FORMAL SPECIFICATION AND CONFORMANCE TESTING OF
ARMY COMMUNICATIONS PROTOCOLS

Paul D. Amer
Mariusz A. Fecko
Adarshpal S. Sethi

Computer and Information Sciences Department
University of Delaware, Newark, DE

M. Umit Uyar
Ali Y. Duale

Electrical Engineering Department
The City College of the City University of New York, NY

ABSTRACT

During the past sixz years, ATIRP-sponsored faculty
and students from the University of Delaware and
the City College of New York, collaborating with sci-
entists from CECOM and ARL, have helped advance
the state-of-the-art in the design, development, and
testing of Army communications protocols'. Work-
ing closely together, these groups specified a complex
real-life protocol (MIL-STD 188-220) in Estelle, and
then used that formal specification to generate con-
formance test sequences. The test generation effort
involved identifying and publishing results on three
theoretical problems: (1) the timing constraint prob-
lem, (2) the controllability problem, and (3) the con-
flicting timers problem. Based on ATIRP’s research
results, two software packages were written to gener-
ate conformance test sequences for 188-220. These
packages helped generate tests for 188-220°s Data
Link Types 1 and 4 services that were realizable with-
out timer interruptions while providing a 200% in-
crease in test coverage. The test cases have been de-
livered and are being used by a CECOM conformance
testing facility.

Keywords: conformance testing, Estelle, formal de-
scription technique, formal specification, MIL-STD
188-220, protocol specification, test case generation

!This work supported by the US ARO (DAAH04-94-G-
0093), and prepared through collaborative participation in the
Advanced Telecommunications/Info Dist'n Research Program
(ATIRP) Consortium sponsored by the US Army Research Lab
under Fed Lab Program, Cooperative Agreement DAALQ01-96-
2-0002. M. Fecko is with Telcordia Applied Research, NJ. A.
Duale is with IBM, NY.

I. Introduction

This paper summarizes a successful six-year effort
to use the Estelle formal description technique to
specify a complex real-life protocol - Military Stan-
dard (MIL-STD) 188-220 - and then use that speci-
fication to automatically generate conformance tests
for use in implementation testing. A key factor in
this success story has been the ATIRP-sponsored
collaboration among five groups: University of
Delaware (UD), City College of the City University
of New York (CCNY), the Army Research Labora-
tory (ARL), US Army Communications-Electronics
Command (CECOM), and the Joint Combat Net Ra-
dio Working Group (CNR-WG). 188-220 is being de-
veloped in the US Army, Navy and Marine Corps
systems for mobile combat network radios [18]. As
a result of this collaboration, the synergistic frame-
work to develop C*I (Command, Control, Commu-
nications, Computers, and Intelligence) systems with
the help of formal methods serves as a model for fu-
ture DoD networking standards development [20].

Since this paper is a case study promoting a suc-
cessful application of Estelle to a real-life protocol,
it includes a cross section of activities over the past
six years. Section II provides the background on the
collaboration among the MIL-STD 188-220 sponsors,
research and development teams, and standards or-
ganizations. Sections IIT and IV overview the for-
mal description technique Estelle and 188-220, re-
spectively. Section V presents a part of the Estelle
specification of 188-220, and gives examples of errors
and ambiguities found as a result of formally specify-

ing the protocol. A general approach adopted at UD
and CCNY to test generation from an Estelle formal
specification is described in Section VI. This section
also summarizes four years of ATIRP-supported pub-
lished research results in test generation based on for-
mal specifications. Section VII presents two systems
of software: (1) efsm2fsm-rcpt, and (2) INDEEL im-
plemented to help generate conformance tests. Sec-
tion VIII summarizes our practical test generation
results - the technology transfer of tests from ATIRP
to CECOM. Finally, Section IX presents the authors’
personal perspective on how the protocol develop-
ment process is in general improved thanks to using
formal methods.

II. History of MIL-STD 188-220
Development

Formal methods in communications protocol speci-
fication and conformance testing have been widely
used in the design and testing of real-life proto-
cols [6], [16], [17], [28], [39], [40], [84]. In particular,
the Estelle formal description technique (FDT) [11],
[32], [61], [64] has been used on several occasions to
resolve ambiguities within international protocols [8],
[14], [38], [53], [62], [77].

In 1994, UD’s Protocol Engineering Laboratory be-
gan its involvement with the US Army in using Es-
telle to formally specify the military standard MIL-
STD 188-220 [18]. An initial small contract with
the Army Research Laboratory supported both sim-
ulation and specification of the 1993 version of 188-
220 [13], [49]. This formal specification research ef-
fort received the attention of the CECOM Software
Engineering Center in NJ. CECOM leads the effort
to evolve 188-220 to meet the Army’s requirements
for battlefield digitization, through the Joint CNR-
WG, itself responsible for the evolving 188-220 stan-
dard.

From 1995 to 1998, over fifty changes to the English
specification of 188-220 resulted from UD’s efforts
using Estelle to formally specify the standard [2],
[18] (see Figure 1). While the English text takes
precedence in case of disagreement with the formal
specification, UD’s Estelle specification of 188-220 is
an official part of the military standard. > Tt repre-

2From this point on, 188-220 refers to version B, approved
1/98.

sents one of the first major national or international
standards officially including an Estelle specification.
Other examples include [31], [34], [35], [52].

During this period, CECOM has been concurrently
developing a Conformance Tester that can automat-
ically evaluate a 188-220 implementation identify-
ing its conformance with the standard. Our test
generation research was initiated as part of the US
Army’s Advanced Telecommunication and Informa-
tion Distribution Research Program (ATIRP) in Jan-
uary 1996, when UD’s Protocol Engineering Lab be-
gan research collaboration with CCNY. Efforts were
focused on automatically generating test cases from
the Estelle specifications. Generating tests from for-
mal specifications such as pure finite state machines
(FSMs) has been extensively studied in the litera-
ture. But the inherent complexity of 188-220 is far
beyond specifying with pure FSMs, hence the need
to use a more powerful specification language such
as Estelle, International Standard ISO 9074. Unfor-
tunately, generating tests from Estelle specifications
presents difficult theoretical and practical problems.
UD and CCNY faculty and students continue to in-
vestigate these problems with the practical motiva-
tion of applying the results towards 188-220 test case
generation.

Automatic generation of tests from Estelle specifica-
tions presented various theoretical problems:

1. During testing, if active timers were not taken
into account when the tests were generated, these
timers can disrupt the test sequences, thereby failing
correct implementations or worse, passing incorrect
ones. For accurate testing, timers must be incorpo-
rated as constraints into the extended FSM (EFSM)
model of an Estelle specification.

2. Test sequence generation is limited by the control-
lability of an Implementation Under Test (IUT) [7].
Testers may not have direct access to all interface(s)
in which the IUT accepts inputs. Typically, the in-
terfaces with upper layers, or with timers are difficult
or impossible to access during real testing conditions.
In this case, some inputs cannot be directly applied;
the interactions involving such interfaces may ren-
der some portions of the protocol untestable, and
may introduce non-determinism and/or race condi-
tions during testing.

3. Infeasible test sequences may be generated unless

May 93
July 95 - “A”

July 97 - draft “B”
Jan 98 - approved “B”

Oct 95

Jan 98

MIL-STD
188-220

(English)

Combat Net Radio
Working Group
CECOM

——i—
——

June 96

March 97
(Estelle)

Protocol Engineering Lab
University of Delaware

Fig. 1. History of MIL-STD 188-220 Development

conflicting conditions based on a protocol’s variables
are resolved (the INDEEL software package (Sec-
tion VII-B addresses this problem).

4. In particular, infeasible test sequences may result
from a protocol’s variables modeling multiple timers
that may be running simultaneously (the so-called
conflicting timers problem).

The timing and controllability issues were present
in the EFSM model of the Estelle specification of
MIL-STD 188-220 [3], [21]. Based on the results of
investigating problems (1) and (2) by the UD and
CCNY joint group [21], [23], [72], UD has been pro-
viding CECOM with automatically generated test
sets since 1997. The sizes of the resulting FSMs de-
rived from the Estelle specification range from 48
to 303 states, and from 119 to 925 transitions. The
corresponding test sequences range from 145 to 2,803
test steps. These tests are free of interruptions due to
unexpected timeouts while their coverage of the num-
ber of testable transitions increased from approxi-
mately 200 to over 700 by utilizing multiple interfaces
without controllability conflicts. The most recent re-
search focuses on the conflicting timers problem.

II1. Estelle

In 1989, Estelle was published as one of two ISO In-
ternational Standard Formal Description Techniques
(FDT) for the specification of computer communica-
tion protocols [11], [32]. As shown in Figure 2, Es-
telle specifies a protocol’s behavior as a set of com-

municating extended finite state machines. To avoid
ambiguity among different readers of a specification,
the Estelle language itself has a formal, mathemati-
cal, implementation-independent semantics.

Estelle is an expressive, well-defined, well-structured
language that is capable of specifying distributed,
concurrent information processing systems in a com-
plete, consistent, concise, and unambiguous manner.
An Estelle specification aims at discovering and re-
solving ambiguities in the original English document
that would cause interpretation problems for imple-
mentors.

An Estelle specification consists of two parts: an ar-
chitecture and its behavior. The architecture speci-
fies a collection of systems of nested modules. Each
module’s behavior is described by an extended FSM.
These EFSMs interact via the sending of interactions
over a set of channels. The interactions are concep-
tually stored in infinite FIFO queues enabling tran-
sitions in the receiving module which are fired when
all enabling conditions are satisfied. A complex set
of rules define either a parallel or synchronous firing
of transitions within each EFSM. Overall, the many
features of Estelle allow a user to formally specify a
wide variety of network protocol behaviors. Further
information about Estelle can be found in [61], [64].

One major benefit of an Estelle specification as a
model of a communication protocol is that it can be
used as input to a conformance test generation tool.

- Behavior:

- variables

- priorities

- delays

- conditionals

Communicating Extended FSMs + Pascal

<) & <

- |

e Architecture: Hierarchy and Interconnections of EFSMs

- modules
- interaction points
- channels

=2 1 | =2

)i 1

=2 |

Fig. 2. Estelle: ISO International Standard 9074

Since Estelle makes it possible to create a complete
and unambiguous protocol model, the test cases gen-
erated from it can potentially achieve higher fault
coverage than hand-generated ones, and are repro-
ducible with far less effort as 188-220 evolves in the
future. These advantages are the primary motiva-
tions for using Estelle to specify 188-220.

IV. MIL-STD 188-220

The Protocol Engineering Lab researchers at UD
used Estelle to specify parts of the 188-220 proto-
col suite. This suite was developed to meet the re-
quirements for horizontal integration, seamless In-
ternet communications and increased mobility using
combat network radios [20]. This protocol, a critical
piece of the new Joint Technical Architecture, is now
mandated for CNR communications. It is being im-
plemented in US Army, Navy and Marine Corps sys-
tems, and has been demonstrated initially during the
Army’s Advanced Warfighting Experiment in 1997.
188-220 is now receiving allied/international atten-
tion, while portions of its protocol architecture have
been promulgated in the Internet Engineering Task
Force. Expected outcomes from its use are: seam-
less connectivity of C*I systems (discussed briefly in
Section IX), horizontally integrated information net-
works, and joint interoperable C*I systems for the
warfighter.

188-220, originally developed in 1993, evolved to 188-
220A with substantial new functionality, including

support for new radio technology and integration
with Internet protocols (commercial IP, TCP, and
UDP at the network and transport layers). Version
188-220B, whose architecture is depicted in Figure 3,
describes the protocols needed to exchange messages
using CNR as the transmission media. These proto-
cols include the physical, data link and part of the
network layer of the OSI model. The protocols ap-
ply to the interface between host systems and radio
systems. Hosts usually include communications pro-
cessors or modems that implement these lower layer
protocols. The unshaded portions of Figure 3 indi-
cate those protocols and extensions that were devel-
oped specifically for use with CNR.

MIL-STD-188-220 Datalink layer specifies several
service types, each intended to handle different types
of traffic with different quality of service (QoS) de-
mands. A 188-220 station can actually process sev-
eral different types of traffic simultaneously (and
almost orthogonally). MIL-STD-188-220 Network
Layer consists of Internet (IP) Layer, Subnetwork
Dependent Convergence Function (SNDCF'), and In-
tranet Layer. The Intranet Layer has been dedi-
cated to routing intranet packets between a source
and possibly multiple destinations within the same
radio network. The Intranet Layer also accommo-
dates the rapid exchange of topology and connec-
tivity information—each node on the radio network
needs to determine which nodes are on the network
and how many hops away they are currently located.

SEGMENTATION/REASSEMBLY

SELECTIVE DIRECTED BROADCAST

Transport TCP

UDP

Internet
Network
Intranet

Data Link

Physical | Asynchronous Mode

Synchronous Mode Packet Mode

Network Access R-NAD P-NAD

H-NAD DAP-NAD RE-NAD

| Tactical Protocol | | Commercial Protocol |

Fig. 3. MIL-STD 188-220 Protocol Architecture. The circles indicate those parts of the protocol where FDTs were

used during the development.

Network Layer Interface

1. NL-UnitdataReq

Transport Layer 2.NL-Unitdata.Ind

3.NL-Status.Ind

4. DL-Unitdata Req (DL-Unitdata-id, 1~16 dest addr,
src adr, top-id, precedence, throughput, delay,

1 23 reliability, data, datalength)

5. DL-Unitdata.Ind (1~16 dest addr, src add, top-id,

78910111 data, data length)

> 6. DL-Status.Ind (DL-Unitdata-id*, ack failure,

Network L ayer 1~16 dest addr*, Type 2 connedion status)

< 7. OP-join-net.Req

13,1415 8. OP-leave-net.Req

9. OP-TU-response-mode (response mode)

L] 4 56 10. OP-TU-relay-mode (relay mode)

11. OP-TU-topol ogy-precedence (precedence)

12. OP-TU-min-update-per (period)

13. OP-unable-to-join-net.Ind

Datalink Layer 14, OP-join-net.Ind

15. OP-leave-net.Ind

|

— o o =~ oo O

Network Layer - 1P, SNDCF, Intranet Interface

1 7. OP-join-net.Req
23 8. OP-leave-net.Req
9. OP-TU-response-mode (response mode)

10. OP-TU-relay-mode (relay mode)
11. OP-TU-topology-precedence (precedence)
—4 Internet (IP) Layer 12. OP-TU-min-update-per (period)
13. OP-unable-to-join-net.Ind
21 14. OP-join-net.Ind
223 15. OP-leave-net.Ind
0SAP 21. SNDCF-UnitdataReq

Subnetwork Dependent 22. SNDCF-Unitdata.Ind
Convergence Function 23. SNDCF-Status.Ind
24, 1L-Unitdata.Req (IL-Unitdate-id*, message
24 type,1~16 dest addr, src addr, precedence,
526 throughput, delay, reliability, deta, data length)
25. |L-Unitdata.Ind (1L -Unitdate-id*,1~16 dest
Intranet Layer addr, src addr, data, datalength)

v 26. IL-Status.Ind (IL-Unitdata-ic, ack failure,
91011,12 intranet path status, 1~16 dest addr)

=
I—A’I
iy

4,15

—~— o —~®» -~ ®oT O
~
=)

56

Fig. 4. Network Layer Interface and Architecture

V. 188-220 Estelle Specification

To help a reader realize the magnitude of formally
specifying a protocol of 188-220 size and complexity,
we provide some numbers. The Datalink and Net-
work layer specifications consist of 69 and 19 doc-
uments, respectively, describing the architecture, in-
terfaces, EFSM, and state table of each module. The
Datalink layer specification is accompanied by three
Estelle source code files (for Datalink classes A, B,
and C) with approximately 1,600, 8,700, and 2,400

lines of code, respectively. The Estelle source code
for the Network layer has 7,150 lines of code, defining
34 states and 370 transitions in 7 EFSMs.

Due to its large size, it is not possible to include
the actual Estelle specifications in this paper. For
a more detailed description of the semantics of Es-
telle specification components (communication chan-
nels, interactions, etc.), the reader may should see
www.cis.udel.edu/~amer/CECOM/. In the next sec-
tion, we present an overview of the Network Layer

SNDCF Layer ¢

XNP procedures

40,

SNDCFSAP
40, 41,

END-END-
ACK Timer
T
el 50 |
41 72 T

p 73, 25,26
74

Sour ce Directed Relay

72

o 7.8 13,14,15
D e 60,61,62,63 64,65,66,67
e
r TOP-UPDATE | | TOP-UPDATE- 70,
a Timer . IEEQ Timer -
t 42I 146
o 43,44,45 47,48,49
rog 9,10,11,12

Topology Update

4 I lower mux
5,6

53,54

|

lower mux
5,6

LSAP

I Datalink Layer

Fig. 5. Intranet Layer Architecture

architecture with a focus on the Topology Update
and Source Directed Relay functions of the Intranet
sublayer.

A. Intranet Layer Architecture

Figure 4 shows the interface and general architecture
of the Network layer. The architecture represents the
protocol stack at a single station, as well as an in-
terface with “operator module” which can interact
with several different layers in the stack. The op-
erator module abstracts the link layer’s interactions
with both a human operator and a system manage-
ment process.?

Figure 5 shows the internal structure of the Intranet
Layer. The two main Intranet Layer functionalities,
Source Directed Relay (SDR) and Topology Update
exchange (TU), were encapsulated in separate com-
ponent modules of the Intranet Layer module. This
simplifies the design of the FSMs that model the en-
tire layer, and also allows for generating test cases
for each functionality separately.

The SDR module receives IL_Unitdata_Req mes-
sages through SNDCFSAP interaction point. It
starts/stops a varying number of END_END_ACK

3Note that the numbers in Figures 4 through 5 refer to inter-
actions, and are consistent throughout the figures (e.g., num-
ber 12 refers to OP-min-update-per in all three figures).

timers, one for each IP packet that has been sent
but not yet acknowledged. The TU module interacts
with the SDR module by notifying it of any topology
changes that take place dynamically. The TU mod-
ule communicates with two timers: Topology_Update
Timer and Topology_Update_Request Timer. The for-
mer is started after a topology update message is sent
by the station. According to 188-220A, a station is
not allowed to send another topology update mes-
sage until the timer expires. The latter performs the
same role for topology update request messages.

Both SDR and TU modules can send and re-
ceive messages from the datalink layer through their
lower_muz interaction points—the messages from the
two modules are multiplexed by the parent Intranet
Layer module. A peer operator or management com-
ponent is connected directly to the Topology Update
module and can set parameters that are relevant in
topology update mechanism. Part of the diagram
inside the dash-lined rectangular contains modules
that handle XNP procedures: joining and leaving
the net with either centralized or distributed control,
and parameter update requests.

B. Problems and Ambiguities Found in 188-220
through Formal Specification

The primary goals in developing a formal specifica-
tion of a protocol are to:

1. discover and document problems and ambiguities
that are commonly seen in a standard written in nat-
ural language,

2. verify the protocol,

3. simulate the protocol,

4. automate code implementation, and

5. automate test generation process.

MIL-STD 188-220 project focuses on goals (1), (3),
and (5), with simulation studies done by the US
Army as reported in [20]. Although the formal ver-
ification of 188-220 is not part of the project, some
of the errors found during the formal specification
can also be classified as part of goal (2). Achieving
goal (4) is an open issue; manufacturers, which were
already developing implementations before the Es-
telle specification was created, now have an option
to use the Estelle specifications for automated code
generation.

In the process of developing the Estelle specifica-
tions of the Data Link and Intranet Layers, more
than fifty problems in the original English specifi-
cation have been documented. All of these prob-
lems were reported back to the CNR Working Group
and subsequently corrected in the standard. Here
we present just two examples of ambiguities found
and corrected, demonstrating the difficulty of defin-
ing protocol operations in a natural language.

Examples range from ambiguities such as:

e “... a station shall wait for some period of time

bounded by the probability of the remote ack time
expiration.”

e The Intranet Layer allows a station to enter Quiet
mode whereas the Data Link layer refers to a station
being in response mode off. It was ambiguous how
these two terms differ, if at all.

to more serious examples of correctness/completeness
such as:

o Intranet routing was originally defined based on
spanning trees of the Intranet topology. However
the draft standard’s examples did not comply with
the mathematical definition of a spanning tree.

e The phrase “may report to the higher layer pro-
tocol, and may initiate appropriate error recovery
action” was added in several locations when the
datalink layer identified an error condition such as a

lack of acknowledgment after the maximum allowed
number of retransmissions.

VI. Test Case Generation

Test scripts (test cases) specify a logical sequence
of test steps that are performed by a Conformance
Tester to individually test a given protocol entity.
The test scripts are input to the Conformance Tester
which in turn stimulates an IUT, and assesses the
IUT’s responses to determine if the IUT correctly
implements the protocols. Since it is impossible to
exhaustively test an implementation in practice, a
good set of test scripts should at least check those
events that affect state/transition, boundary condi-
tions, and stress points. The test scripts themselves
should be structured as independent modular com-
ponents to facilitate modifying and adding to the
scripts in response to 188-220’s continuing evolution.

A number of techniques have been proposed to gen-
erate test sequences from Estelle specifications [46],
[47], [65], [66], [82]. However, full Estelle specifica-
tions of large systems may prove to be too complex
for direct test case generation. As shown in Figure 6,
there are several ways of generating test sequences
from Estelle specifications. One approach would be
to ezpand Estelle’s EFSMs thereby converting them
to pure FSMs. This expansion would be useful since
methods exist for generating tests directly from pure
FSMs (e.g., [1])- Unfortunately, completely convert-
ing even a simple EFSM can result in the state ex-
plosion problem, that is, the converted FSM may
have so many states and/or transitions that either
it takes too long to generate tests, or the number of
tests generated is too large for practical use.

As an alternative, the UD and CCNY ATIRP re-
search group used an intermediate approach, where
an Estelle EFSM is partially expanded (hence re-
sulting in some more states and transitions), but not
expanded completely to a pure FSM. The EFSM is
expanded partially just enough to generate a set of
tests that is feasible and practical in size. Determin-
ing which features to expand in the general case is
the difficult aspect of this research.

Test Case Generation Research:

Conformance test generation techniques reported in
literature [1], [7], [43], [50], [59], [66], using a deter-

Estelle (EFSM) specification

£

! EFSMto FSM
Conversion?

= G

“Constrained Postman Tours”
Fecko, Uyar, Amer, Sethi

+
X 1.

\O‘/ 2.

Pure FSM 3.

problem

problem

problem

Fig. 6.

ministic finite-state machine (FSM) model of a pro-
tocol specification, focus on the optimization of the
test sequence length. However, an IUT may have
timing constraints imposed by active timers. If these
constraints are not considered during test sequence
generation, the sequence may not be realizable in a
test laboratory. As a result, valid implementations
may incorrectly fail the conformance tests, or non-
conformant IUTs may incorrectly pass the tests.

Another problem in test sequence generation is due
to the limited controllability of an IUT. Typically,
the inputs defined for the interfaces with upper lay-
ers or with timers cannot be directly applied by the
tester. In this case, the testability of an IUT may
severely be reduced; in addition, non-determinism
and/or race conditions may occur during testing.

In Sections VI-A and VI-B, we outline our earlier re-
search results to eliminate the timing constraints and
controllability problems which appear in the EFSM
model of the 188-220. Our recent research focus on
the so-called conflicting timers problem, where infea-
sible test sequences may be generated unless conflict-
ing conditions based on timers are resolved. These
results are described in Section VI-C.

“Approximate” FSM
timing constraint
controllability

conflicting timers

l Tests

Test Generation from Extended FSMs

A. Research Area 1: The Timing Constraint Prob-
lem

During testing, traversing each state transition of an
IUT requires a certain amount of time. A test se-
quence that traverses too many self-loops (a self-loop
is a state transition that starts and ends at the same
state) in a given state will not be realizable in a test
laboratory if the time to traverse the self-loops ex-
ceeds a timer limit as defined by another transition
originating in this state. In this case, a timeout will
inadvertently trigger forcing the IUT into a differ-
ent state, and thereby disrupting the test sequence
before all of the self-loops are traversed. If this un-
realizable test sequence is not avoided during test
generation, most IUTs will fail the test even when
they meet the specification. Clearly, this is not the
goal of testing. Therefore, a properly generated test
sequence must take timer constraints into account.

Our research resuls [72], [73] optimize the test se-
quence length and cost, under the constraint that an
IUT can remain only a limited amount of time in
some states during testing, before a timer’s expira-
tion forces a state change. The solution first aug-
ments an original graph representation of the pro-
tocol FSM model. Then it formulates a Rural Chi-
nese Postman Problem solution [48] to generate a
minimum-length tour. In the final test sequence gen-

erated, the number of consecutive self-loops never
exceeds any state’s specified limit. In most cases,
this test sequence will be longer than one without
the constraint since limiting the number of self-loop
traversals likely requires additional visits to a state
which otherwise would have been unnecessary.

The methodology uses UIO sequences for state veri-
fication. However, the results presented also are ap-
plicable to test generation that uses distinguishing
or characterizing sequences. Earlier results of this
study, limited to verification sequences that are self-
loops, are presented in [72]. The later paper [73]
generalizes these earlier results to both self-loop and
non-self-loop verification sequences.

A.1 Practical Motivation

Examples of protocols that contain many self-loop
transitions in their FSM models include ISDN Q.931
for supplementary voice services, MIL-STD 188-
220 [18] for Combat Net Radio communication, and
LAPD [74], the data link protocol for the ISDN’s D
channel. For example, in ISDN Q.931 protocol (Ba-
sic voice services, for the user side), each state has
an average of 9 inopportune transitions, which re-
quires the traversal of 18 self-loop transitions during
testing. A Q.931 implementation has several active
timers that are running in certain states, e.g., timer
T304 running in state Overlap sending, and timer
T310 in state Qutgoing call proceeding. An EFSM
modeling the Topology Update (TU) functionality
of 188-220’s Intranet Layer has three active states in
which one or two timers are running [72].

It is not always possible to delay the timeout at a
tester’s convenience. In real protocols, there may
be timers whose timeouts are difficult to set by the
tester, e.g., acknowledgment timers’ timeout values
often are computed by the implementation. More-
over, a tester may want to test an IUT’s behavior
for different settings of the IUT’s internal timers, to
be able to test the IUT’s correctness for various con-
figurations of the timers.

In addition to the original self-loops of a specifica-
tion model, additional self-loops are typically cre-
ated when generated test sequences use state verifi-
cation techniques such as unique input /output (UIO)

sequences [58], distinguishing sequences [5], [42], or
characterizing sequences [5], [42].

A.2 Optimizing Tests under Timing Constraints

Let Esy and E,,g be the sets of self-loop and
non-self-loop edges to be tested, respectively. Let
dseif(vi), the number of self-loops of vertex v;, be de-
fined as the number of edges in Fy, incident on v;.
Let dmin_seif(vi) be the minimum number of times
any tour covering all edges of ;s U Eg.p must in-
clude vertex v; € V.

Let dstate_ver (v;) be the number of self-loop transi-
tions used to verify whether an TUT is in state wv;.
Suppose that during testing, a given vertex v; € V
can tolerate at most maz_sel f (v;) self-loops executed
at one visit to vertex v;. Attempting to remain in
state v; to execute 1+ mazx_sel f(v;) self-loops would
result in disruption of a test sequence. Testing a
self-loop transition involves traversing the self-loop
transition followed by applying the state verification
self-loop sequence, which contains dgigte_yer (v;) tran-
sitions.

Due to space limitations, we are unable to include
the detailed derivation of dmin_serf(vi). In [72], we
prove that the minimum number of times vertex v;
must be visited in a test sequence is as follows:

din (V5
dmin_self(vi) { Pz(nv(i)z)
where dyy:(v;) and d;, (v;) are respectively the out-
degree and the in-degree of vertex v; in F,,4, and
where

— (dm (’U,) * Al(’Uz'),),

d;, ('Uz) + I—dself (UZ)

L(v;) = (il b
A (’Uz) — I_mal'_slel—{ (d’l;it)a;_f:((z;i_)ver (Uz) J (3)
As(v;) maz_sel f (v;) "

1+ dstate_ver ('Uz)

G (V',E') (G is obtained from G by removing self-
loop edges) is converted to G*(V*, E*) by splitting
each vertex v; € V' satisfying

> mazx(din(vi), dout (vi)) (5)

into the two vertices v; W), v, @) ¢y (Figure 7).

dmin_self (Uz)

if dsery(vi) < (din(vi) * Ar(v;
if dself (’Uz) > (din(Ui) * Al('Ui

dmin_self (V)edges

Fig. 7. Conversion of v; in G (part (a)), to v; in G (part (b)) and to v:(l),v:(z) in G* (part (c)).

@) with a set of
Eik def

Each edge in

Then, v;‘ M s connected to v;‘

edges with cardinality of dpin_serf(vi):

1 2

Uv;eV’ g((v;k()7'0:())a dmz’n_self('ui))-
E} is assigned infinite capacity 8 and a zero cost
1. These fake edges will force additional visits to v;

in a minimum-cost tour of G.

We then use network flow techniques (similar to Aho
et al. [1]) to maximize the flow on graph G* with
minimum cost. This flow defines a minimum-cost
tour of G under timing constraints.

Example : Consider the FSM (represented by the
graph G(V, E)) with self-loop transitions shown in Fig-
ure 8. Suppose that vertices vy, ve, and vs of the FSM
can tolerate at most three, and v, at most two self-loop
transitions during each visit. Let transitions el0 and ell
correspond to timeouts. After either €l0 or ell is trig-
gered, the FSM is brought into state vs.

UIO sequences and the values of maz_self,dsiqte_ver and
dmin_sets for vertices vy, v1,v2, and vs are as follows:

Vertex UIO maz_self dsiate_ver dmin_sels
Vo el 3 1 2
V1 e2 2 1 3
vy e6,e7 3 2 4
V3 e9 3 1 2

The Chinese postman method [68] when applied to the
graph without any self-loop repetition constraint results
in the test sequence

e0,e0,el,e2,e2,e2,e10,e9,e9,e9,e12,e0,el,e3, 2,
ed,e6,e7,¢6,e6,e7,ell,e9,e12,¢el,e4,e7,e6,e7,e8,
e6,e7,¢eb,e0

(6)

containing 34 edges. Edges used for the purpose of state
verification appear in bold.

10

As can be seen from the underlined part of the above
test sequence, after el is traversed, the IUT should stay
in state vy for a time that allows at least three self-loop
traversals. However, this part of the test sequence is not
realizable in a test laboratory because the timeout edge
el0 will be triggered after the second consecutive self-
loop traversal (i.e., max_self(vy) = 2). The IUT will
prematurely move into vz and the test sequence will be
disrupted.

To address the problem of test sequence disruption due to
timeouts, the graph of Figure 8 is converted to the graph
shown in Figure 9. Since in this example all UIO se-
quences are self-loops, the simplified conversion presented
in [72] is sufficient. The vertices for which a premature
timeout may disrupt a test sequence, which are v; and
vg, are split and then connected by dpmin_sers(v1) = 3 and
Amin_sets (V2) = 4 edges, respectively.

Considering the constrained self-loop problem, the test
sequence for the graph of Figure 9 is obtained as

e0,e0,el,e2,e10,e9,e9,e9,e12,e0,el,e2, €2, e4, €6,
e7,ell,e9,el2,el,e3,e2,ed, eb,e6,e7,e5,e0,el,e4d,
e7,e6,e7,eb,el,ed,e8, €6,e7,ed (7

containing 40 edges.

Although longer than that of Figure 8, the test sequence
in Figure 9 is minimum-length with the introduced self-
loop constraint. During each visit to vertices vy, vy, vs and
vs, the number of consecutive self-loop edges traversed is
less than or equal to the maximum allowed number of self-
loop traversals. Therefore, this test sequence is realizable
in the test laboratory.

B. Research Area 2: The Controllability Problem

Consider a testing framework where the interface Iy
between the IUT and the (N)-layer in the System Un-

Test sequence (34 edges)

e0OeOele2e2e2ell e9e9l e9el2 eDelel3e2esd
e6e7e6e6e7elle9el2 eled e7 e6e7 eB8eb6e7e5e0

Fig. 8. Minimum-cost test sequence without self-loop repetition constraint.

Test sequence (40 edges)

eOeO ele2el0 e9e9e9el2elele2e2edeb6e7elle9 el
ele3e2ede6e6e7e5e0Oelede7e6e7e5elede8eb6e7es

Fig. 9. Minimum-cost test sequence with self-loop repetition constraint.

der Test (SUT) [7] is not externally accessible (Fig-
ure 10). In other words, the inputs from (N+1)-layer
cannot be directly applied to the IUT, nor can the
outputs generated by the IUT be observed at (N+1)-
layer. Such an interface I; is called semicontrollable
if FSM; can be utilized to supply inputs to the TUT.
On the other hand, the tester can apply inputs to the
IUT directly by using a lower tester, which exchanges
N-PDUs with the IUT by using the (N-1)-Service
Provider. The interface Iy between the lower tester
and the IUT is therefore directly controllable.

The methodology presented in [23] addresses the
problem of generating optimal realizable test se-
quences in an environment with multiple semicon-
trollable interfaces. The methodology fully utilizes
semicontrollable interfaces in an IUT while avoid-
ing the race conditions. An algorithm is introduced
in [23] to modify the directed graph representation

11

of the IUT such that its semicontrollable portions
become directly controllable, where possible. In the
most general case, obtaining such a graph conver-
sion may end up with exponentially large number of
nodes. However, it is shown [23] that special con-
siderations such as the small number of interfaces
interacting with an IUT and diagnostics considera-
tions make the problem size feasible for most practi-
cal cases.

B.1 Practical Motivation

As motivation for solving the controllability prob-
lem, a real protocol is considered where an SUT’s
(N+1)-layer must be utilized indirectly to test cer-
tain transitions within the (N)-layer IUT.

188-220 focuses on 3 layers: Physical, Datalink, and
Network. The Network layer contains an Intranet

e PCO/IAP Fsm, sSuT
bT l c Iy (N+1)-layer
(N)-layer
Lower [, NPDPYs | T
Tester @

(N-1)-Service Provider

Fig. 10. Testing (N)-layer IUT with an (N+1)-layer semicontrollable interface.

sublayer. An SUT contains the (N)-layer IUT im-
plemented in the Datalink layer, and the Intranet
sublayer, which is part of the (N+1)-layer, as shown
in Figure 11.

In the CECOM'’s environment used for testing 188-
220 implementations, the upper layers cannot be di-
rectly controlled. Therefore, the IUT’s transitions
that are triggered by the inputs coming from the
Network layer are not directly testable. An example
SUT transition that causes a controllability prob-
lem is the transition ¢1 from the Class A-Type 1
Service Datalink module [18], [21], shown in Fig-
ure 11. The input/event field for this transition re-
quires a DL_Unitdata_Req from the (N+1)-layer. Un-
fortunately, the interface between the IUT and the
(N+1)-layer is not directly accessible for generating
this input. Initially, it appears that transition £1 is
untestable.

To trigger this transition, which requires the (N+1)-
layer to pass a DL-Unitdata.Req down to the (N)-
layer, feedback from the (N+1)-layer must be used.
To force a DL-Unitdata.Req from the (N+1)-layer,
the tester sends a PL-Unitdata.Ind to the IUT (sim-
ilar to the message a in Figure 10) that contains an
intranet layer message telling the (N+1)-layer to re-
lay the frame to a different network node. The TUT
outputs this message to the (N+1)-layer (see message
b in Figure 10), and the (N+1)-layer FSM responds
by outputting the desired DL-Unitdata. Req (message
¢ in Figure 10). Finally, the datalink layer generates
the desired output PL-Unitdata.Req (corresponding
to message d in Figure 10), which can be observed

12

by the lower tester.

In fact, 70% of the transitions the Class A-Type 1
Datalink Service module are based on not directly
controllable inputs. Without indirect testing, test
coverage would be seriously limited; only approxi-
mately 200 transitions out of 750 would be testable.
However, by applying the technique outlined in this
paper, over 700 of defined transitions (>95%) can be
tested. The application of the presented technique
to 188-220 is described in more detail in [22].

Similar controllability problems can also be pointed
out in testing the IEEE 802.2 LLC Connection Com-
ponent [23], [36].

B.2 Optimizing Tests with Multiple Semicontrol-
lable Interfaces

To optimize tests with multiple semicontrollable in-
terfaces, modeling SUT as a single FSM was pro-
posed [23], [24]. A semicontrollable interface I; is im-
plemented as a separate FIFO buffer. During testing,
a buffer may be empty or store an arbitrary sequence
of inputs to the IUT generated indirectly through I;.
For each I;, we define variable w; that has a dis-
tinct value for each permutation of inputs that the
i-th buffer can hold. The proposed model consists of
graph G (which represents the IUT’s FSM) and the
variables w1, wo, ..., wp.

An FSM modeling the SUT can be obtained by ex-
panding G and wi,wo,...,wp into G’(V’,E'). An
algorithm for converting G(V, E) to G'(V', E') pro-

Transition Input/Event Output/Action

t1 DL-Unitdata.Req

™

PL-Unitdata.Req,

Start acknowledgment timer

1

@

Intranet Sublayer

+1)-
DL-Unitdata.Req (N+1)-layer

Datalink Layer (N)-layer

Tester’s inputs/outputs

Fig. 11. MIL-STD 188-220: Example of the controllability problem

ceeds as follows (a detailed description of the algo-
rithm along with its pseudocode is available in [23],
[24]):

Step 0—Definitions:

Let B; denote a sequence of inputs buffered at the i-
th semicontrollable interface. Each state v € V' has
two components: the original state v € V', and the cur-
rent configuration of F buffers, i.e., v = (v, By, ..., Bp).
The algorithm constructs all possible buffer configurations
with up to b; inputs buffered at I;.

Step 1—Initialize:

', root of G, as (r,0,---,0) (root of G and configuration
of empty buffers); E as empty set; V' as {rl}; @, queue
of vertices, as V'

Step 2—Repeat until Q) is empty;

1. extract v = (Us}art, By,...,Bp) as first element from
Q, where (Bi,. .., Br) is current configuration .
2. given the current vertex v = (Vstart,B1,-..,BF),

perform the following steps for each original outgoing edge
€= ('Ustu,rt; vend) e E:

e create new configuration (B, ...
class of e (Figure 12):

— Class 1: eis triggered by an input from and generates
output(s) to an LT;

— Class 2: e is triggered by an input from an LT and
generates an output o, (buffered in B, to create a new
configuration) at I,;

— Class 3: e is triggered by a, ; (extracted from B, to
create a new configuration) from I, and generates out-
put(s) to an LT;

— Class 4: e is triggered by an input ap, from I, and
generates an output oq; at I,. Apply rules for Class 3
and Class 2 to create a new configuration.

o create new vertex v;}ew = (velnd, Bi,...,Bp) €V, and
new edge €., = (V,Vpey) € E X

o include new edges in E' iff inputs in (B, ...
not trigger other edges outgoing from vgiqrt

¢ append to () end vertices v, €V of new edges in-
cluded in E

,Br) based on the

,BF) can-

new

13

Step 3—Retain only strongly connected states:

remove from V' all vertices from which r cannot be
reached, and remove from E all edges incident to such
vertices

Based on the practical considerations discussed
in [23], the algorithm can be refined to meet the
following objective: “gemerate a test sequence that,
at any point in time, avoids storing more than one
input in only one of the buffers (where possible).”
Satisfying this objective yields a linear running time
in the number of semicontrollable interfaces and the
number of edges in G. If this objective cannot be sat-
isfied, the running time grows and nondeterminism
may not be avoided during testing.

Example : Consider the IUT of Figure 13 which
is interacting with semicontrollable FSM; and F'SM,
through the semicontrollable interfaces I and I, respec-
tively. The IUT’s FSM (represented by graph G) is de-
scribed in Table I. Transition el, triggered by input x;
from the lower tester, generates output 01,1 to F'SM;. In
response, F'SM; sends input ay,; which triggers transi-
tion e3. (In general, a; ; is the expected response to o0; ;.)
Transition e2, which is triggered by a lower tester’s in-
put zo, outputs 021 to F'SM,, which responds with input
ao,1 triggering e4. Then e4 outputs 01,2 to F'SM;, which
responds with a, » triggering e8. On the other hand, tran-
sitions eb, €6, e7, €9, and el0, can be triggered directly
by the lower tester. €6, e7, €9, and €10, do not generate
outputs to the semicontrollable interfaces. e5 generates
output 032 to F'SM,, which does not send any input to
the IUT.

After conversion (Figure 14), each state of G is replaced
with at most four related states in G corresponding to the
buffer configurations at a semicontrollable interface. Each
edge e is annotated as e.x, where x = 0,1,2, 3, depending
on the input buffered in the e.x’s start state, as shown in

Class 1: Class 2: C_ Iz_as_s_?i:_ L
X ——— k P | | |
vl JUT ! : FSMg | . FSMp |
. _ _ _ _ ________ | ! : : :
: Iq Oql | | Ip ap,k |
1 | | |
¥ wuT | Yol yuTt |
L .- - - - _—______ | \ _ - ____—__ |
__ Class aa: e ______C@ssab:
| | ! |
' FSMp || | FSMp FSMg | |
! i ! Lo I |
| Fp.k P lop. | i P a\p,K—l [—0qu 4 |
| | !
YL IuT | | uT I
L___________ N I __________ |
iy

Fig. 12. Classes of edges in G (dashed-lined outputs are optional).

SUT
11 1> IuT
Lower e9
Tester ®*—e
(LT) / N
ea
e3

Fig. 13. IUT interacting with two semicontrollable interfaces.

Figure 14. The solid edges in Figure 14 are the mandatory
edges that are incident to nodes that correspond to the
case where both buffers are empty; the dashed-line edges
are the ones that can be traversed only when either buffer
contains an input. Due to the practical diagnostic con-
siderations [23], we prefer testing edges when no inputs
are buffered in semicontrollable interfaces. The Aho et
al. [1] optimization technique gives the minimum-length
test sequence for G shown in Table IL. Steps with (—)
indicate that an edge is tested in this step. Note that, for
simplicity, the UIO sequences [58] are not included in this
sequence.

C. Research Area 8: The Conflicting Timers Prob-
lem

To ensure feasibility of tests in a laboratory, au-
tomated test generation for network protocols with
timer requirements must consider conflicting condi-

14

tions based on a protocol’s timers. Qur ATIRP re-
search developed a new model for testing real-time
protocols with multiple timers, which captures com-
plex timing dependencies by using simple linear ex-
pressions involving timer-related variables. Similar
dependencies, but based on arbitrary linear vari-
ables, are present in EFSM models of VHDL specifi-
cations [69]. Uyar and Duale present algorithms for
detecting [69] and removing [19], [76] such inconsis-
tencies in VHDL specifications. The new modeling
technique combined with the inconsistency removal
algorithms are expected to significantly shorten test
sequences without compromising their fault cover-
age.

The model, specifically designed for testing purposes,
avoids performing a full reachability analysis and sig-
nificantly limits the explosive growth of the number

of test scenarios. These goals are achieved by incor-
porating certain rules for the graph traversal without
reducing the set of testable transitions. The tech-
nique also models a realistic testing framework in
which each I/O exchange takes a certain time to re-
alize, and a tester has an ability to turn timers on
and off in arbitrary transitions and to algorithmi-
cally find proper timeout settings.

The methodology presented in this paper is expected
to detect transfer and output faults [45], where an
IUT moves into a wrong state (a state other than
the one specified) or generates a wrong output (an
output other than the one specified) to a given in-
put, respectively. The detection of transfer faults can
significantly be improved by using the well-known
state verification methods such as UIO sequences,
characterization sets, or distinguishing sequences.
These techniques should be applied while generating
a minimum-cost test sequence from the final conflict-
free graph.

The proposed solution is likely to have a broader
application due to a proliferation of protocols with
real-time requirements. The functional errors in such
protocols are usually caused by the unsatisfiability of
time constraints and (possibly conflicting) conditions
involving timers; therefore, significant research is re-
quired to develop efficient algorithms for test genera-
tion for such protocols. Our methodology is expected
to contribute towards achieving this goal. The pre-
liminary results are reported in [26].

In the test cases delivered to CECOM (see Sec-
tion VIII), conflicting conditions based on 188-220’s
timers are resolved by manually expanding EFSMs
based on the set of conflicting timers. This procedure
results in test sequences that are far from minimum-
length. The technique presented here allows us to au-
tomatically generate conflict-free test sequences for
188-220.

Suppose that a protocol specification defines a set
of timers K = {tmy,...,tm|k|}, such that a timer
tm; may be started and stopped by arbitrary tran-
sitions defined in the specification. Each timer tm;
can be associated with a boolean variable T} whose
value is true if ¢m; is running, and false if tm; is
not running. Let ¢ be a time formula obtained from
variables 11, ...,T} by using logical operands A, V,

15

and —. Suppose that a specification contains transi-
tions with time conditions of a form “if ¢” for some
time formula ¢. It is clear that there may exist in-
feasible paths in an FSM modeling a protocol, if two
or more edges in a path have inconsistent conditions.
For example, for transitions e;: if (T;) then {¢;} and
ex: if (—T}) then {2}, a path (e, e2) is inconsistent
unless the action of ¢ in ey sets T} to false (which
happens when timer tm; expires in transition e;).
The solution to the above problem is expected to
allow generating low-cost tests free of such conflicts.

188-220’s Datalink Layer Estelle specification defines
several timers that can run concurrently and af-
fect the protocol’s behavior. For example, BUSY
and ACK timers may be running independently in
FRAME_BUFFERED state. If either timer is run-
ning, a buffered frame cannot be transmitted. If
ACK timer expires while BUSY timer is not run-
ning, a buffered frame is retransmitted. If, however,
ACK timer expires while BUSY timer is running, no
output is generated. Besides Estelle specifications,
feasibility constraints related to multiple concurrent
timers are also of special concern for specifications in

SDL.

The conflicting timers problem is a special case of
the feasibility problem of test sequences, which is an
open research problem for the general case [27], [67].
However, there are two simplifying features of the
conflicting timers problem: (1) timer-related vari-
ables are linear, and (2) the values of time-keeping
variables implicitly increase with time. Considering
these features makes it possible to find an efficient
solution to this special case.

C.1 General approach

The goal of the presented technique is to achieve the
following fault coverage: cover every feasible state
transition defined in the specification at least once.
During the testing of a system with multiple timers,
when a node v, is visited, an efficient test sequence
should either (1) traverse as many self-loops (i.e.,
transitions that start and end in the same state) as
possible before a timeout or (2) leave v, immediately
through a non-timeout transition. Once the max-
imum allowable number of self-loops are traversed,
a test sequence may leave v, through any outgoing

transition. Such an approach does not let perform
full reachability analysis; however, it can be shown
that considering only the above two cases is sufficient
to include at least one feasible path for each transi-
tion provided such a feasible path is not prohibited
by the original specification.

Suppose that there are 15 untested self-loops (each
requiring 1 sec to test) in state vs7, and that, when
the test sequence visits vs7, the earliest timer to ex-
pire is tmy, with 10.5 sec remaining until its timeout.
In this example, the test sequence will either leave
vy7 immediately or traverse 10 of the untested self-
loops. Suppose that the latter option is chosen and,
later during the test sequence traversal, vs; is visited
again with tmy leaving 3.1 sec until the earliest time-
out. In this case, 3 more untested self-loops of wvs7
can be covered by the test sequence. Traversal will
continue until all of the vs7’s self-loops are tested.

In more complicated cases, in addition to the afore-
mentioned timing constraints, traversal of a self-loop
requires that its associated time condition be satis-
fied, i.e., certain timers be active (or, similarly, other
timers be inactive). These time conditions will also
be taken into account while selecting which self-loops
to traverse. In the above example, if 6 or more self-
loops of vs7 have ‘tmy4 not running’ as their time con-
dition, the test sequence, which tries to execute 10
of the untested self-loops, will cause a timer conflict
due to the unsatisfiability of the time condition.

In general, the goal of an optimization is to gener-
ate a low-cost test sequence that follows the above
guidelines, satisfies time conditions of all composite
edges and is not disrupted by timeout events during
traversal (i.e., contains only feasible transitions).

Similar inconsistencies, but based on arbitrary lin-
ear variables, are present in EFSMs modeling VHDL
specifications. ATIRP researchers Uyar and Duale
presented algorithms for detecting [69] and remov-
ing [70] inconsistencies in VHDL specifications. Re-
cent research in UD and CCNY focused on adapting
these algorithms to detecting and removing inconsis-
tencies caused by a protocol’s conflicting timers. The
software implementation of these algorithms devel-
oped within ATIRP is described in the next section.

16

VII. Software for Automated Test
Generation

The process of generating tests involved the develop-
ment of two systems of software: (1) efsm2fsm-rcpt,
and (2) INDEEL. These two systems are now de-
scribed in turn.

A. efsm2fsm-rcpt

Figure 15 depicts the major software components
that were developed to generate test sequences from
an EFSM [25]. The software contains two packages:
(1) efsm2fsm, and (2) rept. The former was designed
and implemented at UD. The latter was based on the
software written at CCNY, which originally was able
to handle graphs of at most 100 transitions in a plain
input/output format, without any of the additional
parameters specifically required for 188-220B tests.
This component was enhanced to generate tests for
188-220B for a proprietary CECOM’s format. Also,
the software was significantly redesigned to process
large graphs (1000s of transitions), which enabled its
application to more complex real-life protocols.

A1 efsm2fsm

efsm2fsm takes a protocol’s EFSM representation as
input and performs its expansion to an FSM. Each
EFSM’s transition is associated with the following
parameters: transition name in the Estelle specifi-
cation, transition description, start and end states,
input and output names, numerical values specify-
ing the corresponding fields in 188-220B’s PDUs, and
changes in the variables’ values (i.e., start and end
configurations. To express the start and end con-
figurations, a simple notation was defined. In the
potential future work on this package, it is essential
that this notation be replaced with a different one,
which should be more expressive and flexible.

To facilitate creating the input to efsm2fsm, sponta-
neous transitions are allowed to be specified in the in-
put EFSM. These transitions are then concatenated
with regular transitions (i.e., triggered by an exter-
nal input) to eliminate spontaneous transitions from
the resulting FSM. This procedure can be briefly de-

scribed as follows. Suppose that in a path

vogvlzvg...vi_livi...vn_lhvn (8)
where v; and t; denote a state and a transition, re-
spectively, t; is regular and to,...,%, are sponta-
neous. Then transitions t¢1,...,t, are concatenated
into a single transition ¢;, from state vy to state
v, Their inputs, outputs, and other parameters are
combined and associated with transition ¢;,. States
v9,...,Un_1 are marked as temporary, and subse-
quently removed from the FSM along with their out-
going transitions.

After the expansion to an FSM, transitions that are
equivalent from a testing point of view could be iden-
tified, leading to a minimum-cost test sequence cov-
ering at least one transition from each equivalence
class. However, building such a test sequence is
NP-hard [25]. Therefore, simple heuristics bringing
about 20%-30% reduction in the number of transi-
tions were implemented.

It is possible to manually prepare the input file for
the package such that an EFSM’s states are divided
into two groups: (1) states with no inputs buffered,
and (2) states with one input buffered at a semicon-
trollable interface. Then semicontrollable interfaces
can be utilized for certain simplified cases such as
using the 188-220B Intranet layer for indirect test-
ing of 188-220B Datalink layer (in these tests, only
one semicontrollable interface is used with a small
number of semicontrollable inputs). A self-loop rep-
etition constraint can be taken into account for the
case of self-loop state verification sequences.

To run the package for a protocol’s EFSM specified
in file protocol.efsm, the following command must be
used:

efsm2fsm protocol.efsm [-options]

producing two files protocol.fsm and protocol.stat.
The former contains the output FSM. All informa-
tion associated with transitions in the input EFSM
is preserved. This enables the rcpt package to pop-
ulate the fields defined in the CECOM’s proprietary
format for test sequences. The latter file contains
statistics such as the number of states and transitions
in the EFSM/FSM, and the percentage effectiveness
of the reduction heuristics.

17

Note that the original EFSM to FSM conversion
technique implemented should be replaced by the ap-
plication of the inconsistency elimination algorithms
implemented in INDEEL (see Section VII-B). Us-
ing INDEEL to eliminate inconsistencies results in a
conflict-free EFSM that is significantly smaller than
the FSM.

A2 rept

The FSM produced by efsm2fsm is then fed to rept,
which builds a corresponding directed graph repre-
sentation G. Then, network flow techniques are ap-
plied to find a rural symmetric augmentation of G
as G . Finally, rcpt finds an Euler tour of G', and
outputs to a file a resulting test sequence conforming
to the CECOM’s proprietary format.

Suppose that protocol.fsm is an input file containing
a protocol’s FSM. Then the following command runs
the package:

rept [-cecom/-plain | protocol.fsm output_file

where plain option refers to a plain input/output file
format. protocol.fsm file in plain format can be pre-
pared manually. The cecom option selects test gener-
ation in the CECOM format. In this case, the input
file protocol.fsm should be generated by the efsm2fsm
package. The tests are stored in the number of files
named protocol.i, where ¢ is the index of a test group.

B. INDEEL: Software for Inconsistency Detection
and Elimination

Feasible test sequence generation is essential for as-
suring the proper operation and interoperability of
different components in computer and communica-
tion systems. The use of formal description lan-
guages such as VHDL and Estelle enable the precise
description of such systems to minimize the imple-
mentation errors due to misinterpretations. How-
ever, the specifications written in VHDL and Estelle
are often extended finite-state machines (EFSMs),
making the automated test generation a more com-
plex task due to the inconsistencies among the action
and condition variables [19].

Within ATIRP, we studied the problem of generat-

ing feasible test sequences for the EFSM by analyzing
the interdependencies among the action and condi-
tion variables of the EFSM models. In the earlier
phases of this research, action and condition incon-
sistencies in the EFSM models were defined [75], [76].
It has been shown that once the inconsistencies are
eliminated, the existing finite-state machine (FSM)-
based test generation methods can be used to gener-

ate feasible test sequences from the resulting consis-
tent EFSM graphs.

The basic concepts for the inconsistency elimination
algorithms were outlined in [76], which were later
were generalized to include graphs with loops [71].
The formal descriptions of the inconsistency detec-
tion and elimination algorithms have been given
in [19].

A software package, called INDEEL (INcounsistencies
DEtection and ELimination), has been implemented
at CCNY based on the inconsistency elimination al-
gorithms. As part of the ongoing collaboration be-
tween the CCNY and the UD, the application of
these algorithms was extended to generate test se-
quences for the protocols with conflicting timers such
as 188-220.

INDEEL contains 13,000+ lines of C code. As its
input, the software reads a user specified file con-
taining the description of an EFSM graph with the
following properties:

o The specification consists of a single process and
thus there are no communicating EFSMs.

« If the specification contains function calls, they can
be described within the process with a simple trans-
formation.

« Pointers, recursive functions, and syntactically
endless loops are assumed not to be present in the
specification.

o All conditions and actions are linear.

INDEEL uses an iterative approach: every time an
action or condition inconsistency is detected and
eliminated, an intermediate output graph is gener-
ated in a file, using the same format as in the in-
put file. This intermediate output file then becomes
the new input file to INDEEL for continued analysis.
This iterative procedure is repeated until the graph
becomes free of inconsistencies. The intermediate

18

and the final output graphs are provided as files.

INDEEL starts its analysis by considering the ac-
tion inconsistencies; it then proceeds to the detec-
tion and elimination of the condition inconsistencies
(if any). During the analysis of the action inconsis-
tencies, INDEEL constructs a set of Action Update
Matriz (AUM) pairs for each node. The AUM pairs
represent the effects of the actions of the traversed
edges leading to a given node v;. Similarly, the accu-
mulated different conditions of the paths leading to
v; can be represented as a set of Accumulated Con-
dition Matriz (ACM) triplets containing the coeffi-
cients, operators, and constants of the edge condi-
tions.

To reduce the space complexity, during the AUM
and ACM constructions, the software uses a single
matrix called path_matrices in which the numbers
of the edges in the paths from the initial node to v;
are stored.

INDEEL implements a two-phase modified breadth-
first graph traversal, called P1-MBF and P2-MBF,
to handle the detection of the action inconsistencies.
P1-MBF is the main graph traversal from which P2-
MBF may be invoked multiple times. During the
condition inconsistency detection phase, the graph
is traversed in a regular depth-first (DF) manner.

The software: efsm2fsm-rcpt, and (2) INDEEL were
used to help generate tests for 188-220 that have been
delivered to CECOM. This technology transfer is de-
scribed in the next section.

VIII. ATIRP to CECOM Technology
Transfer Results

Using research results from Section VI, and software
as described in Section VII-B, UD and CCNY collab-
orated with CECOM to generate tests for the SAP
components of 188-220’s Data Link Layer Class A.
Class A stations implement Type 1 (Unacknowl-
edged and Coupled Acknowledged Datalink Connec-
tionless) Service, with the original EFSM consisting
of 1 state and 15 transitions. Based on the Class A
SAP functionalities, the original EFSM was divided
into three EFSMs modeling: (1) general behavior
of the SAP component interacting with two desti-
nations, (2) datalink precedence, and (3) an IUT’s

behavior when interacting with up to sixteen desti-
nations. Since the total number of states/transitions
that would be obtained after full expansion to a pure
FSM was infeasibly large, each of the three EFSMs
was expanded to a form closer to a pure FSM, but
still containing some extensions.

To avoid state explosion problem, each expanded
EFSM focused on certain protocol functionalities
while restricting others. For example, in 188-220, a
sender can interact with up to sixteen destinations,
each of which may be free or busy. In general behav-
ior tests, destinations are allowed to transit between
free or busy mode, but the sender is restricted to
communicate with at most two of them. In multi-
destination tests, the sender communicates with up
to sixteen destinations, which are forced to remain
in free mode at all times.

Each expanded EFSM was then used in automated
test generation. Table III shows the sizes of the ex-
panded EFSMs and the tests that were generated
from them. For example, the precedence tests set
for Class A-Type 1 Service was based on an ex-
panded EFSM of 303 states and 401 transitions. The
minimum-length test sequence generated for this ma-
chine consists of 1,316 input/output pairs covering
every transition in the expanded EFSM at least once.

In 1997, these Class A tests were delivered to CE-
COM for use in its 188-220 testing facility. Fig-
ure 16 shows a sample of the delivered test scripts.
The figure depicts the test group #92 from Datalink
Class A—Type 1 service tests. FEach test group is
a subsequence of a full test sequence that starts
and ends in the initial state. In the first step, the
technique of utilizing semicontrollable interfaces pre-
sented in Section VI-B is used. The lower tester
sends a packet with three destination addresses:
IUT_addr, des_addr_1, and des_addr_2. The setting
Relay=Yes in the INTRANET clause tells the first
addressee, i.e., the IUT, to relay the packet to the two
remaining addressees. As a result, the IUT sends a
packet with its address as a source, and des_addr_1
and des_addr_2 as destinations, as if it were origi-
nated by the IUT’s Intranet Layer. In the second
and third steps, the TUT’s packet sent in the first
step is acknowledged by des_addr_2 and des_addr_1,
respectively. Each test step is further annotated with
the test description, the number of the corresponding

19

Estelle transition(s), and the appropriate section(s)
from the 188-220 official document.

In 1998, the work on test generation expanded to in-
clude Class C. Class C also allows Type 1 Service as
in Class A, but it additionally defines Type 4 (De-
coupled Acknowledged Connectionless) Service. As
in the case of Class A, three EFSMs were used to gen-
erate three sets of tests for each Class C service. The
sizes of the EFSMs and the corresponding minimum-
length tests are shown in Table ITI. For example, the
general behavior tests set for Class C Type 4 Service
was based on an EFSM of 235 states and 925 transi-
tions. The minimum-length test sequence generated
for this machine consists of 2,803 input/output pairs.
These tests have been delivered to CECOM.

In the final phase of ATIRP, we have been inves-
tigating test generation for 188-220 Class B which
includes Types 1,3, and 2 service. Class B is much
more complex than Classes A and C, and involves
generating problems for reliable connection-oriented
service test case generation.

The implementations of 188-220 from several man-
ufacturers are being tested at CECOM. The tests
generated by the UD and CCNY team have uncov-
ered several implementation errors, including lack of
mandatory capabilities in Datalink layer, and prob-
lems with multi-hop Intranet Relaying.

IX. Conclusions: Improvements to Protocol
Development Process

A. Integration of Estelle into System Development

Traditional sequential process of system development
is known to be inefficient since it allows unneces-
sary duplication and does not facilitate tracking of
rapidly changing technology. With 188-220 as a
critical component, a synergistic framework for C*I
(Command, Control, Communications, Computers,
and Intelligence) systems development has been es-
tablished [20] (Figure 17). It combines several par-
allel activities: developing protocol standards and
specifications, formally specifying protocols in Es-
telle, building conformance tester hardware and soft-
ware, “field testing”, modeling and simulation, as
well as resolving and documenting the solutions to
standards-related technical issues by the Joint CNR

Working Group. (WG participants include repre-
sentatives from DoD services/agencies, industry, and
academia.)

Using formal methods as part of this process helped
create a high quality protocol standard, which is ro-
bust and efficient. Due to the structured nature of
Estelle, the specification process progressed at an ac-
celerated pace compared to the other standards. 188-
220 was completed on time, setting a rare example
in the protocol standards arena.

Since it is relatively easier to extract modeling infor-
mation from a formal specification, the researchers
at UD and CCNY were able to solve a number of
theoretical problems, which resulted in the devel-
opment of new testing methodologies. By applying
these new results, the conformance tests for 188-220
were generated while the protocol was still evolving.
Performing initial conformance tests on prototypes
uncovered several interoperability errors early in the
development process. Following this success of the
188-220 development, the synergistic efforts to de-
velop C*I systems with the help of formal methods
serves as a model for DoD standards process and de-
velopment for the future [20].

B. Advantages of Formal Methods in Eliminating
Protocol Errors

The difficulties of describing protocol operations
with clarity, precision, and consistency by using a
natural language are illustrated by the examples in
Section V-B. In addition to the vagueness intro-
duced by a natural language description, ambigui-
ties and contradictions are difficult to detect when
related protocol functionalities are defined in differ-
ent document sections separated by several pages of
unrelated text. Such problems are eliminated in a
formal Estelle specification. All actions in a partic-
ular context are defined in one place within the Es-
telle specification. The specifications make the con-
ditions for state transitions explicit through Estelle
constructs. Indeed, the very process of creating these
constructs enables formal specifiers to detect some of
these types of ambiguities which are difficult to see
in normal reading of a document written in English.

20

C. Observations on Applicability of Formal Methods

As concluding remarks for this paper, we report the
following observations based on our experience dur-
ing the formal specification and test generation for
188-220.

To develop an Estelle formal specification of a pro-
tocol, we must not only define its architecture and
interface components (e.g., as in Figures 4 and 5 for
188-220), but we must also carefully specify the be-
havior of each module of these components. This
definition, achieved through the creation of EFSMs,
is the most difficult and time-consuming step of cre-
ating a formal specification. A syntax-directed edi-
tor improves the readability for testers who are not
FDT-trained; it also is useful in writing non-trivial
specifications. Moreover, the modeling and specifica-
tion languages, such as SDL [29], [30] and UML [54],
enjoy widespread industrial popularity, partially due
to their standard graphical representation. There-
fore, it will be a natural extension for Estelle to in-
clude a graphical editor [60]. Once all states and
transitions of a protocol (including inputs and out-
puts) are finalized, the writing of the Estelle code
itself is fast and straightforward.

Since 188-220 is a multilayer, multifunction protocol
of a considerable size and complexity, manual gener-
ation of conformance test sequences would be both
inefficient and ineffective. As seen from Table III, the
tests already delivered to CECOM contain approx-
imately 10,000 test steps. It is clear that manually
generating test sets of this size from the protocol tex-
tual description is not a trivial task.

A number of conformance test generation techniques
have been proposed [1], [7], [9], [50], [57], [59], [63],
[66], each of which is expected to give better re-
sults for a certain class of protocol specifications
depending on the nature and size of the protocol.
The experience obtained in generating tests for 188-
220 suggests that to successfully test today’s com-
plex protocols by using formal methods, an ideal test
generation tool should support multiple test gener-
ation techniques [45]. They can range from Post-
man tours [1] or fault-oriented tests [78], [80] for
mid-size protocols when the number of states ranges
on the order of thousands, to guided random walk
approaches [43], [81] for larger protocols when the

number of states ranges in the tens of thousands.

The state explosion problem has been a major issue
for generating FSM models out of EFSM represen-
tations of protocols [15], [56], [79], [80]. One com-
mon procedure for converting EFSMs into FSMs si-
multaneously performs reachability analysis and on-
line minimization [15], [44]; this conversion is based
on combining equivalent states [58] using bisimula-
tion equivalence [51]. Another approach proposes the
elimination of inconsistencies in EFSM models [69],
[70]. Efficient algorithms such as these should be
implemented in any test generation tool using FSM
models. If the final FSM model is not confined to a
manageable size, the test sequences generated from
it will be infeasibly long regardless of the test gener-
ation method.

Finally, a test house may require its own proprietary
format for the executable tests. Although TTCN is
accepted as input by many test tools, a proprietary
test format may be preferable for a given protocol
if this format is more readable by testers, or is sim-
pler to parse by software tools. The output of a test
generation tool should be easily custom-tailored for
a particular format, possibly by using simple appli-
cation generators.

X. Acknowledgments

The authors thank Samuel Chamberlain of ARL; Ted
Dzik and Ray Menell of CECOM; and Mike McMa-
hon and Brian Kind of ARINC, Inc. for their collab-
oration in this research.

REFERENCES
[1] A. V. Aho, A. T. Dahbura, D. Lee, and M. U.
Uyar. An optimization technique for protocol
conformance test generation based on UIO se-
quences and rural Chinese postman tours. IEEE
Trans. Commun., 39(11):1604-1615, Nov. 1991.

P. D. Amer, G. Burch, A. S. Sethi, D. Zhu,
T. Dzik, R. Menell, and M. McMahon. Estelle
specification of MIL-STD 188-220A DLL. Proc.
IEEE MILCOM, Oct. 1996.

P. D. Amer, M. A. Fecko, A. S. Sethi, M. U.
Uyar, T. J. Dzik, R. Menell, and M. McMahon.
Using Estelle to evolve MIL-STD 188-220. In
Budkowski et al. [12], 55-58.

21

[10]

[11]

[12]

[14]

B. Baumgarten, H.-J. Burkhardt, and
A. Giessler, editors. Proc. IFIP Int’l Workshop
Test. Communicat. Syst. (IWTCS), Darmstadt,
Germany, Sept. 1996. Boston, MA: Kluwer
Academic Publishers.

A. Bhattacharyya. Checking Ezperiments in Se-
quential Machines. Wiley & Sons, New York,
NY, 1989.

J. Bi and J. Wu. Application of a TTCN-based
conformance test environment to the Internet
email protocol. In Kim et al. [41], 324-330.

B. S. Bosik and M. U. Uyar. FSM-based formal
methods in protocol conformance testing: from
theory to implementation. Comput. Networks &
ISDN Syst., 22(1):7-34, Sept. 1991.

J. Bredereke and R. Gotzhein. Specification, de-
tection, and resolution of IN feature interactions
with Estelle. Proc. IFIP Formal Desc. Tech.
(FORTE), 376-378. Chapman & Hall, 1995.

E. Brinksma. A theory for the derivation
of tests. Proc. IFIP Protocol Specif., Test.,
& Verif. (PSTV). Amsterdam: North-Holland,
1988.

S. Budkowski, A. Cavalli, and E. Najm, editors.
Proc. IFIP Joint Int’l Conf. FORTE/PSTYV,
Paris, France, Nov. 1998. Boston, MA: Kluwer
Academic Publishers.

S. Budkowski and P. Dembinski. An introduc-
tion to Estelle: A specification language for dis-
tributed systems. Comput. Networks & ISDN
Syst., 14(1):3-24, 1991.

S. Budkowski, S. Fischer, and R. Gotzhein, ed-
itors. Proc. Int’l Workshop FDT Estelle, Evry,
France, Nov. 1998. Evry, France: Institut Na-
tional des Télécommunications (INT).

R. Burch, P. Amer, and S. Chamberlain. Perfor-
mance evaluation of MIL-STD 188-220A: Inter-
operability standard for digital message transfer
device subsystems. Proc. IEEE MILCOM, San
Diego, CA, Nov. 1995.

O. Catrina, E. Lallet, and S. Budkowski. Au-
tomated implementation of the Xpress Trans-
port Protocol (XTP) from an Estelle specifica-
tion. FElectronic J. Networks & Distrib. Process.,
(7):3-19, Dec. 1998.

K. T. Cheng and A. S. Krishnakumar. Au-
tomatic generation of functional vectors using
the extended finite state machine model. ACM
Trans. Design Automation of Electronic Syst.,

[16]

[17]

[22]

23]

[27]

1(1):57-79, Jan. 1996.

S.-K. Cheong, K.-H. Lee, and T.-W. Jeong.
The analysis of integrating test results for ATM
switching systems. In Baumgarten et al. [4], 83—
89.

J. Y. Choi and B. K. Hong. Generation of con-
formance test suites for B-ISDN signalling rel-
evant to multi-party testing architecture.
Baumgarten et al. [4], 316-330.

DoD. Military Standard—Interoperability Stan-
dard for Digital Message Device Subsystems
(MIL-STD 188-220B), Jan. 1998.

A. Duale and U. Uyar, Generation of feasible
test sequences for EFSM models. In H. Ural, R.
Probert, and G. v. Bochmann, eds, Proc. IFIP
Int’l Conf. Testing o Communicating Systems,
TestCom, Ottawa, Sept. 2000, 91-109.

T. Dzik and M. McMahon. MIL-STD 188-220A
evolution: A model for technical architecture
standards development. Proc. IEEE MILCOM,
Monterey, CA, Nov. 1997.

M. A. Fecko, P. D. Amer, A. S. Sethi, M. U.
Uyar, T. Dzik, R. Menell, and M. McMahon.
Formal design and testing of MIL-STD 188-
220A based on Estelle. Proc. IEEE MILCOM,
Monterey, CA, Nov. 1997.

M. A. Fecko, M. U. Uyar, P. D. Amer, and A. S.
Sethi. Using semicontrollable interfaces in test-
ing Army communications protocols: Applica-
tion to MIL-STD 188-220B. Proc. IEEE MIL-
COM, Atlantic City, NJ, Oct. 1999.

M. A. Fecko, M. U. Uyar, A. S. Sethi, and P. D.
Amer. TIssues in conformance testing: Multiple
semicontrollable interfaces. In Budkowski et al.
[10], 111-126.

M. A. Fecko, M. U. Uyar, A. S. Sethi, and P. D.
Amer. Conformance testing in systems with
semicontrollable interfaces. Annals of Telecom-
mun., 55(1):70-83, Jan. 2000.

M. A. Fecko. Timing and control issues in con-
formance testing of protocols PhD Dissertation,
CISC Dept., Univ. of Delaware, 1999.

M. A. Fecko, M. U. Uyar, A. Y. Duale, and P. D.
Amer. Test generation in the presence of con-
flicting timers. In H. Ural, R. Probert, and G. v.
Bochmann, eds, Proc. IFIP Int’l Conf. Testing
o Communicating Systems, TestCom, Ottawa,
Sept. 2000.

S. Fujiwara, G. v. Bochmann, F. Khendek, M.

In

22

[36]
[37]

[38]

[40]

Amalou, and A. Ghedamsi. Test selection based
on finite state models. IEEE Trans. Software
Eng., 17(6):591-603, Jun. 1991

R. Gecse. Conformance testing methodology
of Internet protocols: Internet application-layer
protocol testing—HTTP. In Petrenko and Yev-
tushenko [55], 35-48.

D. Hogrefe. Validation of SDL systems. Comput.
Networks & ISDN Syst., 28(12), 1996.

Int’l Telecomm. Union, Geneva, Switzerland.
ITU Recommendation Z100: Specification and
Description Language (SDL), 1989.

ISO, Information Processing Systems—OSI,
Geneva, Switzerland. ISO/IEC International
Standard 8571-1: File Transfer, Access and
Management—Part 1: General introduction,
1988.

ISO, Information Processing Systems—OSI.
ISO International Standard 9074: Estelle—A
Formal Description Technique Based on an Ezx-
tended State Transition Model, 1989.

ISO, Information Technology—OSI, Geneva,
Switzerland. ISO/IEC International Stan-
dard 13712-3: Remote Operations: OSI
realizations—Remote Operations Service Fle-
ment (ROSE) protocol specification, 1995.

ISO, Information Technology—OSI, Geneva,
Switzerland. ISO/IEC International Standard
8327-1: Connection-oriented Session Protocol—
protocol specification, 1996.

ISO, Information Technology—OSI, Geneva,
Switzerland. ISO/IEC International Standard
10026-3: Distributed Transaction Processing—
Part 3: Protocol specification, 1998.

ISO/IEC. International Standard ISO/IEC 8802-2,

ANSI/IEEE Std. 802.2, 2nd edition, Dec. 1994.
ITU. Recommendation Q.2110: Service Specific
Connection-Oriented Protocol (SSCOP).

A. Jirachiefpattana and R. Lai. Uncovering ISO
ROSE protocol errors using Estelle. Comput.
Stand. & Interf., 17(5-6):559-583, 1995.

S. Kang, Y. Seo, D. Kang, M. Hong, J. Yang,
I. Koh, J. Shin, S. Yoo, and M. Kim. Develop-
ment and application of ATM protocol confor-
mance test system. Proc. IFIP Int’l Workshop
Test. Communicat. Syst. (IWTCS), Budapest,
Hungary, Sept. 1999.

T. Kato, T. Ogishi, A. Idoue, and K. Suzuki.
Intelligent protocol analyzer with TCP behav-

ior emulation for interoperability testing of

TCP/IP protocols. Proc. IFIP Joint Int’l Conf.

FORTE/PSTYV, 449-464, Osaka, Japan, Nov.

1997.

M. Kim, S. Kang, and K. Hong, editors. Proc.

IFIP Int’l Workshop Test. Communicat. Syst.

(IWTCS), Cheju Island, Korea, Sept. 1997.

Boston, MA.

7. Kohavi. Switching and Finite Automata The-

ory. McGraw-Hill, New York, NY, 1978.

D. Lee, K. K. Sabnani, D. M. Kristol, and

S. Paul. Conformance testing of protocols speci-

fied as communicating FSMs—a guided random

walk approach. IEEE Trans. Commun., 44(5),

May 1996.

D. Lee and M. Yannakakis. Online minimization

of transition systems. Proc. 24th Annual ACM,

Victoria, Canada, 1992.

[45] D. Lee and M. Yannakakis. Principles and meth-

ods of testing finite state machines—a survey.

Proc. IEEE, 84(8):1090-1123, Aug. 1996.

D. Y. Lee and J. Y. Lee. Test generation for

the specification written in Estelle. Proc. IFIP

Protocol Specif., Test., & Verif. (PSTV), Stock-

holm, Sweden, June 1991.

D. Y. Lee and J. Y. Lee. A well-defined Estelle

specification for the automatic test generation.

IEEE Trans. Comput., 40(4), Apr. 1991.

J. K. Lenstra and A. H. G. Rinnooy Kan. On

general routing problems. Networks, 6:273-280,

1976.

H. Li, P. Amer, and S. Chamberlain. Estelle

specification of MIL-STD 188-220A: Interoper-

ability standard for digital message transfer de-
vice subsystems. Proc. IEEE MILCOM, San

Diego, CA, Nov. 1995.

R. E. Miller and S. Paul. On the generation of

minimal-length conformance tests for communi-

cation protocols. IEEE/ACM Trans. Network-

ing, 2(1):116-129, Feb. 1993.

[51] R. Milner. Communication and Concurrency.
Prentice-Hall, Englewood Cliffs, NJ, 1989.

[52] P. Mondain-Monval. ISO Session Service spec-
ification in Estelle. Technical Report SEDOS
Rep. 70, ESPRIT Project, Nov. 1986.

[53] C. Negulescu and E. Borcoci. SSCOP proto-
col throughput evaluation—simulation based on
Estelle specification. In Budkowski et al. [12],
75-98.

[41]

[42]

[43]

[44]

[46]

[50]

23

[64] Object Management Group, Framingham, MA.
OMG Standard: Unified Modeling Language
(UML) 1.1, 1997.
A. Petrenko and N. Yevtushenko, editors. Proc.
IFIP Int’l Workshop Test. Communicat. Syst.
(IWTCS), Tomsk, Russia, Sept. 1998. Boston,
MA: Kluwer Academic Publishers.
D. H. Pitt and D. Freestone. The derivation
of conformance tests from LOTOS specifica-
tions. IEEE Trans. Softw. Eng., 16(12):1337—
1343, 1990.
J. Romijn and J. Springintveld. Exploiting sym-
metry in protocol testing. In Budkowski et al.
[10], 337-351.
[68] K. K. Sabnani and A. T. Dahbura. A protocol
test generation procedure. Comput. Networks &
ISDN Syst., 15:285-297, 1988.
B. Sarikaya, G. von Bochmann, and E. Cerny.
A test design methodology for protocol testing.
IEEE Trans. Softw. Eng., 13(5):518-531, May
1987.
J. Templemore-Finlayson, J 1 Raffy,
P. Kritzinger, and S. Budkowski. A graph-
ical representation and prototype editor for
the formal description technique Estelle.
Budkowski et al. [10], 37-55.
R. Tenney. A tutorial introduction to Estelle.
Technical Report 88-1, Univ. of Mass, Boston,
June 1988.
J. Thees. Protocol implementation with
Estelle—from prototypes to efficient implemen-
tations. In Budkowski et al. [12], 187-193.
J. Tretmans. Conformance testing with labelled
transitions systems: Implementation relations
and test generation. Comput. Networks & ISDN
Syst., 29(1):49-79, 1996.
[64] K. Turner. Formal Description Techniques.
North-Holland, Amsterdam, 1989.
[65] H. Ural and B. Yang. A test sequence selection
method for protocols specified in Estelle. Tech-
nical Report TR-88-18, Univ. of Ottawa, June
1988.
H. Ural and B. Yang. A test sequence selec-
tion method for protocol testing. IEEE Trans.
Commun., 39(4), 1991.
H. Ural. Formal methods for test sequence gen-
eration. Computer Communications, 15(5):311-
325, Jun. 1992.

[55]

[56]

[57]

In

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

M. U. Uyar and A. T. Dahbura. Optimal test
sequence generation for protocols: the Chinese
postman algorithm applied to Q.931. Proc.
IEEE GLOBECOM, 68-72, Dec. 1986.

M. U. Uyar and A. Y. Duale. Modeling VHDL
specifications as consistent EFSMs. Proc. I[IEEE
MILCOM, Monterey, CA, Nov. 1997.

M. U. Uyar and A. Y. Duale. Removal of in-
consistencies in VHDL specifications. Proc. US
Army Research Lab ATIRP Conf., College Park,
MD, Feb. 1998.

M. U. Uyar and A. Y. Duale. Conformance tests
for Army communication protocols. Proc. US
Army Research Lab ATIRP Conf., College Park,
MD, Mar. 2000.

M. U. Uyar, M. A. Fecko, A. S. Sethi, and P. D.
Amer. Minimum-cost solutions for testing pro-
tocols with timers. Proc. IEEE Int’l Perfor-
mance, Comput., & Commun. Conf. (IPCCC),
346-354, Phoenix, AZ, Feb. 1998.

M. U. Uyar, M. A. Fecko, A. S. Sethi, and
P. D. Amer. Testing protocols modeled as FSMs
with timing parameters. Comput. Networks,
31(18):1967-1988, Sept. 1999.

M. U. Uyar and M. H. Sherif. Protocol mod-
eling for conformance testing: Case study for
the ISDN LAPD protocol. AT& T Technical J.,
69(1), Jan. 1990.

M. U. Uyar and A. Y. Duale, “Modeling VHDL
Specifications as Consistent EFSMs,” Proc.
IEEE MILCOM, Monterey, CA, Oct. 1997, 740-
744.

M. U. Uyar and A. Y. Duale. Resolving incon-
sistencies in VHDL Specifications. Proc. IEEE
MILCOM, Atlantic City, NJ, Oct. 1999, No.
5.1.3.

E. Vazquez, P. Sandoval, M. Sedano, and
J. Vinyes. Automatic implementation
of TP4/IP with an Estelle workstation—
development methodology and performance
evaluation. Proc. IFIP Protocol Specif., Test.,

& Verif. (PSTV), 125-139. Amsterdam:
North-Holland, 1992.
G. von Bochmann, A. Das, R. Dssouli,

M. Dubuc, A. Ghedamsi, and G. Luo. Fault
models in testing. Proc. IFIP Int’l Workshop
Protocol Test Syst. (IWPTS), 17-30. Amster-
dam: North-Holland, 1992.

C. J. Wang and M. T. Liu. Axiomatic test se-

24

[80]

[81]

[82]

[83]

[84]

quence generation for extended finite state ma-
chines. Proc. 12th Conf. Distrib. Comput. Syst.,
252-259, 1992.

C. J. Wang and M. T. Liu. Generating test cases
for EFSM with given fault models. Proc. IEEE
INFOCOM, 774-781, 1993.

C. West. Protocol validation by random state
exploration. Proc. IFIP Protocol Specif., Test.,
& Verif. (PSTV). Amsterdam: North-Holland,
1986.

J. Wytrebowicz and P. Rolinski. Analysis tools
for Estelle specifications. In Budkowski et al.
[12], 141-155.

XTP Forum, Santa Barbara, CA. Xpress Trans-
port Protocol Specification, Rev. 4.0, 1995.

S. Yoo, L. Collica, and M. Kim. Conformance
testing of ATM Adaptation Layer protocol. In
Baumgarten et al. [4], 237-252.

TABLE I

INPUTS AND OUTPUTS FOR THE EDGES OF FIGURE 13. A7z DENOTES RECEIVING INPUT z FROM A. Bly DENOTES

SENDING OUTPUT y TO B.

Edge Input Output Edge Input Output
el LT?.Tl FSMl!OLl eb LT?.TG LT'y6
e2 LT?.’L‘Q FSMQ!OQJ e7 LT?:II7 LT!y7
el FSMl?G,Ll LT'yg e8 FSM1 ?a1’2 LT'yg
ed FSMQ?G;QJ FSMl!OLQ e9 LT?CL‘Q LT!yg
eb LT?$5 FSMQ!OQ,Q el0 LT?(L‘lO LT!yl()

no inputs buffered a ; buffered

el0

|
|
510
| e31 €
| C
- ———————

Legend:

mandatory edge

————— ->
optional edge

|
|
e43! ®/e7.2

|
buffered | buffered
a1 S
|

Fig. 14. Graph transformation applied to the graph of Fig. 13. Mandatory and optional edges appear in solid and
dashed lines, respectively.

TABLE II
MINIMUM-LENGTH TEST SEQUENCE FOR THE IUT OF FIGURE 13.

Step Edge Input Output Step Edge Input Output
—1 el0 LT7z FSMiloi 1 8 er.2 LT7xy LTy,

2 eb.l LT?xs FSMQ!OQ,Q —9 e8.2 FSM, ?al,z LT'yg
—+3 e3.1 FSM?7a1; LTlys 10 e7.0 LT7xy LTy,
—4 e6.0 LT?xg LT'yG — 11 e5.0 LT?xs FSMQ!OQ,Q
—5 er0 LT7z; LTy, — 12 9.0 LT7xg LTyg
—6 €20 LT7$2 FSMQ!OQJ 13 el0.0 LT?.’ElO LT!le
— 7 e4.3 FSM2?U/2’1 FSMl!OLQ 14 €6.0 LT7xg LT'yG

25

efsm2fsm

EFSM to FSM

expansion

A

FSM reduction based
on transition testing
equivalence

FSM

rural symmetric
augmentation of
G as G"

test sequence

» generation in
CECOM format

Fig. 15. Software for automated test generation.

TABLE III

188-220 DATALINK TESTS. A SINGLE STEP CORRESPONDS TO ONE INPUT/OUTPUT EXCHANGE.

Test set # of states # of transitions # of test steps
Class A Type 1 service

general behavior 298 799 1732

precedence 303 401 1316

multidestination 112 119 145
Class C Type 1 service

general behavior 298 799 1732

precedence 193 357 1314

multidestination 112 119 145
Class C Type 4 service

general behavior 235 925 2803

outstanding frames 48 172 264

multidestination 112 119 145

26

1 Test Group #92
"

TESTGROUP=92;
LAYER=Datalink;

/l Test 1
STIMULUS=send; // PL-Unitdata.Ind
TIME=long;
/I DL1

INTRANET={
Type=IP;
LowDelay=Yes;
HighThroughput=No;
HighReliability=No;
Precedence=1; // PRIORITY
OrgAddr=des_addr_17;
DestRelay={
Addr=IUT_addr;
Distance=1;
Des=No;
Relay=Yes;
Ack=No;

I

DestRelay={
Addr=des_addr_1;
Distance=2;
Des=Yes;
Relay=No;
Ack=No;

k

DestRelay={
Addr=des_addr_2;
Distance=2;
Des=Yes;
Relay=No;
Ack=No;

I
b
DATALINK={
CtrIField={
SendSeqg=1;
RecSeq=1;
ControlSpare=1;
DLPrec=1; // PRIORITY
IDNum=1;
PDU=ui_0;

I

Command=Yes;

SrcAddr=des_addr_17;

DestAddr=IUT_addr;

h

RESULTS=receive; // PL-Unitdata.Req
TIME=normal;
/I DL1
DATALINK={
CtrIField={
SendSeq=1;
RecSeq=1;
ControlSpare=1;
DLPrec=1; // PRIORITY
IDNum=1;
PDU=ui_1;
I
Command=Yes;
SrcAddr=IUT_addr;
DestAddr=des_addr_1;des_addr_2;

TESTDESCRIPTION={
Intranet layer passes down a multidestination packet
which is queued by datalink layer. Packet requires
a coupled ack. There are no outstanding frames.

No outstanding frame. Queued frame transmitted to multiple

destinations. Frame requires a coupled ack. Ack timer
started.

%
I/ ESTELLE TYPE1SAP_3,4,TYPE1SAP_18

/I SECTION(S) 5.3.16_5.3.6.1.1 C4.3,5.3.4.2.2.2.1 5.3.6.1.1

/l Test 2

STIMULUS=send; // PL-Unitdata.Ind
TIME=normal;
/I DL1
DATALINK={
CtrIField={
SendSeqg=1;
RecSeq=1;
ControlSpare=1;
DLPrec=2; // ROUTINE
IDNum=1;
PDU=urr_0;
b
Command=No;
SrcAddr=des_addr_2;
DestAddr=IUT_addr;
b
RESULTS=noop; // none

TESTDESCRIPTION={
Second destination acks a multidestination packet.
First has not acked yet.

k
/I ESTELLE TYPE1SAP_12
// SECTION(S) 5.3.7.1.5.5 5.3.6.1.6_C4.3

/l Test 3

STIMULUS=send; // PL-Unitdata.Ind
TIME=normal;
/I DL1
DATALINK={
CtrIField={
SendSeqg=1;
RecSeq=1;
ControlSpare=1;
DLPrec=2; // ROUTINE
IDNum=1;
PDU=urr_0;
¥
Command=No;
SrcAddr=des_addr_1;
DestAddr=IUT_addr;

I
RESULTS=noop; // none

TESTDESCRIPTION={
First destination acks a packet. Ack timer is stopped.
No frame queued for transmission.
h

/| ESTELLE TYPE1SAP_12

// SECTION(S) 5.3.7.1.5.5_5.3.6.1.6_C4.3

Fig. 16. A sample of test scripts delivered to CECOM.

Joint CNR

/ Working Group \

Modeling & I Standards &
Simulation ¢ . Protocols
C4l Systems
Development Identify and
remove
/ \ ambiguities
Protocol < > | Estelle Formal

Design & generate

Tester test scripts

Specification

Fig. 17. Estelle as part of synergistic efforts to develop C*I systems.

28

