥!§ª©ÔñÖ×«
The FSM in Figure 5 consists of three states Ì G (the initial state), Ì µ , and Ì)Ç ,

and eight transitions Å µ through Å�� . Transition Å6� takes 3sec and the remain-
ing transitions each take 1sec to traverse. There are two timers defined for the
FSM:

²a´ µ
(started by Å Ç) with the length of ï µ ° �M¸�� and the timeout transi-

tion Å�� , and
²`´ Ç (started by ÅY� and stopped by Å\Ç) with the length of ï Ç�°$� ¸��

and the timeout transition Å�� . Transition Å µ is associated with time condition� ¿ µ °ì° í Â�¿�Ç3°ì° î � , transitions Å6� and Å�� are associated with time condi-
tion

� ¿ µ °ì° î Â¶¿�Ç�°ì° î � , and, for simplicity, the remaining transitions have
the time condition

�wî � .
c1 = c0

s = 1, c3 = c1
s = 3

c5 = c6 = c2
s = 1

c2 = c4 = c7 = c8 = 1
D1 = 5.5, D2 = 3.7
N0,1

s = {e1}, N1,1
s = {e3},

N2,1
s = {e5, e6}

v0

v1

v2

e2

e1

e3

e4

e5

e6e8 - tm1 timeout

e7 - tm2 timeout

1 time unit = 1 sec

vt

eon eoff

J b �OQJVvT��
FSM with conflicting timers vxw�� and vxwI� .

State Ì�� is introduced as the system initialization state, where a test se-
quence originates and terminates. A test sequence would start in state Ì��
with edge ÅY��� D �wî � ± ¿ µ ° íF� ¿�Ç�° íF�+á�µ ° ö}÷��+á Ç ° ö}÷��¹² G æ�µ °î��¹²+µ¹æ�µ ° î��¹² Ç æ�µ ° (��1ã G ° îR¼ , which initializes all timers and the vari-
ables of

² Í æ " . A test sequence would terminate when, after arriving at Ì G , edgeÅ ��� D � ¿ µ °ì° í Â�¿�Çª°ì° í � ±)¼ is traversed, bringing the IUT back to stateÌ � . The time condition of Å ��� ensures that all timers are inactive when the test
sequence is terminated. Note that, unlike the regular states Ì G through Ì º ä^º , Ì��
is not split by the inconsistencies removal algorithm—the final inconsistency-
free graph contains only one copy of Ì�� .

One can give examples of invalid test sequences for the FSM of Figure 5. A
test sequence beginning with (Å ��� · Å µ · Å Ç ·J¸J¸J¸) does not satisfy the time con-
dition for Å µ : � ¿ µ °ì° í Â�¿�Ç	°ì° î � , since after traversing Å6��� (initial
power-up), neither timer is running. Similarly, any test sequence containing
(
¸J¸J¸:· Å�� · Å6� · ÅY� ·J¸J¸J¸) is invalid, because Å6� ’s time condition requires that both

timers be running, which does not hold after
²`´ Ç expires in Å6� .

Let us first consider transitions of Type 1 (Å � · Å �). Transition Å � has the
following appended conditions and actions (the conditions and actions for Å��

are analogous):

Å Ç � æ�µ D �oã Ç�°ì° (Â á Ç û � ¸�� Â�Ü�� ¸��ìöyá Ç úR�M¸���öyá�µOß Âø¿�Ç�°ì° î �±:ã Ç�° î�� ¿�Ç}° íF�+á�µ ° á�µ}�	î��+á Ç�° ö}÷ø¼
Å Ç � æ Ç D �oã Ç�°ì° (Â á Ç ú � ¸�� Â�Ü�� ¸��ìöyá Ç úR�M¸���öyá�µOß Âø¿�Ç�°ì° î �±:ã Ç ° î�� ¿ Ç ° íF�+á µ ° á µ öyá Ç �0 ?¸����+á Ç ° ö}÷ø¼

For transitions of Type 2 (Å Ç · Å �), the appended conditions and actions are as
follows:

Å³Ç D �oã G 7 í Â á�µ×úR�M¸�� Â á Ç ú � ¸�� �±\á µ ° á µ �	î��+á Ç ° á Ç �¡î��1ã µ ° î�� ¿ µ ° î��+á µ ° íF� ¿ Ç ° íF�+á Ç ° öH÷ø¼
Å�� D �oã×µ 7 í Â á�µ×úR�M¸�� Â á Ç ú � ¸�� �±:ã Ç�° î��+á�µ ° á�µ}�	î��+á Ç�° á Ç �	î�� ¿�Ç}° î��+á Ç�° íM¼

Vertex Ì)Ç has two merged self-loops in ! åÇ æ�µ ° ± Å�� · ÅY� ¼ . Therefore, transi-
tions of both Type 3 (ÅRÇ æ�µ) and Type 4 (Å µÇ æ�µ · Å ÇÇ æ�µ) are defined in Ì=Ç .

The value of b is obtained from (1.4) as b¡°¡b�Ç æ�µ ° A:c¢e Ü î�·�Ad��C Ü�� ·)�=ß¹ß °î
. The only extra edge m µ has the condition of

��(£� � å 7 ï û � å � , and
the action of

± ay° îR¼ . Edge jÅ Ç æ�µ has the condition of
� h °ì° (M¸-î � , and the

actions of
±:ã Í�° (��+á Áª° á Á � � å � a �¹² åÇ æ�µ ° ² åÇ æ�µ ö a ¼ . Edge Å µÇ æ�µ is replaced

with jÅ µÇ æ�µ , with the unchanged conditions and the following actions:
± h °(M¸-î�� � å ° î�� ï ° �M¸��Föõá�µ�¼ . Similarly, the actions of jÅ ÇÇ æ�µ replacing Å ÇÇ æ�µ are± h ° (M¸-î�� � å ° î�� ï °$� ¸���öyá Ç ¼ .

In this example, the above augmentation is unnecessary, since a�° î implies
that, in any Type 4 in Ì=Ç , Sx�M¸���ö¨á�µ U ° î and

S � ¸��5ö¨á Ç U ° î . Therefore, the
appended conditions and actions are as follows:

Å Ç æ�µ D ��² åÇ æ�µ 7 í Â Ü�¿ µ °ì° î Âø¿ Ç °é° î:ß Â
Ü ² åÇ æ�µ úR�M¸���ö á�µ+ß Â�Ü ² åÇ æ�µ ú � ¸��3öyá Ç ß �±:ã Ç�° íF�+á�µ ° á�µ}�¨² åÇ æ�µ �+á Ç�° á Ç �¨² åÇ æ�µ �¹² åÇ æ�µ ° íM¼

Å
µ
Ç æ�µ D � Ü�¿ µ °ì° î Â�Ü îìúR�M¸��éöyá�µ×ú ² åÇ æ�µ ß¹ß Â ² åÇ æ�µ 7 í Â

Ü �M¸��éöyá�µ×ú � ¸��3öyá Ç ß Â Ü�¿ µ °ì° î Âø¿�Ç�°é° î:ß �±:ã Ç ° (��+á µ ° á µ �	î��+á Ç ° á Ç �	î��¹² åÇ æ�µ ° ² åÇ æ�µ ö îR¼
Å ÇÇ æ�µ D � Ü�¿�Ç}°ì° î Â�Ü îìú � ¸��ìöyá Ç ú ² åÇ æ�µ ß¹ß Â ² åÇ æ�µ 7 í Â

Ü�� ¸��ìöyá Ç úR�M¸���öyá�µOß Â Ü�¿ µ °ì° î Âø¿�Ç�°é° î:ß �±:ã Ç ° (��+á µ ° á µ �	î��+á Ç ° á Ç �	î��¹² åÇ æ�µ ° ² åÇ æ�µ ö îR¼
Since only a single self-loop is defined in vertices Ì G and Ì µ , both vertices

will have merged self-loop transitions of Type 3 only. For Ì G and Ì µ , merged

self-loop transitions Å G æ�µ and Å µ¹æ�µ are defined for the sets of ! åG æ�µ ° ± Å µJ¼ and! åµ¹æ�µ ° ± Å�� ¼ , respectively, with the appended conditions and actions derived
as for Å:Ç æ�µ .

Consider the test sequence for the FSM in Figure 5 (Table 1). While the test
sequence is being executed, the values of timer-related variables of the model
change with the progress of time.

� X�¤ap�T¥K
Valid test sequence for the FSM of Figure 5.

Test step Edge name Edge cost ¿ µ ¿�Ç á�µ á Ç
Ü î:ß Å ��� í í í ö}÷ ö}÷
Ü (=ß Å³Ç î î í í ö}÷
Ü�� ß ÅY� � î í � ö}÷
Ü �ß Å�� î î î í
Ü �=ß ÅY� î î î � î
Ü�¦ ß Å � î í î ö}÷ (M¸��
Ü �)ß Å µ î í î ö}÷ � ¸��Ü�§ ß Å³Ç î î í í ö}÷
Ü�¨ ß Å�� î î î î í
Ü îJí�ß ÅY� î î î (î
Ü î)î:ß Å�� î î í �M¸�� ö}÷
Ü îY(=ß Å � î í í ö}÷ ö}÷
Ü î � ß Å ��� í í í ö}÷ ö}÷

Let us now trace the execution of the test sequence. After system initializa-
tion by transition Å6��� , transition Å\Ç starts timer

²a´!µ
. After arriving at state Ì µ ,

there are 5.5sec left until
²`´�µ

’s timeout; so, transition Å µ¹æ�µ can be tested, which
takes 3sec. After leaving Ì µ , ²`´¶µ has 2.5sec left until timeout. In transitionÅ � , timer

²`´ Ç is started and the time-keeping variable for
²a´ µ

reaches
á µ ° .

After the test sequence arrives at state ÌMÇ , ²a´¶µ and
²a´ Ç have 1.5sec and 3.7sec

left until timeout, respectively—
²`´yµ

will therefore expire first. There is not
enough time to traverse ÅRÇ æ�µ (i.e., to test both Å6� and Å��); therefore, Å µÇ æ�µ is
traversed (Å6� is tested). In fact, traversing Å µÇ æ�µ is equivalent to traversing a
sequence of edges Ü©jÅ µÇ æ�µ · m µ³· jÅ:Ç ß , which contain only linear actions. This step
leaves 0.5sec and 2.7sec until timeouts for

²`´ µ
and
²a´ Ç , respectively. After²a´ µ

expires, the time-keeping variable for
²`´ Ç is advanced to

á Ç ° (M¸�� , which
gives enough time (1.2 sec) to traverse Å G æ�µ . Traversing Å G æ�µ is equivalent to
testing Å µ with the time condition of

� ¿ µ °ì° í Â�¿�Çü°é° î � . Since at this
point

²`´!µ
has expired and

²`´ Ç is running, Å µ ’s time condition is satisfied and
the transition is tested.

Afterwards, Å Ç are Å � are traversed consecutively without spending time on
already tested Å�� . The test sequence arrives again at state ÌMÇ , with 4.5sec and

3.7sec left until timeouts for
²`´yµ

and
²a´ Ç , respectively. Now

²a´ Ç is to expire
first, leaving sufficient time to traverse Å�Ç æ�µ (test Å��). Then,

²`´ Ç expires and
the time-keeping variable for

²a´yµ
is advanced to

áMµ ° �M¸�� , exceeding
²a´!µ

’s
length by 0.2. Therefore, Å � is traversed immediately, since

²a´ µ
expired whileÅ�� was being traversed. Now the IUT is back in its initial state Ì G with both

timers inactive and all transitions tested, so the test sequence returns to the
system initialization state Ì�� through transition Å ��� .

The test sequence shown in Table 1 satisfies all timing constraints imposed
by the two timers

²a´ µ
and
²a´ Ç . In addition, the time conditions for all tran-

sitions in the FSM are satisfied at any time during the test sequence traversal.
Section 6. presents an algorithmic technique to obtain low-cost test sequences
satisfying the above criteria.

ª�� ��� ¢ ��� Ö��7Ö×��©¬� ¢���©!Ö��©¬«Ô��ÓñÊ	§Ê�§ÕÉ£� �õ�M��Ë�«ÔÖ
The interdependence among the variables used in the actions and conditions

of an EFSM, or an FSM with time variables, may cause various inconsistencies
among the actions and conditions of the model. For example, in Figure 5,
the actions of Å�� set ¿�Ç to 0. Since the time condition of Å�� requires that� ¿ Ç °ì° î � , Å � ’s action causes inconsistency with Å � ’s condition. Similarly, a
test sequence that includes both Å µ and Å�� contains condition inconsistency—Å µ requires that

� ¿ µ °ì° í � and Å�� that
� ¿ µ °ì° î � . Both test sequences are

therefore infeasible.
Feasible test sequences can be generated from the EFSM models if the in-

consistencies are eliminated. The algorithms by Uyar and Duale [5, 19, 20]
eliminate inconsistencies from an EFSM in two phases. First, action inconsis-
tencies are detected and eliminated. Next, the algorithms proceed with the de-
tection and elimination of condition inconsistencies by employing linear pro-
gramming techniques.

In these algorithms, both edge actions and conditions are represented by
sets of matrices to analyze their interdependence. In addition, the actions
and conditions accumulated along the paths in the graph are represented by
sets of Action Update Matrix (AUM) pairs and Accumulated Condition Matrix
(ACM) triplets [5], respectively. While traversing the EFSM graph in a mod-
ified breadth-first (MBF) and a depth-first (DF) manner, inconsistencies are
eliminated by splitting the nodes and edges of the EFSM graph. During this
split, unnecessary growth of the number of states and transitions is avoided.
Only the edges with feasible conditions and the nodes that can be reached from
the initial node are selected from the split nodes and edges to be included in the
resulting FSM. (See paper [5] in these proceedings for a detailed presentation
of the inconsistencies removal algorithms.)

In the methodology presented in this paper, the inconsistency removal al-
gorithms are adapted for handling the conflicts caused by multiple timers, and
are incorporated in the proposed technique as follows:

Step (1)—Graph augmentation:
Augment an original graph with vertex Ì�� , edges of ÅY��� and Å ��� , and a number
of observer edges as described in Section 3. (see Figure 6 for an example).
Mark and queue vertex Ì G as Ì G©« G .
Step (2)—Inconsistencies removal:
Unqueue vertex Ì G©« Á (copy of the initial state state Ì G). Apply VHDL incon-
sistencies removal algorithms in MBF and DF manners starting from Ì G©« Á untilÌ G©« Á is reached again through a set of edges denoted by

Þ G©« Á (the set of incom-
ing edges of Ì G©« Á).
Step (3)—Initial state splitting:
Split vertex Ì G©« Á into a set of vertices Ý G©« Á ô¶± Ì G©« Á ¼ ; Ý G©« Á ’s cardinality is equal
to the number of distinct AUMs associated with edges in

Þ G©« Á (note: Ì G©« Á may
belong to Ý G©« Á). The set of Ý G©« Á is further divided into Ý�¬ �©G©« Á , which contains
vertices associated with AUMs corresponding to all timers inactive, and Ýd® �¯G©« Á ,
containing the remaining vertices in Ý G©« Á . The set of edges

Þ G©« Á is divided
accordingly into

Þ ¬ ��G©« Á and
Þ ® �¯G©« Á .

Edge Å ��� , whose traversal is mandatory in the test sequence, is incoming
only to vertex Ì G ; an edge Å ��� is outgoing from each vertex in Ý �±°�²G©« Á . All copies
of Å ��� are optional to traverse—they will be included in the test sequence only
when necessary.

Step (4)—Redundant paths pruning:
Remove from the graph edges in

Þ ¬ ��G©« Á using the following two-phase heuristic
procedure. First, any edge Å � ë¬Þ ¬ ��G©« Á is deleted if ³�Å ¾éëñÞ ¬ ��G©« Á such that:Ñ�´¶µ %'¾ includes ´·µ % � . Since all timers are inactive in Ý¸¬ ��G©« Á ,

a sufficient condition for ´¶µ %!¾ to include ´¶µ % � is as follows:

Ü¢¹ Í g º äjº ¹ " g çWV ßa² å�º
¾©»
Í æ " ùÚ² å�º � »Í æ " . This means that ´¶µ %!¾ allows testing

more self-loops than ´¶µ % � .Ñ All edges in the paths from Ì G©« Á to vertices in Ý ¬ ��G©« Á associated with´¶µ % � have their copies in the paths from Ì G©« Á to vertices in Ý¶¬ ��G©« Á as-
sociated with ´·µ %¶¾ .

Second, any edge Å � ëñÞ ¬ ��G©« Á is deleted if neither of the following conditions
is true:Ñ A new edge can be traversed by keeping Å�� in the graph, i.e., the paths

from Ì G©« Á to vertices in Ý¶¬ �©G©« Á associated with ´¶µ % � should contain an
edge that has not been traversed before unqueuing Ì G©« Á .Ñ Some untested self-loops can be traversed by keeping Å � in the graph,
i.e., Ü¼³ Í g º äBº ³ " g çWV ßa² å�º

¾©»
Í æ " ú ² å�º½G©« Á

»
Í æ " .

Step (5)—Queueing and marking copies of the initial state:
Queue all unmarked vertices in ÝT® �¯G©« Á and unmarked vertices in Ý ¬ ��G©« Á with at
least one undeleted edge in

Þ ¬ ��G©« Á . Mark queued vertices.
If the queue is empty, terminate; otherwise, go back to Step (2). ¾
Typically, a test sequence is divided into a number of subtours—

subsequences of a full test sequence that start and stop in Ì G . Each subtour
may or may not be preceded by a system power-down/power-up; therefore,
when an IUT starts executing, not only should it be brought to state Ì G , in
addition, all timers must be inactive. To ensure this behavior, each Ì G ’s copy
corresponding to an AUM with all timers inactive (i.e., any vertex in Ý �±°�²G©« Á)
may be considered the start state of a subtour.

Let us now apply the above algorithm to the FSM of Figure 5. First, the FSM
is augmented with the auxiliary edges of Å���� and Å ��� , and a number of observer
edges as shown in Figure 6. The conditions and actions of the observer edges
are defined based on (1.2)–(1.3) as follows:

Q X G æ�µ D �oã G ú¿(Â ² åG æ�µ °é° í � ±)¼=· Q X µ¹æ�µ D �oã�µ�ú¿(Â ² å µ¹æ�µ °é° í � ±)¼
Q X Ç æ�µ D �oã Ç ú¿(Â ² åÇ æ�µ °é° í � ±)¼
Q X XG æ�µ D �oã G ú¿(Â�Ü ² åG æ�µ 7 í Â�Ü�¿ µ °ì° î Ãø¿�Ç�°ì° í�ß¹ß � ±)¼
Q X XÇ æ�µ D �oã Ç ú¿(Â�Ü ² åÇ æ�µ 7 í Â�Ü�¿ µ °ì° í Ãø¿�Ç�°ì° í�ß¹ß � ±)¼ZQ G D �wî � ±:ã G ° (�¼=· ZQ µ D �wî � ±:ã µ ° (�¼=· ZQ Ç D �wî � ±:ã Ç ° (�¼

An application of the algorithm described in this section to the graph of
Figure 6 produces the final graph shown in Figure 7. A minimum-cost test se-
quence, given by (1.5)–(1.7), can be derived as a solution to the Rural Chinese
Postman Problem [1] on this final graph. The test sequence of (1.5)–(1.7) con-
sists of three subtours containing the edges defined in the original graph (Fig-
ure 5) and the auxiliary edges of Å6��� and Å ��� ; the observer edges are dropped.
All edges defined in the graph of Figure 5 are included without the explicit de-
laying of timers

²a´�µ
and
²a´ Ç ; therefore, the technique presented in Section 4.

need not be applied in this case. Note that the test sequence of Table 1, which
was derived manually, corresponds to Subtour 1 of (1.5).î D Å���� · Å:Ç · ÅY� · Å�� · ÅY� · ÅY� · Å µ³· Å³Ç · ÅY� · ÅY� · Å6� · ÅY� · Å ��� (1.5)(D Å���� · Å:Ç · Å�� · ÅY� · ÅY� · Å�� · Å�� (1.6)

� D Å Ç · Å � · Å � · Å � · Å µ · Å Ç · Å � · Å � · Å � · Å ��� (1.7)

À � ¢ ��� ¢y§ª £Ö��/� �
As a recent result of on-going collaboration between UD and CCNY, this

paper presents the study of conformance test generation when multiple timers

e2

e0,1

e1,1

e4

e2,1 e1
2,1 e2

2,1
e2

7,1 e2
7,2

v0

v1

v2

v1 Á

v2 Á
ed

ed

v0 Á
ed

w1,1

s Á 1,1

š1

w0,1

s Á 0,1

s Á Á 0,1

š0

w2,1 s Á 2,1 s Á Á 2,1

š2

vt

eon

eoff

e1
8,2

e1
8,1

J b��OQJVoTÃÂ
Augmented graph for the FSM of Figure 5.

vt

v0.0 eon

eoff

v1.0

e2.0

v1.1v2.0

e4.0

f1=0

e3.0

v2.1

e4.2

f1=3,
t1,1=0

f1=4,
f2=0

v2.2

e5.2

f1=5, f2=1,
t2,1=1

e8.4

t1,1=0,
t2,1=1,
f2=2.5

f1=1, f2=0

v2.3

e5.0+e6.0

t2,1=0

v2.4

e7.1

e8.2

t2,1=0

v0.1v0.2

eoff

v0.5
e1.0 t0,1=0,

f2=3.5

v1.3

e2.2

v2.8

e4.4

f1=1, f2=0

v2.9
t2,1=0

v2.10

e7.5

e8.6
f1=0,
f2= -∞

e6.3

t0,1=0,
t1,1=0,
t2,1=0,
f2= -∞

v0.6

eoffv1.0 e2.2

f1=0,
f2= -∞

e3.2

e4.6

f1=3,
t1,1=0

f1=4,
f2=0v2.12

f1= -∞,
t2,=2.5

e8.8

v1.1

t0,1=1,
t1,1=0,
t2,1=0,

v0.8 v0.9
e1.0

t0,1=0,
f2=3.5

v1.3

e2.2

v2.14

e4.4

f1=1, f2=0

v2.16

e7.5

e8.10

f1=0,
f2= -∞

J b��OQJVoTÅÄ
The final graph for the FSM of Figure 5.

are running simultaneously. CCNY’s inconsistency removal algorithms are ap-
plied to a new model for testing real-time protocols with multiple timers. As
introduced in this paper, the new model captures complex timing dependen-
cies by using simple linear expressions. This modeling technique, combined
with the inconsistency removal algorithms, is expected to significantly shorten
the test sequences without compromising their fault coverage. Currently, a
software tool applying inconsistency removal algorithms to EFSMs models is
being implemented at CCNY. Completion of this software project will enable
the application of the presented methodology to MIL-STD 188-220.

The methodology presented in this paper is expected to detect transfer and
output faults, where an IUT moves into a wrong state (a state other than the one
specified) or generates a wrong output (an output other than the one specified)
to a given input. As future work, fault detection issues will be pursued fur-
ther. In particular, a fault model taking into account specific faults caused by
the violation of timing constraints and time conditions should be considered.
Computing the fault coverage of the presented methodology also needs to be
investigated.

µ
�&Æ�ÇFÈ}É

1. The views and conclusions contained in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory
or the U.S. Government.

�RÈ}Ê�È�Ë�È�ÌÎÍ�È}É
[1] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar. An optimization technique for

protocol conformance test generation based on UIO sequences and rural Chinese postman
tours. IEEE Trans. Commun., 39(11):1604–1615, Nov. 1991.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoret. Comput. Sci., 126:183–235,
1994.

[3] L. Cacciari and O. Rafiq. Controllability and observability in distributed testing. In
K. Saleh and R. Robert, eds, Communications Software Engineering, vol. 41(11-12) of
Inform. Softw. Techn., pp. 767–780. Sept. 1999.

[4] R. Cardell-Oliver and T. Glover. A practical and complete algorithm for testing real-time
systems. In Proc. Int’l Symp. Formal Techn. Real-Time Fault-Toler. Syst. (FTRTFT), vol.
1486 of LCNS, pp. 251–261, Lyngby, Denmark, Sept. 1998. Springer-Verlag.

[5] A. Y. Duale and M. U. Uyar. Generation of feasible test sequences for EFSM models. In
H. Ural, R. L. Probert, and G. v. Bochmann, eds, Proc. IFIP Int’l Conf. Test. Communicat.
Syst. (TestCom), Ottawa, Canada, Aug.–Sept. 2000. Boston, MA: Kluwer Academic Publ.

[6] A. En-Nouaary, R. Dssouli, F. Khendek, and A. Elqortobi. Timed test cases generation
based on state characterisation technique. In Proc. IEEE Real-Time Syst. Symp. (RTSS),
pp. 220–229, Madrid, Spain, Dec. 1998.

[7] M. A. Fecko, M. U. Uyar, P. D. Amer, A. S. Sethi, T. J. Dzik, R. Menell, and M. McMa-
hon. A success story of formal description techniques: Estelle specification and test gen-
eration for MIL-STD 188-220. In R. Lai, ed, FDTs in Practice, vol. 23(12) of Comput.
Commun., pp. 1196–1213. July 2000.

[8] M. A. Fecko, M. U. Uyar, A. S. Sethi, and P. D. Amer. Conformance testing in systems
with semicontrollable interfaces. In S. Budkowski and E. Najm, eds, Protocol Engineer-
ing: Part 2, vol. 55(1-2) of Annals Telecommun. Jan.–Feb. 2000.

[9] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test selection
based on finite state models. IEEE Trans. Softw. Eng., 17(6):591–603, June 1991.

[10] T. Higashino, A. Nakata, K. Taniguchi, and A. R. Cavalli. Generating test cases for a
timed I/O automaton model. In G. Csopaki, S. Dibuz, and K. Tarnay, eds, Proc. IFIP
Int’l Wksp Test. Communicat. Syst. (IWTCS), pp. 197–214, Budapest, Hungary, Sept.
1999. Boston, MA: Kluwer Academic Publ.

[11] D. Hogrefe. On the development of a standard for conformance testing based on formal
specifications. Comput. Stand. Interf., 14(3):185–190, 1992.

[12] R. Lanphier, A. Rao, and H. Schulzrinne. Real time streaming protocol (RTSP). RFC
2326, Internet Eng. Task Force, Apr. 1998.

[13] L. Leonard and G. Leduc. An introduction to ET-LOTOS for the description of time-
sensitive systems. Comput. Networks ISDN Syst., 29(3):271–290, 1997.

[14] G. Luo, G. v. Bochmann, and A. F. Petrenko. Test selection based on communicating non-
deterministic finite state machines using a generalized Wp-method. IEEE Trans. Softw.
Eng., 20(2):149–162, 1994.

[15] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport protocol for
real-time applications. RFC 1889, Internet Eng. Task Force, Jan. 1996.

[16] J. Springintveld, F. Vaandrager, and P. R. D’Argenio. Testing timed automata. Techni-
cal Report CTIT-97-17, Univ. of Twente, the Netherlands, 1997. (Invited talk at TAP-
SOFT’97, Lille, France, Apr 1997).

[17] J. Tretmans. Conformance testing with labelled transitions systems: Implementation re-
lations and test generation. Comput. Networks ISDN Syst., 29(1):49–79, 1996.

[18] H. Ural. Formal methods for test sequence generation. Comput. Commun., 15(5):311–
325, June 1992.

[19] M. U. Uyar and A. Y. Duale. Modeling VHDL specifications as consistent EFSMs. In
Proc. IEEE Military Commun. Conf. (MILCOM), Monterey, CA, Nov. 1997.

[20] M. U. Uyar and A. Y. Duale. Resolving inconsistencies in EFSM-modeled specifications.
In Proc. IEEE Military Commun. Conf. (MILCOM), Atlantic City, NJ, Nov. 1999.

[21] M. U. Uyar, M. A. Fecko, A. S. Sethi, and P. D. Amer. Testing protocols modeled as
FSMs with timing parameters. Comput. Networks, 31(18):1967–1988, Sept. 1999.

