Self-similar Distributions

David L. Mills University of Delaware <u>http://www.eecis.udel.edu/~mills</u> <u>mailto:mills@udel.edu</u>

Sir John Tenniel; Alice's Adventures in Wonderland, Lewis Carroll

- Graph shows raw jitter of millisecond timecode and 9600-bps serial port
 - Additional latencies from 1.5 ms to 8.3 ms on SPARC IPC due to software driver and operating system; rare latency peaks over 20 ms
 - Latencies can be minimized by capturing timestamps close to the hardware
 - Jitter is reduced using median filter of 60 samples
 - Using on-second format and median filter, residual jitter is less than 50 μ s

27-Apr-04

- Left figure shows raw time offsets measured for a typical path over a 24-hour period (mean error 724 μ s, median error 192 μ s)
- o Right graph shows filtered time offsets over the same period (mean error 192 μ s, median error 112 μ s).
- The mean error has been reduced by 11.5 dB; the median error by 18.3 dB. This is impressive performance.

27-Apr-04

- Measurements use 2300-bps telephone modem and NIST Automated Computer Time Service (ACTS)
- Calls are placed via PSTN at 16,384-s intervals

- The traces show the cumulative probability distributions for
 - Upper trace: raw time offsets measured over a 12-day period
 - Lower trace: filtered time offsets after the clock filter

- Cumulative distribution function of absolute roundtrip delays
 - 38,722 Internet servers surveyed running NTP Version 2 and 3
 - Delays: median 118 ms, mean 186 ms, maximum 1.9 s(!)
 - Asymmetric delays can cause errors up to one-half the delay

27-Apr-04

11

- Consider the (continuous) process $X = (X_t, -inf < t < inf)$
- If X_{at} and $a^{H}(X_{t})$ have identical finite distributions for a > 0, then X is self-similar with parameter H.
- We need to apply this concept to a time series. Let $X = (X_t, t = 0, 1, ...)$ with given mean μ , variance σ^2 and autocorrelation function r(k), $k \ge 0$.
- It's convienent to express this as $r(k) = k^{\beta}L(k)$ as $k \rightarrow inf$ and $0 < \beta < 1$.
- We assume *L*(*k*) varies slowly near infinity and can be assumed constant.

- For m = 1, 2, ... let $X^{(m)} = (X_k^{(m)}, k = 1, 2, ...)$, where *m* is a scale factor.
- Each $X_k^{(m)}$ represents a subinterval of *m* samples, and the subintervals are non-overlapping: $X_k^{(m)} = 1 / m (X_{(m)}^{(m)} + ... + X_{(m)}^{(m)} + ... + X_{(m)}^{(m)}), k > 0.$
- For instance, m = 2 subintervals are (0,1), (2,3), ...; m = 3 subintervals are (0, 1, 2), (3, 4, 5), ...
- A process is (exactly) self-similar with parameter $H = 1 \beta / 2$ if, for all $m = 1, 2, ..., var[X^{(m)}] = \sigma^2 m \beta$ and

 $r^{(m)}(k) = r(k) = 1 / 2 ([k+1]^{2H} - 2k^{2H} + [k-1]^{2H}), k > 0,$

where $r^{(m)}$ represents the autocorrelation function of $X^{(m)}$.

 A process is (asymptotically) second-order self-similar if r^(m)(k) -> r(k) as m -> inf

- For self-similar distributions (0.5 < H < 1)
 - Hurst effect: the rescaled, adjusted range statistic is characterized by a power law; i.e., *E*[*R*(*m*) / *S*(*m*)] is similar to *m^H* as *m* -> inf.
 - Slowly decaying variance. the variances of the sample means are decaying more slowly than the reciprocal of the sample size.
 - Long-range dependence: the autocorrelations decay hyperbolically rather than exponentially, implying a non-summable autocorrelation function.
 - 1 / f noise: the spectral density f(.) obeys a power law near the origin.
- For memoryless or finite-memory distributions (0 < H < 0.5)
 - var[$X^{(m)}$] decays as to m^{-1} .
 - The sum of variances if finite.
 - The spectral density *f*(.) is finite near the origin.

- Long-range dependent (0.5 < H < 1)
 - Fractional Gaussian Noise (F-GN)

$$r(k) = 1 / 2 ([k + 1]^{2H} - 2k^{2H} + [k - 1]^{2H}), k > 1$$

- Fractional Brownian Motion (F-BM)
- Fractional Autoregressive Integrative Moving Average (F-ARIMA
- Random Walk (RW) (descrete Brownian Motion (BM)
- Short-range dependent
 - Memoryless and short-memory (Markov)
 - Just about any conventional distribution uniform, exponential, Pareto
 - ARIMA

Examples of self-similar traffic on a LAN

27-Apr-04

Variance-time plot

