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ABSTRACT

The wavelet transform is a relatively new arrival on the mathematical scene. We give a brief introduction to the subject

by showing how the Haar wavelet transform allows information to be encoded according to \levels of detail." In one sense,

this parallels the way in which we often process information in our everyday lives. Our investigations enable us to give two

interesting applications of wavelet methods to digital images: compression and progressive transmission.

The mathematical prerequesites will be kept to a minimum; indeed, the main concepts can be understood in terms of

addition, subtraction and division by two. We also present a linear algebra implementation of the Haar wavelet transform,

and mention important recent generalizations.

This material is suitable for undergraduate research by both mathematics and computer science majors, and has been

used successfully in this way at Spelman College since 1995.

1 So much information

In the real world, we are constantly faced with having to decide how much information to absorb or impart.

Example 1: An election is impending, and you and your best friend have yet to decide for whom you will cast your votes.

Your friend is content to base her decision solely on the political party a�liations of the available candidates, whereas you

take the trouble to �nd out how the candidates stand on a variety of issues, and to investigate their records for integrity,

e�ectiveness, and vision.

Example 2: Your younger brother is across the room, working on a project for Black History Month. From where you are

sitting, you can see that he is putting a caption on a photograph. \Who is in that picture?" you ask. \A person sitting in

a bus," he says evasively. \I can see that," you reply impatiently, \But who is it?" \A woman," he says, grinning impishly.

\Is that all you are going to tell me?" you say in exasperation, getting up. \A young woman," he volunteers. Noticing the

look of displeasure on your face, he quickly adds, \It's Rosa Parks."

What these examples all have in common is information transmission at various levels of detail. In the �rst example,

each person received information up to, but not beyond, a certain level of detail. The second example illustrates progressive

information transmission: We start with a crude approximation, and over time more and more details are added in, until

�nally a \full picture" emerges. Figure 1 illustrates this pictorially: looking from left to right we see progressively more

recognizable images of Rosa Parks.

Figure 1: Person in bus Woman in bus Young woman in bus Rosa Parks in bus
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There are two observations worth making here. Firstly, there are circumstances under which any one of these approxi-

mations would be adequate for our immediate purposes. For instance, viewed from a su�cient distance, they all look the

same. Thus, if one of these was to form a small part of a much larger picture, say a photo on a mantlepiece, or a eeting

image in a video, there would be no need to display a high quality version.

Secondly, progressive transmission of a sequence of ever-improving approximations to the \real picture" is natural: it's

the way many of us relay information, and the way we learn new subjects. It's also the way the popular Netscape World

Wide Web browser delivers images to users of the web: when we call up a URL (WWW address) which contains an image,

that image appears in installments, starting with an approximation and working up to the �nal complete image. All forms of

progressive information transmission have one major advantage: the receiver can halt the process and move onto something

else if she decides, based on early information, that she does not want \the whole picture." This applies equally to learning

about a candidate for election, listening to people recount their vacation experiences, or grabbing an image on the World

Wide Web using Netscape.

Wavelets provide a mathematical way of encoding numerical information (data) in such a way that it is layered according

to level of detail. This layering not only facilitates the progressive data transmission mentioned above, but also approxima-

tions at various intermediate stages. The point is that these approximations can be stored using a lot less space than the

original data, and in situations where space is tight, this data compression is well worthwhile.

2 The wavelet transform

In this section, we introduce the simplest wavelet transform, the so-called Haar wavelet transform, and explain how it can

be used to produce images like the �rst three in Figure 1, given the last, complete image of Rosa Parks (this image was

extracted from a .gif image �le downloaded from the World Wide Web.) Matlab numerical and visualization software was

used to perform all of the calculations and generate and display all of the pictures in this manuscript.

Each of the digital images in Figure 1 is represented mathematically by a 128� 128 matrix (array) of numbers, ranging

from 0 (representing black) to some positive whole number (representing white). The last image uses 32 = 25 di�erent

shades of gray, and as such is said to be a 5-bit image. The numbers in the speci�c matrix we used to represent this image

range from 0 to 1984, in 31 increments of 64 (these exact numbers are not important; they were chosen to avoid fractions

in certain calculations later on).

Each matrix entry gives rise to a small square which is shaded a constant gray level according to its numerical value.

We refer to these little squares as pixels; they are more noticable as individual squares when we view the images on a larger

scale, such as in Figure 2(a). Given enough of them on a given region of paper, as in the 256 � 256 pixel 8-bit image of

Nelson Mandela in Figure 2(b), we experience the illusion of a continuously shaded photograph.

Figure 2: Rosa Parks (1955) and Nelson Mandela (1990)

The matrices which specify these images have 1282 = 16; 384 and 2562 = 65; 536 elements, respectively. This fact poses

immediate storage problems. Color images are even bigger, though in one sense they can be handled by decomposing into

three \grayscale-like" arrays, one for each of the colors red, green and blue. A standard 1.44MB high density oppy disc

can only accommodate a handful of large (say, 1024 � 1024 pixel) high quality color images; furthermore, as many of us
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can attest from personal experience, such images are very time consuming to download on the World Wide Web. We only

consider grayscale images here.

We describe a scheme for transforming such large arrays of numbers into arrays that can be stored and transmitted more

e�ciently; the original images (or good approximations of them) can then be reconstructed by a computer with relatively

little e�ort. For simplicity, we �rst consider the 8� 8 = 64 pixel image in Figure 3(b), which is a blow up of a region around

the nose in Figure 2. The region extracted is blacked out in Figure 3(a).

Figure 3: Rosa Parks - extracting a sub-region for inspection

This image is represented by rows 60 to 67 and columns 105 to 112 of the matrix which de�nes Figure 2. We now display

and name this submatrix:

P =

0
BBBBBBBBBBBBB@

576 704 1152 1280 1344 1472 1536 1536

704 640 1156 1088 1344 1408 1536 1600

768 832 1216 1472 1472 1536 1600 1600

832 832 960 1344 1536 1536 1600 1536

832 832 960 1216 1536 1600 1536 1536

960 896 896 1088 1600 1600 1600 1536

768 768 832 832 1280 1472 1600 1600

448 768 704 640 1280 1408 1600 1600

1
CCCCCCCCCCCCCA

:

(We have contrast stretched in Figure 3(b) to highlight the often subtle variations among the various shades of gray: the

smallest and largest matrix entries, 448 and 1600, are depicted as black and white, respectively, which is not the way they

appeared in Figure 2(a).)

To demonsrate how to wavelet transform such a matrix, we �rst describe a method for transforming strings of data,

called averaging and di�erencing. Later, we'll use this technique to transform an entire matrix as follows: Treat each row as

a string, and perform the averaging and di�erencing on each one to obtain a new matrix, and then apply exactly the same

steps on each column of this new matrix, �nally obtaining a row and column transformed matrix.

To understand what averaging and di�erencing does to a data string, for instance the �rst row in the matrix P above,

consider the table below. Successive rows of the table show the starting, intermediate, and �nal results.

576 704 1152 1280 1344 1472 1536 1536

640 1216 1408 1536 -64 -64 -64 0

928 1472 -288 -64 -64 -64 -64 0

1200 -272 -288 -64 -64 -64 -64 0

There are 3 steps in the transform process because the data string has length 8 = 23. The �rst row in the table is our

original data string, which we can think of as four pairs of numbers. The �rst four numbers in the second row are the
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averages of those pairs. Similarly, the �rst two numbers in the third row are the averages of those four averages, taken two

at a time, and the �rst entry in the fourth and last row is the average of the preceding two computed averages.

The remaining numbers, shown in bold, measure deviations from the various averages. The �rst four bold entries, in the

second half of the second row, are the result of subtracting the �rst four averages from the �rst elements of the pairs that

gave rise to them: subtracting 640; 1216; 1408; 1536 from 576; 1152; 1344; 1536, element by element, yields �64;�64;�64;0.

These are called detail coe�cients ; they are repeated in each subsequent row of the table. The third and fourth entries in the

third row are obtained by subtracting the �rst and second entries in that row from the �rst elements of the pairs that start

row two: subtracting 928; 1472 from 640; 1408, element by element, yields �288;�64. These two new detail coe�cients are

also repeated in each subsequent row of the table. Finally, the second entry in the last row, �272, is the detail coe�cient

obtained by subtracting the overall average, 1200, from the 928 that starts row three.

We have transformed our original string into a new string in 3 steps. Moreover, the averaging and di�erencing process

is reversible: we can work back from any row in the table to the previous row|and hence to the �rst row|by means of

appropriate additions and subtractions. In other words, we have lost nothing by transforming our string.

(Clearly, the process can be generalized to strings of any length: strings of length 2k require k rounds of averaging and

di�erencing, and any string can be padded at the end, say with zeros, until it has length equal to a power of two.)

To apply the scheme to an 8� 8 matrix, we simply do the averaging and di�erencing three times on each row separately,

and then three times on the columns of the resulting matrix. Averaging and di�erencing columns can also be achieved

by transposing the row-transformed matrix, doing row transformations to the result of that transposition, and transposing

back. The �nal result is a new 8� 8 matrix T , called the Haar wavelet transform of P .

Applying this technique to the matrix P as above, we obtain, after a great deal of calculation, this transformed matrix:

T =

0
BBBBBBBBBBBBB@

1212 �306 �146 �54 �24 �68 �40 4

30 36 �90 �2 8 �20 8 �4

�50 �10 �20 �24 0 72 �16 �16

82 38 �24 68 48 �64 32 8

8 8 �32 16 �48 �48 �16 16

20 20 �56 �16 �16 32 �16 �16

�8 8 �48 0 �16 �16 �16 �16

44 36 0 8 80 �16 �16 0

1
CCCCCCCCCCCCCA

:

This matrix has one overall average value in the top left hand corner, and 63 detail elements. (The �rst row is not the same

as the last row in the table we saw before, since this time, column as well as row transformations have been done).

The point of the wavelet transform is that regions of little variation in the original data manifest themselves as small or

zero elements in the wavelet transformed version. The 0's in T are due to the occurrences of identical adjacent elements in

P , and the �2;�4, and 4 in T can be explained by some of the nearly identical adjacent elements in P .

A matrix with a high proportion of zero entries is said to be sparse. For many image matrices, their corresponding

wavelet transformed versions are much sparser than the originals. Very sparse matrices are easier to store and tramsmit

than ordinary matrices of the same size. This is because sparse matrices can be speci�ed in a data �le solely in terms of the

locations and values of their nonzero entries: just think how much more e�cient it is to say \a 100� 100 matrix which is

all 0's except for 7's in the (23; 44) and (65; 2) positions" than it is to show all 10; 000 entries.

To bene�t more fully from the wavelet transform, we must think big: 24% of the entries of the wavelet transform of the

256� 256 matrix de�ning the picture of Nelson Mandela in Figure 2(b) are 0's.

3 Compression

The real pay-o� in the wavelet transmission game is not so much the expectation of sparsity of the transformed matrices,

it's the fact that we can �ddle with the \mostly detail" versions to make lots of entries zero: we can alter the transformed

matrices, taking advantage of \regions of low activity," and then apply the inverse wavelet transform to this doctored version,

to obtain an approximation of the original data.

Thus we arrive at the door of wavelet compression: Fix a nonnegative threshold value �, and decree that any detail

coe�cient in the wavelet transformed data whose magnitude is less than or equal to � will be reset to zero (hopefully, this

leads to a relatively sparse matrix), then rebuild an approximation of the original data using this doctored version of the

wavelet transformed data. The surprise is that in the case of image data, we can throw out a sizable proportion of the

detail coe�cients in this way and obtain visually acceptable results. This process is called lossless compression when no

information is lost (e.g., if � = 0); otherwise it's referred to as lossy compression (in which case � > 0). In the former case

we can get our original data back, and in the latter we can build an approximation of it.
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For instance, consider the 8� 8 image matrix P and its wavelet transformed version T from before. If we take � = 20,

i.e., reset to zero all elements of T which are less than or equal to 20 in absolute value, we obtain the doctored matrix:

D =

0
BBBBBBBBBBBBB@

1212 �306 �146 �54 �24 �68 �40 0

30 36 �90 0 0 0 0 0

�50 0 0 �24 0 72 0 0

82 38 �24 68 48 �64 32 0

0 0 �32 0 �48 �48 0 0

0 0 �56 0 0 32 0 0

0 0 �48 0 0 0 0 0

44 36 0 0 80 0 0 0

1
CCCCCCCCCCCCCA

:

Applying the inverse wavelet transform to D, we get this reconstructed approximation R:

R =

0
BBBBBBBBBBBBB@

582 726 1146 1234 1344 1424 1540 1540

742 694 1178 1074 1344 1424 1540 1540

706 754 1206 1422 1492 1572 1592 1592

818 866 1030 1374 1492 1572 1592 1592

856 808 956 1220 1574 1590 1554 1554

952 904 860 1124 1574 1590 1554 1554

776 760 826 836 1294 1438 1610 1610

456 760 668 676 1278 1422 1594 1594

1
CCCCCCCCCCCCCA

:

Figure 4: Compression with varying thresholds

Figure 4(a) shows the image corresponding to R; compare this with Figure 3(b). Figure 4(b) shows what happens if we

repeat with � = 50; this clearly deviates even further from the original image. Admittedly, these approximations are not

visually impressive, but this is mainly because of the scale; similar approximations of much higher resolution images (more

pixels) are often quite acceptable, as we will demonstrate presently.

First we need a way to quantify the compression. The wavelet transformed matrix T|from which Figure 3(b) can

be reconstructed|has 60 nonzero elements out of 64, whereas the doctored version D|from which Figure 4(b) was

constructed|has a mere 29. In one sense that's a 50% saving, or a 2:1 compression ratio. The doctored matrix which

results from taking � = 50 (not shown) only has 12 nonzero entries, so we could claim a 5:1 compression ratio in that case.

In general, for a particular image matrix P and a �xed threshold �, the compression ratio is understood to mean the ratio of

the number of nonzero entries in the wavelet transformed matrix T to the number of nonzero entries in the doctored matrix

D. Compression ratios of 10:1 or better give rise to matrices D which are su�ciently sparse that there is a signi�cant saving

when it comes to storage or transmission.
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Now we consider more realistic, larger image matrices, such as the one in Figure 2(a). Let's take � = 200. We process the

entire 128�128 matrix, which involves 7 rounds of row averaging and di�erencing followed by 7 rounds of column averaging

and di�erencing, and then set to zero all entries which do not exceed 200 in absolute value. Finally we apply the inverse

wavelet transform. We obtain the rather poor compressed image shown in Figure 5(a), and a compression ratio of 10:1.

Figure 5: 10:1 compressions of the Rosa Parks image

The second image, Figure 5(b), was obtained using a simple modi�cation of the Haar wavelet transform, known as

normalization. It too gives rise to a compression ratio of 10:1, and is obviously much closer to the original than Figure 5(a).

Actually, we've seen a smaller version of this before, as the third of the images in Figure 1. Note the concentration of

small blocks near the edges where light and dark regions meet, illustrating the adaptiveness of this process. The extreme

blockiness of these images is due to the nature of averaging and di�erencing, which is equivalent to working with certain

step functions (see [8] for details).

The averaging and di�erencing which is at the heart of the wavelet transform earlier involves repeated processing of

certain pairs (a; b) to yield new pairs (a+b
2
;

a�b
2
). In the normalized wavelet transform, we process each such pair (a; b) to

yield (a+bp
2
;

a�bp
2
) instead. Until we get to x5, this new form of averaging and di�erencing will likely seem unintuitive and

unmotivated. Certainly, we have a reversible transform. We do not inict any explicit examples of normalized wavelet

transformed strings or matrices on the reader, but content ourselves with exhibiting the resulting compressed images. For

a given compression ratio, normalization generally leads to better approximations, as we just saw in Figure 5(b).

Figure 6: 10:1 compressions of Nelson Mandela image
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Figure 6 shows two wavelet compressed versions of the Nelson Mandela image, the second one normalized; again, both

yield compression ratios of 10:1. Here we see the real potential of wavelet compression: Figure 6(b) is visually quite close

to Figure 2(b), yet can be stored in a form which only requires 10% of the space that the original does.

4 Progressive Image Transmission

In the case of real-time image retrieval, such as grabbing images on the World Wide Web, the compression technique we

have discussed allows for a type of progressive image transmission: When an image P is requested electronically, a wavelet-

encoded version T is brought out of storage, and bits of information about it are sent \over the wires," starting with the

overall average and the larger detail coe�cients, and working down to the smallest detail coe�cients. As this information

is received by the user, it is used to display a reconstruction of P , starting with a very crude approximation of the image

that, rapidly updated and re�ned, looks noticeably better as more wavelet coe�cients are used. Eventually (assuming the

user has deemed this picture worth waiting for) all of the detail coe�cients will have been transmitted and a perfect copy

of P displayed. If the user loses interest or patience along the way, she can easily halt the process.

For instance, the images of Rosa Parks in Figure 1, which use normalized wavelet compression with ratios of 50:1, 20:1,

10:1, and 1:1 (i.e., the orginal), respectively, could form stages in a progressive transmission, �nishing up with a perfect

image. Figure 7 shows another example using the Nelson Mandela image. Again, normalized wavelet compression is used

here, this time with ratios of 200:1, 100:1, 50:1, 25:1, 10:1, and 2:1 respectively. The \half Nelson" in the last image is such

a good approximation that it's almost indistinguishable from the \whole Nelson" in Figure 2(b).

Figure 7: The ever progressive Nelson Mandela

The Netscape browser, which many people use to access the World Wide Web, currently makes use of a form of JPEG

image compression for progressive transmission (JPEG is one of the standard image �le formats in use today). Wavelet-based

software for this purpose, using a generalization of the Haar wavelet transform (see Closing Remarks) is already available.

For instance, Summus, a software company based in South Carolina (URL: http://www.summus.com/index.html), has a

product called The Wavelet Image Netscape Plugin on the market.
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5 A Linear Algebra Approach to Wavelet Transforms

We demonstrate how matrix multiplication can be used to e�ect averaging and di�erencing. This, in turn, leads to a matrix

multiplication version of the Haar wavelet transform. We provide enough details to allow the curious reader to use a standard

computer algebra package, such as Matlab, to reproduce our results and pictures. (Matrix multiplication is not necessarily

the most e�cient approach here; for large data sets there are much better ways to e�ect the wavelet transforms.)

Our �rst wavelet transform took us from (576,704,1152,1280,1344,1472,1536,1536) to (1200,-272,-288,-64,-64,-64,-64,0)

in three steps. The �rst step involved averaging and di�erencing four pairs of numbers; this can be expressed as the single

vector equation

(640,1216,1408,1536,-64,-64,-64,0) = (576,704,1152,1280,1344,1472,1536,1536) A1,

where A1 denotes the matrix 0
BBBBBBBBBBBBBB@

1

2
0 0 0 1

2
0 0 0

1

2
0 0 0 �

1

2
0 0 0

0 1

2
0 0 0 1

2
0 0

0 1

2
0 0 0 �

1

2
0 0

0 0 1

2
0 0 0 1

2
0

0 0 1

2
0 0 0 �

1

2
0

0 0 0 1

2
0 0 0 1

2

0 0 0 1

2
0 0 0 �

1

2

1
CCCCCCCCCCCCCCA

:

The transition from (640,1216,1408,1536,-64,-64,-64,0) to (928,1472,-288,-64,-64,-64,-64,0) to (1200,-272,-288,-64,-64,-64,

-64,0) is equivalant to the two vector equations

(928,1472,-288,-64,-64,-64,-64,0) = (640,1216,1408,1536,-64,-64,-64,0) A2,

(1200,-272,-288,-64,-64,-64,-64,0) = (928,1472,-288,-64,-64,-64,-64,0) A3.

where A2, and A3, respectively, denote the matrices:

0
BBBBBBBBBBBBBB@

1

2
0 1

2
0 0 0 0 0

1

2
0 �

1

2
0 0 0 0 0

0 1

2
0 1

2
0 0 0 0

0 1

2
0 �

1

2
0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCA

;

0
BBBBBBBBBBBBBB@

1

2

1

2
0 0 0 0 0 0

1

2
�

1

2
0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCA

:

Thus, the combined e�ect of the Haar wavelet transform can be achieved with the single equation:

(1200,-272,-288,-64,-64,-64,-64,0) = (576,704,1152,1280,1344,1472,1536,1536)W ,

where W = A1A2A3. So it all boils down to linear algebra! Since the columns of the Ai's are evidently orthogonal to each

other with respect to the standard dot product, each of these matrices is invertible. The inverses are even easy to write

down|after all, they simply reverse the three averaging and di�erencing steps. In any case, we can recover the original

string from the transformed version by means of the inverse Haar wavelet transform:

(576,704,1152,1280,1344,1472,1536,1536) = (1200,-272,-288,-64,-64,-64,-64,0)W�1,

where W�1 = A

�1
3 A

�1
2 A

�1
1 . It is a routine matter to construct the corresponding 2r � 2r matrices A1; A2; : : : ; Ar needed

to work with strings of length 2r, and to write down the corresponding equations. As mentioned earlier, there is no loss of

generality in assuming that each string's length is a power of 2.

For image matrices, we do the same row transformations to each row, followed by corresponding column transformations.

The beauty of the string transform approach is that the equations relating the \before" and \after" strings are valid applied

to an image matrix and its row-transformed form. If P is a 2r � 2r image matrix, then the equations Q = PW and
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P = QW
�1 express the relationships between P and its row-transformed image Q, where W = A1A2 : : : Ar. To handle

column transformations, we repeat the steps above with a few transposes (denoted by 0) thrown in. Putting everything

together gives the following equations, which express the relationship between the original P and the row-and-column-

transformed image T :

T = ((PW )0W )0 =W

0
PW and P = ((T 0)W�1)0W�1 = (W�1)0TW�1

:

The normalization modi�cation mentioned earlier is not only easy to implement in this new setting, but we can get also

a glimpse of why it might be desirable. First, to do it we simply replace all of the � 1

2
's in the matrices Aj with � 1p

2
's.

The columns of each matrix Aj then form an orthonormal set.1 Consequently the same is true of the matrix W , which

speeds up the inverse wavelet transform, since the matrix inverses are simply transposes. There is more than mere speed

at stake here: as we have already seen, such normalization tends to lead to compressed images that are more acceptable to

the human eye.

In matrix terms, the image compression scheme works like this: Start with P , and compute T = W
0
PW , which (we

hope) will be somewhat sparse. Choose a threshold value �, and replace by zero any entries of T whose absolute value is

less than or equal to �. Denote the resulting doctored matrix by D; this is sparse by design, and thus easier to store and

transmit than P . To reconstruct an image from D, compute R = (W�1)0DW�1.

Lossless compression is the case where D = T (e.g., if � = 0) so that R = P . Otherwise we have lossy compression, in

which case the goal is to pick � carefully, so as to balance the conicting requirements of storage (the more zeros in D, the

better) and visual acceptability of the reconstruction R.

6 Student Research

Undergraduate research may be directed in the area described in this survey. Familiarity with linear algebra and calculus

helps, and some access to a software package such asMatlab is desirable. Students seem to enjoy seeing how the mathematics

they have learned can be applied to such a practical and multimedia-friendly project. They have also presented their research

at numerous local and mational meetings.

At Spelman College, Tamara Pearson and Jimmitria Ford spent time on the topic during the summer of 1995. Ms. Pear-

son, a mathematics major and a computer science minor with a strong interest in graphics, has subsequently graduated and

moved on to graduate school in computer science at the University of Florida at Gainesville. Ms. Ford's interests include

image processing, and she is currently pursuing a degree in environmental engineering at Georgia Institute of Technology.

During each subsequent semester, several other mathematics majors have continued to explore this topic, for instance

striving to come up with more e�cient programs to implement the compression discussed here. At the time of writing,

juniors Camille Daniel and Latoria Thomas are exploring the use of more advanced wavelet transforms, using spline wavelets,

as well as the extension of the results to color images.

7 Closing Remarks

The wavelet transform we have discussed is the simplest, and crudest, member of a large class of possibilities. These Haar

methods have been known and used in image processing for many years [9]. As we have seen, some quite acceptable results

can be achieved with this modest little transform.

The Haar wavelet transform is usually presented in a more abstract mathematical setting using special functions called

Haar wavelets (this approach is taken in [8]). In the mid and late 1980s some far-reaching generalizations of these wavelets

were discovered [5], [4]. The corresponding transforms can often be implemented using matrix multiplication, as in the last

section, where the matrices Ai have more numerous and more exotic entries. These more sophisticated wavelets produce

smoother, more satisfactory compressed images than the ones that we obtained [10], [6].

Wavelets provide an alternative to classical Fourier methods for both one- and multi-dimensional data analysis and

synthesis, and have numerous applications both within mathematics (e.g., to partial di�erential operators) and in areas

as diverse as physics, seismology, medical imaging, digital image processing, signal processing, and computer graphics and

video. Unlike their Fourier cousins, wavelet methods make no assumptions concerning periodicity of the data at hand. As

a result, wavelets are particularly suitable for studying data exhibiting sharp changes or even discontinuities.

Good introductions to the mathematics and applications of wavelets can be found in Gilbert Strang's survey article [11]

and in Barbara Burke Hubbard's remarkable book The World According To Wavelets [7]. Books covering applications in

some detail include [2] and [1]. For an account of a recent adoption of wavelets as a standard for image compression, see

[3]. There are also wavelet applications to audio and speech signals [12], and to partial di�erential operators and equations

1So that Aj is \orthogonal" according to a popular but unfortunate naming convention.
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[2]. An excellent World Wide Web resource for wavelet matters is The Wavelet Digest http://www.wavelet.org/wavelet

(email: help@wavelet.org). The M-�les (Matlab programs) employed to produce all of our pictures, as well the author's

paper [8], are available from http://www.spelman.edu/~colm.
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