RFC-1305 Network Time Protocol (Version 3) March 1992

1. Appendix A. NTP Data Format - Version 3

The format of the NTP Message data area, which immediately follows the UDP header, is shown
in Figure 4. Following is a description of its fields.

Leap Indicator (LI): This is a two-bit code warning of an impending leap second to be inserted/de-
leted in the last minute of the current day, with bit O and bit 1, respectively, coded as follows:

00 no warning

01 last minute has 61 seconds

10 last minute has 59 seconds)

11 alarm condition (clock not synchronized)

Version Number (VN): This is a three-bit integer indicating the NTP version number, currently
three (3).

Mode: This is a three-bit integer indicating the mode, with values defined as follows:

reserved

symmetric active

symmetric passive

client

server

broadcast

reserved for NTP control message (see Appendix B)
reserved for private use

0 8 16 24 31
LI VN Mode Stratum Poll Precision
Root Delay (32)

Root Dispersion (32)

Reference Identifier (32)

~No o h~hWNEO

Reference Timestamp (64)
Originate Timestamp (64)
Receive Timestamp (64)
Transmit Timestamp (64)

Authenticator (optional) (96)

Figure 4. NTP Message Header

Mills Page 50

RFC-1305 Network Time Protocol (Version 3) March 1992

Stratum: This is a eight-bit integer indicating the stratum level of the local clock, with values defined
as follows:

0 unspedied
1 primary reference (e.g., radio clock)
2-255 secondary reference (via NTP)

The values that can appear in this field range from zero to NTP.INFIN inclusive.

Poll Interval: This is an eight-bit signed integer indicating the maximum interval between successive
messages, in seconds to the nearest power of two. The values that can appear in this field range
from NTP.MINPOLL to NTP.MAXPOLL inclusive.

Precision: This is an eight-bit signed integer indicating the precision of the local clock, in seconds
to the nearest power of two.

Root Delay: This is a 32-bit signed fixed-point number indicating the total roundtrip delay to the
primary reference source, in seconds with fraction point between bits 15 and 16. Note that this
variable can take on both positive and negative values, depending on clock precision and skew.

Root Dispersion: This is a 32-bit signed fixed-point number indicating the maximum error relative
to the primary reference source, in seconds with fraction point between bits 15 and 16. Only
positive values greater than zero are possible.

Reference Clock Identifier: This is a 32-bit code identifying the particular reference clock. In the
case of stratum 0 (unspecified) or stratum 1 (primary reference), this is a four-octet, left-justified,
zero-padded ASCII stringVhile not enumerated as part of the NpEaficaton, the following
are suggested ASCII identifiers:

Stratum Code Meaning

0 DCN DCN routing protocol

0 NIST NIST public modem

0 TSP TSP time protocol

0 DTS Digital Time Service

1 ATOM Atomic clock (calibrated)

1 VLF VLF radio (OMEGA, etc.)

1 callsign Generic radio

1 LORC LORAN-C radionavigation

1 GOES GOES UHF environment satellite
1 GPS GPS UHF satellite positioning

In the case of stratum 2 and greater (secondary reference) this is the four-octet Internet address
of the primary reference host.

Reference Timestamp: This is the local time at which the local clock was last set or corrected, in
64-bit timestamp format.

Mills Page 51

RFC-1305 Network Time Protocol (Version 3) March 1992

Originate Timestamp: This is the local time at which the request departed the client host for the
service host, in 64-bit timestamp format.

Receive Timestamp: This is the local time at which the request arrived at the service host, in 64-bit
timestamp format.

Transmit Timestamp: This is the local time at which the reply departed the service host for the client
host, in 64-bit timestamp format.

Authenticator (optional): When the NTP authentication mechanism is implemented, this contains
the authenticator information defined in Appendix C.

Mills Page 52

RFC-1305 Network Time Protocol (Version 3) March 1992

2. Appendix B. NTP Control Messages

In a comprehensive network-management environment, facilities are presumed available to perform
routine NTP control and monitoring functions, such as setting the leap-indicator bits at the primary
servers, adjusting the various system parameters and monitoring regular operations. Ordinarily,
these functions can be implemented using a network-management protocol such as SNMP and
suitable extensions to the MIB database. However, in those cases where such facilities are not
available, these functions can be implemented using special NTP control messages described herein.
These messages are intended for use only in systems where no other management facilities are
available or appropriate, such as in dedicated-function bus peripherals. Support for these messages
is not required in order to conform to this specification.

The NTP Control Message has the value 6 specified in the mode field of the first octet of the NTP
header and is formatted as shown below. The format of the data field is specific to each command
or response; however, in most cases the format is designed to be constructed and viewed by humans
and so is coded in free-form ASCII. This facilitates the specification and implementation of simple
management tools in the absence of fully evolved network-management facilities. As in ordinary
NTP messages, the authenticator field follows the data field. If the authenticator is used the data
field is zero-padded to a 32-bit boundary, but the padding bits are not considered part of the data
field and are not included in the field count.

IP hosts are not required to reassemble datagrams larger than 576 octets; however, some commands
or responses may involve more data than will fit into a single datagram. Accordingly, a simple
reassembly feature is included in which each octet of the message data is numbered starting with
zero. As each fragment is transmitted the number of its first octet is inserted in the offset field and
the number of octets is inserted in the count field. The more-data (M) bit is set in all fragments
except the last.

Most control functions involve sending a command and receiving a response, perhaps involving
several fragment3he sender chooses a distinct, nonzero sequence number and sets the status field
and R and E bits to zero. The responder interprets the opcoddditidnal information in the data

field, updates the status field, sets the R bit to one and returns the three 32-bit words of the header
along with additional information in the data field. In case of invalid message format or contents
the responder inserts a code in the status field, sets the R and E bits to one and, optionally, inserts
a diagnostic message in the data field.

Some commands read or write system variables and peer variables for an association identified in
the command. Others read or write variables associated with a radio clock or other device directly
connected to a source of primary synchronization information. To identify which type of variable
and association a 16-bit association identifier is used. System variables are indicated by the identifier
zero. As each association is mobilized a unique, nonzero identifier is created for it. These identifiers
are used in ayclic fashion, so thahe chance of using an old identifier which matches a newly
created association is remote. A management entity can request a list of current identifiers and
subsequently use them to read and write variables for each association. An attempt to use an expired
identifier results in an exception response, following which the list can be requested again.

Mills Page 53

RFC-1305 Network Time Protocol (Version 3) March 1992

0 8 16 24 31

OOVN 6 REM Op Sequence
Status Association 1D
Offset Count

Data (468 octets max)

Padding (zeros)
Authenticator (optional) (96)

Figure 5. NTP Control Message Header

Some exception events, such as when a peer becomes reachable or unreachable, occur spontaneously
and are not necessarily associated with a command. An implementation may elect to save the event
information for later retrieval or to send an asynchronous response (called a trap) or ¢exh. In

of a trap the IP address and port number is determined by a previous command and the sequence
field is set as described below. Current status and summary information for the latest exception
event is returned in all normal responses. Bits in the status field indicate whether an exception has
occurred since the last response and whether more than one exception has occurred.

Commands need not necessarily be sent by anp¢€P, so ordinary access-control procedures

may not apply; however, the optional mask/match mechanism suggested elsewhere in this document
provides the capability to control access by mode number, so this could be used to limit access for
control messages (mode 6) to selected address ranges.

2.1. NTP Control M essage Format

The format of the NTP Control Message header, which immediately follows the UDP header, is
shown in Figure 5. Following is a description of its fields. Bit positions marked as zero are reserved
and should always be transmitted as zero.

Version Number (VN): This is a three-bit integer indicating the NTP version number, currently
three (3).

Mode: This is a three-bit integer indicating the mode. It must have the value 6, indicating an NTP
control message.

Response Bit (R): Set to zero for commands, one for responses.
Error Bit (E): Set to zero for normal response, one for error response.
More Bit (M): Set to zero for last fragment, one for all others.

Operation Code (Op): This is a five-bit integer specifying the command function. Values currently
defined include the following:

Mills Page 54

RFC-1305 Network Time Protocol (Version 3) March 1992

0 2 8 12 15
LI Clock Source Count Code

System Status
0 5 8 12 15

Peer Status Sel Count Code
Peer Status Word

0 8 15
Clock Status Code
Radio Status
0 8 15
Error Code Reserved

Error Status

Figure 6. Status Word Formats

reserved

read status command/response

read variables command/response

write variables command/response

read clock variables command/response
write clock variables command/response
set trap address/port command/response
trap response

reserved

o~NOY U~ WNEO

w
H

Sequence: This is a 16-bit integer indicating the sequence number of the command or response.

Status: This is a 16-bit code indicating the current status of the system, peer or clock, with values
coded as described in followingdions.

Association ID: This is a 16-bit integer identifying a valid association.
Offset: This is a 16-bit integer indicating the offset, in octets, of the first octet in the data area.
Count: This is a 16-bit integer indicating the length of the data field, in octets.

Data: This contains the message data for the command or response. The maximum number of data
octets is 468.

Authenticator (optional): When the NTP authentication mechanism is implemented, this contains
the authenticator information defined in Appendix C.

Mills Page 55

RFC-1305 Network Time Protocol (Version 3) March 1992

2.2. Status Words

Status words indicate the present status of the system, associations and clock. They are designed to
be interpreted by network-monitoring programs and are in one of four 16-bit formats shown in
Figure 6 and described in this seati System anpeer status words are associated with responses

for all commands except the read clock variables, write clock variables and set trap address/port
commands. The association identifier zero specifies the system status word, while a nonzero
identifier specifies a particular peer association. The status word returned in response to read clock
variables and write clock variables commands indicates the state of the clock hardware and decoding
software. A special error status word is used to report malformed command fields or invalid values.

2.2.1. System Status Word

The system status word appears in the status field of the response to a read status or read variables
command with a zero association identifier. The format of the system status word is as follows:

Leap Indicator (LI): This is a two-bit code warning of an impending leap second to be inserted/de-
leted in the last minute of the current day, with bit 0 and bit 1, respectively, coded as follows:

00 no warning

01 last minute has 61 seconds

10 last minute has 59 seconds)

11 alarm condition (clock not synchronized)

Clock Source: This is a six-bit integer indicating the current synchronization source, with values
coded as follows:

unspedied or unknown

Calibrated atomic clock (e.g., HP 5061)

VLF (band 4) or LF (band 5) radio (e.g., OMEGA, WWVB)
HF (band 7) radio (e.g., CHU, MSF, WWV/H)
UHF (band 9) atellite (e.g., GOES, GPS)
local net (e.g., DCN, TSP, DTS)

UDP/NTP

UDP/TIME

eyeball-and-wristwatch

telephone modem (e.g., NIST)

10-63 reserved

O©OCoo~NOOUIlA~WNEFO

System Event Counter: This is a four-bit integer indicating the number of system exception events
occurring since the last time the system status word was returned in a response or included in a
trap message. The counter is cleared when returned in the status field of a response and freezes
when it reaches the value 15.

System Event Code: This is a four-bit integer identifying the latest system exception event, with
new values overwriting previous values, and coded as follows:

Mills Page 56

RFC-1305

A WNEFLO

~N O O

8-15

Network Time Protocol (Version 3) March 1992

unspedied

system restart

system or hardware fault

system new status word (leap bits or synchronization change)
system new synchronization source or stratum (sys.peer or
sys.stratum change)

system clock reset (offset correction exceeds CLOCK.MAX)
system invalid time or date (see NT#esificaton)

system clock exception (see system clock status word)
reserved

2.2.2. Peer Status Word

A peer status word is returned in the status field of a response to a read status, read variables or
write variables command and appears also in the list of association identifiers and status words
returned by a read status command with a zero association ideftigeformat of gpeer status

word is as follows:

Peer Status: This is a five-bit code indicating the status of the peer determined by the packet
procedure, with bits assigned as follows:

configured (peer.config)

authentication enabled (peer.authenable)
authentication okay (peer.authentic)
reachability okay (peer.reaeh0)

reserved

Peer Selection (Sel): This is a three-bit integer indicating the statusp#ehdetermined by the
clock-selection procedure, with values coded as follows:

0
1
2

6
-

rejected

passed sanity checks (tests 1 through 8 in Section 3.4.3)
passed correctness checks (intersection algorithm in Section
4.2.1)

passed candidate checks (if limit check implemented)

passed outlyer checks (clustering algorithm in Section 4.2.2)
current synchronization source; max distance exceeded (if limit
check implemented)

current synchronization source; max distance okay

reserved

Peer Event Counter: This is a four-bit integer indicating the number of peer exception events that
occurred since the last time the peer status word was returned in a response or included in a trap
message. The counter is cleared when returned in the status field of a response and freezes when
it reaches the value 15.

Mills

Page 57

RFC-1305 Network Time Protocol (Version 3) March 1992

Peer Event Code: This is a four-bit integer identifying the latest peer exception event, with new
values overwriting previous values, and coded as follows:

unspedied

peer IP error

peer authentication failure (peer.authentic bit was one now zero)
peer unreachable (peer.reach was nonzero now zero)

peer reachable (peer.reach was zero now nonzero)

5 peer clock exception (see peer clock status word)

6-15 reserved

2.2.3. Clock Status Word

A WNEFLO

There are two ways a reference clock can be attached to a NTP service host, as an dedicated device
managed by the operating system and as a synthetic peer managed by NTP. As in the read status
command, the association identifier is used to identify which one, zero for the system clock and
nonzero for a peer clock. Only one system clock is supported by the protocol, although many peer
clocks can be supported. A systerpeer clock status word appears in the status field of the response

to a read clock variables or write clock variables command. This word can be considered an
extension of the system status word or the peer status word as appropriate. The format of the clock
status word is as follows:

Clock Status: This is an eight-bit integer indicating the current clock status, with values coded as
follows:

clock operating within nominals
reply timeout

bad reply format

hardware or software fault
propagation failure

bad date format or value

bad time format or value

7-255 reserved

OUlh, WNEO

Clock Event Code: This is an eight-bit integer identifying the latest clock exception event, with new
values overwriting previous values. When a change to any nonzero value occurs in the radio
status field, the radio status field is copied to the clock event code field and a system or peer
clock exception event is declared as appropriate.

2.2.4. Error Status Word

An error status word is returned in the status field of an error response as the result of invalid message
format or contents. Its presence is indicated when the E (error) bit is set along with the response (R)
bit in the response. It consists of an eight-bit integer coded as follows:

0 unspedied

Mills Page 58

RFC-1305 Network Time Protocol (Version 3) March 1992

authentication failure

invalid message length or format
invalid opcode

unknown association identifier
unknown variable name

invalid variable value
administratively prohibited

8-255 reserved

~NOoO o~ WNER

2.3. Commands

Commands consist of the header and optional data field shown in Figure 6. When present, the data
field contains a list of identifiers or assignments in the form

<identifier>[=<value>],<identifier>[=<value>],...

where <identifier> is the ASCII name of a system or peer variable specified in Table 2 or Table 3
and <value> is expressed aslecimal, hexadecimal or string constant in the syntax of the C
programming language. Where no ambiguity exists, the “sys.” or “peer.” prefixes shown in Table

2 or Table 4 can be suppressed. Whitespace (ASCII nonprinting format effectors) can be added to
improve readability for simple monitoring programs that do not reformat the data field. Internet
addresses are represented as four octets iortidri.n.n.n]where n is in decimal notati@nd the
brackets are optional. Timestamps, including reference, originate, receive and transmit values, as
well as the logical clock, are represented in units of seconds and fractions, preferably in hexadecimal
notation, while delay, offset, dispersion and distance values are represented in units of milliseconds
and fractions, preferably in decimal notation. All other values are represented as-is, preferably in
decimal notation.

Implementations may define variables other than those listed in Table 2 or Table 3. Called
extramural variables, these are distinguished by the inclusion of some character type other than
alphanumeric or “.” in the name. For those commands that return a list of assignments in the response
data field, if the command data field is empty, it is expected that all available variables defined in
Table 3 or Table 4 of the NTP specification will be included in the response. For the read commands,
if the command data field is nonempty, an implementation may choose to process this field to
individually select which variables are to be returned.

Commands are interpreted as follows:

Read Status (1): The command data field is empty or contains a list of idengparsited by
commas. The command operates in two ways depending on the value of the association
identifier. If this identifier is nonzero, the response includes the peer identifier and status word.
Optionally, the response data field may contain other information, such as described in the Read
Variables command. If the association identifier is zero, the response includes the system
identifier (0) and status word, while the data field contains a list of binary-coded pairs

<association identifier> <status word>,

Mills Page 59

RFC-1305 Network Time Protocol (Version 3) March 1992

one for each currently defined association.

Read Variables (2): The command data field is empty or contains a list of idenéparated by
commas. If the association identifier is nonzero, the response includes the regeested
identifier and status word, while the data field contains a list of peer variables and values as
described above. If the association identifier is zero, the data field contains a list of system
variables and values. If a peer has been selected as the synchronization source, the response
includes the peer identifier and status word; otherwise, the respurigdes the system
identifier (O) and status word.

Write Variables (3): Theommand data field contains a list of assignments as described above. The
variables are updated as indicated. The response is as described for the Read Variables
command.

Read Clock Variables (4): The command data field is empty or contains a list of identifiers separated
by commas. The association identifier selects the system clock variables or peer clock variables
in the same way as in the Read Variables command. The response includes the requested clock
identifier and status word and the data field contains a list of clock variables and values, including
the last timecode message received from the clock.

Write Clock Variables (5): The command data field contains a list of assignments as described
above. The clock variables are updated as indicated. The response is as described for the Read
Clock Variables command.

Set Trap Address/Port (6): The command association identifier, status and data fields are ignored.
The address and port number for subsequent trap messages are taken from the source address
and port of the contl message itself. The initial trap counter for trap response messages is taken
from the sequence field of the commaiitie response association identifier, status and data
fields are not significant. Implementations should include sanity timeouts which prevent trap
transmissions if the monitoring program does not renew this information after a lengthy interval.

Trap Response (7): This message is sent when a system, peer or clock exception event occurs. The
opcode field is 7 and the R bit is set. The trap counter is incremented by one for each trap sent
and the sequence field set to that value. The trap message is sent using the IP address and port
fields established by the set trap address/port command. If a system trap the association identifier
field is set to zero and the status field contains the system status word. If a peer trap the
association identifier field is set to that peer and the status field cotitajpser status word.

Optional ASCII-coded information can be included in the data field.

Mills Page 60

RFC-1305 Network Time Protocol (Version 3) March 1992

3. Appendix C. Authentication Issues

NTP robustness requirements are similar to those of other multiple-peer distributed protocols used
for network routing, management and file access. These include protection from faulty implemen-
tations, improper operation and possibly malicious replay attacks with or without data modification.
These requirements arepesally stringent with distributed protocols, since damage due to failures
can propagate quickly throughout the network, devastating archives, routes and monitoring systems
and even bring down major portions of the network in the fashion of the classic Internet Worm.

The access-control mechanism suggested in the NTP specification responds to these requirements
by limiting access to trusted pe€efbe various sanity checks resist most replay and spoofing attacks

by discarding old duplicates and using the originate timestamp as a one-time pad, since itis unlikely
that even a synchronized peer can predict future timestamps with the precision required on the basis
of past observations alone. In addition, the protocol environment resists jamming attacks by
employing redundant time servers and diverse network paths. Resistance to stochastic disruptions,
actual or manufactured, are minimized by careful design of the filtering and selection algorithms.

However, it is possible that a determined intruder can disrupt timekeeping operations between peers
by subtle modifications of NTP message data, such as falsifying header feddsior timestamps.

In cases where protectiorofn even these types of attacks is requireghemifically engineered
message-authentication mechanism based on cryptographic techniques is necessary. Typical
mechanisms involve the use of cryptographic certificates, algorithms and key media, together with
secure media databases and key-management protocols. Ongoing research efforts in this area are
directed toward developing a standard methodology that can be used with many protocols, including
NTP. However, while it may eventually be the case that ubiquitous, widely applicable authentication
methodology may be adopted by the Internet community and effectively overtake the mechanism
described here, it does not appear tpatgic standards and implementations Wwappen within

the lifetime of this particular version of NTP.

The NTP authentication mechanism described here is intended for interim use until specific
standards and implementations operating at the network level or transport level are available.
Support for this mechanism is not required in order to conform to the NTP specification itself. The
mechanism, which operates at the application level, is designed to protect against unauthorized
message-stream modification and misrepresentation of source by insuring that unbroken, authenti-
cated paths exist between a trusted, stratum-one server in a particular synchronization subnet and
all other servers in that subnet. It employs a crypto-checksum, computed by the sender and checked
by the receiver, together with a set of predistributed algorithms, certificates and cryptographic keys
indexed by a key identifier included in the message. However, there are no provisions in NTP itself
to distribute or maintain the certificates, algorithms or keys. These quantities may occasionally be
changed, which may result in inconsistent key information while rekeying is in progress. The nature
of NTP itself is quite tolerant to such disruptions, so no particular provisiomscarded to deal

with them.

The intent of the authentication mechanism is to provide a framework that can be usadicticon]
with selected mode combinations to build specific plans to manage clockworking communities and

Mills Page 61

RFC-1305 Network Time Protocol (Version 3) March 1992

implement policy as necessary. It can be selectively enabled or disabled on a per-peer basis. There
is no specific plan proposed to manage the use of such schemes; altharghpossibilities are
immediately obvious. In one scenario a group of time servers peers among themselves using
symmetric modes and shares one secret key, say key 1, while another group of servers peers among
themselves using symmetric modes and shares another secret key, say key 2. Now, assume by policy
it is decided that selected servers in group 1 can provide synchronization to group 2, but not the
other way around. The selected servers in group 1 are given key 2, but operated only in server mode,
S0 cannot accept synchronization from group 2; however, group 2 has authenticated access to
group-1 servers. Many other scenarios are possible with suitable combinations of modes and keys.

A packet format and crypto-checksum procedure appropriate for NpBaBed in the following

sections. The cryptographic information is carried in an authenticator which follows the (unmodi-
fied) NTP header fields. The crypto-checksum procedure uses the Data Encryption Standard (DES)
[NBS77]; however, only the DES encryption algorithm is used and the decryption algorithm is not
necessary. This feature is specifically targeted toward governmental sensitivities on the export of
cryptographic technology, since the DES decryption algorithm need not be included in NTP
software distributions and thus cannot be extracted and used in other applications to avoid message
data disclosure.

3.1. NTP Authentication Mechanism

When it is created and possibly at other times, each association is allocated variables identifying
the certificate authority, encryption algorithm, cryptographic key and possibly other data. The
specfic procedures to allocate and initialize these variables are beyond the scopepsdifisas

tion, as are the association of the identifiers and keys and the management and distribution of the
keys themselves. Fexanple and consistency with the conventions of the NTP gpatidn, a set

of appropriate peer and packet variables might include the following:

Authentication Enabled Bit (peer.authenable): This is a bit indicating that the association is to
operate in the authenticated mode. For configured peers this bit is determined from the startup
environment. For non-configurgeers, this bit is set to one if an arriving message includes the
authenticator and set to zero otherwise.

Authenticated Bit (peer.authentic): This is a bit indicating that the last message received from the
peer has been correctly authenticated.

Key Identifier (peer.hostkeyid, peer.peerkeyid, pkt.keyid): This is an integer identifying the
cryptographic key used to generate the message-authentication code. The system variable
peer.hostkeyid is used for active associations. The peer.peerkeyid variable is initialized at zero
(unspecified) when the association is mobilized. For purposes of authentication an unassigned
value is interpreted as zero (unspecified).

Cryptographic Keys (sys.key): This is a set of 64-bit DES keys. Each key is constructed as in the
Berkeley Unix distributions, which consists of eight octets, where the seven low-order bits of
each octet correspond to the DES bits 1-7 and the high-order bit corresponds to the DES

Mills Page 62

RFC-1305 Network Time Protocol (Version 3) March 1992

0 8 16 24 31
Key Identifier (32)

Crypto-Checksum (64)

Figure 7. Authenticator Format

odd-parity bit 8. By convention, the ypeciied key 0 (zero), consisting of eight odd-parity zero
octets, is used for testing and presumed known throughout the NTP community. The remaining
keys are distributed using methods outside the scope of NTP.

Crypto-Checksum (pkt.check): This is a crypto-checksum computed by the encryption procedure.

The authenticator field consists of two subfields, one consisting of the pkt.keyid variable and the
other the pkt.check variable computed by the encrypt procedure, which is called by the transmit
procedure described in thE'P pecificaton, and by the decrypt procedure, whichatied by the

receive procedure described in the NTP specification. Its presence is revealed by the fact the total
datagram length according to the UDP header is longer thilif Bx;essage length, which includes

the header plus the data field, if present. For authentication purposes, the NTP message is
zero-padded if necessary to a 64-bit boundary, although the padding bits are not considered part of
the NTP message itself. The authenticator format shown in Figure 7 has 96 bits, including a 32-bit
key identifier and 64-bit crypto-checksum, and is aligned on a 32-bit boundary for efficient
computation. Additional information required in some implementations, such as certificate authority
and encryption algorithm, can be inserted between the (pad@@dynessage and the key identifier,

as long as the alignment conditions are met. Like the authenticator itself, this information is not
included in the crypto-checksum. Use of these data are beyond the scope of this specification. These
conventions may be changed in future as the result of other standardization activities.

3.2. NTP Authentication Procedures

When authentication is implemented there are two additional procedures added to those described
in the NTP specificadn. One of these (encrypt) constructs the crypto-checksum in transmitted
messages, while the other (decrypt) checks this quantity in received messages. The procedures use
a variant of the cipher-block chaining method described in [NBS80] as applied to DES. In principal,
the procedure is independent of DES and requires only that the encryption algorithm operate on
64-bit blocks. While the NTP authentication mechanism spetifeegse of DES, other algorithms

could be used by prior arrangement.

3.2.1. Encrypt Procedure

For ordinary NTP messages the encryption procedure operates as follows. If authentication is not
enabled, the procedure simply exits. If the association is active (modes 1, 3, 5), the key is determined
from the system key identifier. If the association is passive (modes 2, 4) the key is determined from
the peer key identifier, if the authentic bit is set, or as the default key (zero) otherwise. These
conventions allow further protecti@gainst replay attacks and keying errorsyel as facilitate

Mills Page 63

RFC-1305 Network Time Protocol (Version 3) March 1992

testing and migration to new versions. The crypto-checksum is calculated using the 64-bit NTP
header and data words, but not the authenticator or padding bits.

begin encrypt procedure

if (peer.authenable = 0) exit; /* do nothing if not enabled */
if (peer.hostmode =1 or peer.hostmode =3 or peer.hostmode = 5)
keyid — peer.hostkeyid,; [* active modes use system key */
else
if (peer.authentic = 1) [* passive modes use peer key */
keyid — peer.peerkeyid,;
else
keyid — O; /* unauthenticated use key 0 */
temp ~ O; /* calculate crypto-checksum */

for (each 64-bit header and data word) begin
temp — temp xor word,
temp — DES(temp, keyid);
endfor ;
pkt.keyid — keyid, /* insert packet variables */
pkt.check — temp;
end encrypt procedure;

3.2.2. Decrypt Procedure

For ordinary messages the decryption procedure operates as follows. If the peer is not configured,
the data portion of the message is inspected to determine if the authenticator fields are present. If
so, authentication is enabled; otherwise, it is disabled. If authentication is enabled and the authen-
ticator fields are present and the crypto-checksum succeeds, the authentication bit is set to one;
otherwise, it is set to zero.

begin decrypt procedure
peer.authentic — O;
if (peer.config = 0) [* if not configured, enable per packet */
if (authenticator present)
peer.authenable ~ 1;
else
peer.authenable — O;
if (peer.authenable = 0 or authenticator not present)) exit ;
peer.peerkeyid — pkt.keyid; [* use peer key */
temp ~ O; [* calculate crypto-checksum */
for (each 64-bit header and data word) begin
temp — temp Xor word,
temp — DES(temp, peer.peerkeyio;

Mills Page 64

RFC-1305 Network Time Protocol (Version 3) March 1992

endfor ;
if (temp == pkt.check) peer.authentic — 1; [* declare result */
end decrypt procedure;

3.2.3. Control-M essage Procedures

In anticipation that the functions provided by the NTP control messages will eventually be subsumed
by a comprehensive network-managment function, the peer variables are not used for control
message authentication. If an NE®nmmand message is received with an authenticator field, the
crypto-checksum is computed as in the decrypt procedure and the response message includes the
authenticator field as computed by the encrypt procedure. If the received authenticator is correct,
the key for the response is the same as icdh@mand; otherwise, the default key (zero) is used.
Commands causing a change to the peer data base, such as the write variables and set trap
address/port commands, must be correctly authenticated; however, the remaining commands are
normally not authenticated in order to minimize the encryption overhead.

Mills Page 65

RFC-1305 Network Time Protocol (Version 3) March 1992

4. Appendix D. Differences from Previous Versions.

The original NTP, later called NTP Version 0, was described in RFC-958 [MIL85c]. Subsequently,
Version 0 was superseded by Version 1 (RFC-1059 [MIL88a]), and Version 2 (RFC-1119 [MIL89].
The Version-2 description was split into two documents, RFC-1119 defining the architecture and
specfying the protocol and algorithms, and another [MIL90b] describing the service model,
algorithmic analysis and operating experience. In previous versions these two objectives were
combined in one document. While the architecture assumed in Version 3 is identical to Version 2,
the protocols and algorithms differ in minor ways. Differences between NTP Version 3 and previous
versions are described in this Appendix. Due to known bugs in very old implementations, continued
support for Version-0 implementations is not recommended. It is recommended that new imple-
mentations follow the guidelines below when interoperating with older implementations.

Version 3 neither changes the protocol in any significant way nor obsoletes previous versions or
existing implementations. The main motivation for the new version is to refiren#hgsis and
implementation models for new applications at much higher network speeds to the gigabit-per-sec-
ond regime and to provide for the enhanced stability, accuracy and precision required at such speeds.
In particular, the sources of time and frequency errors have been rigorously examined and error
bounds established in order to improve performance, provide a model for correctnassiasselt
indicate timekeeping quality to the user. Version 3 also incorporates two new optional features, (1)
an algorithm to combine the offsets of a number of peer time servers in order to enhance accuracy
and (2) improved local-clock algorithms which allow the poll intervals on all synchronization paths

to be substantially increased in order to reduce network overhead. Following is a summary of
previous versions of the protocol together with details of the Version 3 changes.

1. Version 1 supports no modes other than symmetric-active and symmetric-passive, which are
determined by ingectng the port-number fields of the UDP packet header pEee mode can
be determined explicitly from the packet-mode variable (pkt.mode) if it is nonzero and implicitly
from the source port (pkt.peerport) and destination port (pkt.hostport) variables if it is zero. For
the case where pkt.mode is zero the mode is determined as follows:

pkt.peerport pkt.hostport Mode
NTP.PORT NTP.PORT symmetric active
NTP.PORT not NTP.PORT server

not NTP.PORT NTP.PORT client

not NTP.PORT not NTP.PORT not possible

Note that it is not possible in this case to distinguish between symmetric active and symmetric
passive modes. Use of the pkt.mode and NTP.PORT variables in this way is not recommended
and may not be supported in future versions of the protocol. The low-order three bits of the first
octet, specified as zero in Version 1, are used for the mode field in Version 2. Version-2 and
Version-3 implementations interoperating with Version-1 implementations should operate in a
passive mode only and use the value one in the version number (pkt.version) field and zero in
the mode (pkt.mode) field in transmitted messages.

Mills Page 66

RFC-1305 Network Time Protocol (Version 3) March 1992

2. Version 1 does not support the NTP cohimessage described in Appendix B. Certain old
versions of the Unix NTP daematpduse the high-order bits of the stratum field (pkt.stratum)
for contol and monitoring purposes. While these bits are never set during normal Version-1,
Version-2 or Version-3 operations, new implementations may use the NTP reserved mode 6
described in Appendix B and/or private reserved mode 7pfxial purposesush as remote
control and monitoring, and in such cases the format of the packet following the first octet can
be arbitrary. While there is no guarantee that different implementations can interoperate using
private reserved mode 7, it is recommended that vanilla ASCIl format be used whenever
possible.

3. Version 1 does not support authentication. The key identifiers, cryptographic keys and proce-
dures described in Appendix C are new to Version 2 and continued in Version 3, along with the
corresponding variables, procedures and authenticator fields. In the NTP message described in
Appendix A and NTP control message described in Appendix B the format and contents of the
header fields are independent of the authentication mechanism and the authenticator itself
follows the header fields, so that previous versions will ignore the authenticator.

4. In Version 1 the total dispersion (pkt.rootdispersion) field of the NTP headeralled the
estimated drift rate, but not used in the protocol or timekeeping procedures. Implementations
of the Version-1 protocol typically set this field to the current value of the skew-compensation
register, which is a signed quantity. In a Version 2 implementation apparent large values in this
field may affect the order considered in the clock-selection procedure. Version-2 and Version-3
implementations interoperating with older implementations should assume this field is zero,
regardless of its actual contents.

5. Version 2 and Version 3 incorporate several sanity checks designed to avoid disruptions due to
unsynchronized, duplicate or bogus timestamp information. The checks in Version 3 are
specifically designed to detect lost or duplicate paclats resist invalid timestamps. The
leap-indicator bits are set to show the unsynchronized state if updates are not received from a
reference source for a considerable time or if the reference source has not received updates for
a considerable time. Some Version-1 implementations could claim valid synchronization
indefinitely following loss of the reference source.

6. The clock-selection procedure of Version 2 was considerably refined as the result of accumu-
lated experience with the Version-1 implementation. Additional sanity checks are included for
authentication, range bounds and to avoid use of very old data. The candidate listis sorted twice,
once to select a relatively few robusindidates from a potentially large population of unruly
peers andgain to oder the resulting list by measurement quality. As in Version 1, The final
selection procedure repeatedly casts out outlyers on the basis of weighted dispersion.

7. The local-clock procedure of Version 2 were considerably improved over Version 1 as the result
of analysis, simulation and experience. Checks have been added to warn that the oscillator has
gone too long without update from a reference source. The compliance register has been added
to improve frequency stability to the order of a millisecond per day. The various parameters
were retuned for optimum loop stability using measured data over typical Internet paths and

Mills Page 67

RFC-1305 Network Time Protocol (Version 3) March 1992

with typical local-clock hardware. In version 3 the phase-lock loop model was further refined
to provide an adaptive-bandwidth feature that automatically adjusts for the inherent stabilities
of the reference clock and local clock while providing optimum loop stability in each case.

Problems in the timekeeping calculations of Version 1 with high-speed LANs were found and
corrected in Version 2. These were caused by jitter due to small differences in clock rates and
different precisions between the peers. Subtle bugs in the Version-1 reachability and polling-rate
control were found and corrected. Tpeer.valid and sys.hold variables were added to avoid
instabilities when the reference source changes rapidly due to large dispersive delays under
conditions of severe network congestidhe peer.config, peer.authenable and peer.authentic
bits were added to control special features and simplify configuration.

In Version 3 The local-clock algorithm has been overhauled to improve stability and accuracy.
Appendix G presents a detailed mathematical model and desigple which has been refined

with the aid of feedback-control analysis and extensive simulation using data collected over
ordinary Internet paths. Section 5 of RFC-1119 on the NTP local clock has been completely
rewritten to describe the new algorithm. Since the new algorithm can result in message rates far
below the old ones, it is highly recommended that they be used in new implementations. Note
that this algorithm is not integral to the NTP protoquaficaton itself and its use does not
affect interoperability with previous versions or existing implementations; however, in order to
insure overall NTP subnet stability in the Imtet, it is essntial that the local-clock charac-
teristics of all NTP time servers conform to the analytical models presented previously and in
this document.

10. In Version 3 a new algorithm to combine the offsets of a number of peer time servers is presented

11.

12.

in Appendix F. This algorithm is modelled on those used by national standards laboratories to
combine the weighted offsets from a number of standard clocks to construct a synthetic
laboratory timescale more accurate than that of any clock separately. It can be used in an NTP
implementation to improve accuracy and stability and reduce errors due to asymmetric paths in
the Internet. The new algorithm has been simulated using data collected over ordinary Internet
paths and, along with the new local-clock algorithm, implemented and tested in the Fuzzball
time servers now running in the Internet. Nttat this algorithm is not integral to the NTP
protocol specification itself and its use does not affect interoperability with previous versions
or existing implementations.

Several inconsistencies and minor errors in previous versions have been corrected in Version
3. The description of the procedures has been rewritten in pseudo-code augmented by English
commentary for clarity and to avoid ambiguity. Appendix | has been added to illustrate
C-language implementations of the various filtering and selection algorithms suggested for
NTP. Additional information is included in Section 5 and in Appendix E, which includes the
tutorial material formerly included in Section 2 of REC19, as well as much new material
clarifying the interpretation of timescales and leap seconds.

Minor changes have been made in the Version-3 local-clock algorithms to avoid problems
observed when leap seconds are introduced in the UTC timescale and also to support an auxiliary

Mills Page 68

RFC-1305 Network Time Protocol (Version 3) March 1992

precision oscillator, such as a cesium clock or timing receiver, as a precision timebase. In
addition, changes were made to some procedures described in Section 3 and in the clock-filter
and clock-selection procedures described in Section 4. While these changes were made to correct
minor bugs found as the result of experience and are recommended for new implementations,
they do not affect interoperability with previous versions or existing implementations in other
than minor ways (at least until the next leap second).

13. In Version 3 changes were made to the way delay, offset and dispersion are defined, calculated
and processed in order to reliably bound the errors inherent in the time-transfer procedures. In
particular, the error accumulations were moved from the delay computation to the dispersion
computation and both included in the clock filter and selection procedures. The clock-selection
procedure was modified to remove the first of the two sorting/discarding steps and replace with
an algorithm first proposed by Marzullo and later incorporated in the Digital Time Service.
These changes do not significantly affect the ordinary operation of or compatibility with various
versions of NTP, but they do provide the basis for formal statements of correctness as described
in Appendix H.

Mills Page 69

RFC-1305 Network Time Protocol (Version 3) March 1992

5. Appendix E. The NTP Timescale and its Chronometry
5.1. Introduction

Following is an extended discussion oomputer network chronometrwhich is the precise
determination of computer time and frequency relative to international standards and the determi-
nation of conventional civil time and date according to the modern calendar. It describes the methods
conventionally used to establish civil time and date and the various timescales now in use. In
particular, it characterizes the Network Time Protocol (NTP) timescale relative to the Coordinated
Universal Time (UTC) timescale, and establishes the precise interpretation of UTC leap seconds in
NTP.

In the following discussion the terrtime oscillator, clock epoch calendar dateandtimescale

are used in a technical sense. Strictly speaking, the time of an event is an abstraction which
determines the ordering of events in some given frame of reference. An oscillator is a generator
capable of precise frequency (relative to the given frame of referencepeocieed tolerance. A

clock is an oscillator together with a counter which records the (fractional) number of cycles since
being initialized with a given value at a given time. The value of the counter at any given time is
called its epoch at that time. In general, epoches are not continuous and depend on the precision of
the counter.

A calendar is a mapping from epoch in some frame of reference to the times and dates used in
everyday life. Since multiple calendars are in use today and sometimes disagree on the dating of
the same events in the past, the chronometry of past and present events is an art practiced by
historians. One of the goals of this discussion is to provide a standard chronometry for precision
dating of present and future events in a global networking communitgyriaironize frequency

means to adjust the oscillators in the network to run at the same frequesgychoonize time

means to set the clocks so that all agree at a particular epoch with re$pec, tas provided by
international standards, anddgnchronize clockemeans to synchronize them in both frequency

and time.

In order to synchronize clocks, there must be some way to directly or indirectly compare them in
time and frequency. The ultimate frame of reference for our world consists of the cosmic oscillators:
the Sun, Moon and other galactic orbiters. Since the frequencies of these oscillatdasiaely re
unstable and not known exactly, the ultimate reference standard oscillator has been chosen by
international agreement as a synthesis of many observations of an atomic transition of exquisite
stability. The epoches of each heavenly and Earthbound oscillator defines a distinctive timescale,
not necessarily always contious, relative to the standard oscillator. Another goal of this presen-
tation is to describe a standard chronometry to rationalize conventional computer time and UTC;
in particular, how to handle leap seconds.

5.2. Primary Frequency and Time Standards

A primary frequency standard is an oscillator that can maintain extremely precise frequency relative
to a phygal phenomenon, such as a transition in the orbital states of an electron. Presently available
atomic oscillators are based on the transitions of the hydrogen, cesium and rubidium atoms. Table

Mills Page 70

RFC-1305 Network Time Protocol (Version 3) March 1992

Oscillator type Stability (per day) Drift /Aging (per
day)
Hydrogen maser 2 x 1t 1x 1012/yr
Cesium beam 3x I8 3 X 1012/yr
Rubidium gas cell 5 x 18 3 x 10'Ymo
Oven-controlled crystal 1 x 190-50 deg C 1 x 16°
Digital-comp crystal 5x 18 0-60 deg C 1x 18
Temp-compensated crystal 5 x 10-60 deg C 3x 18
Uncompensated crystal ~1 x'?@)er deg C don’t ask

Table 7. Characteristics of Standard Oscillators

7 shows the characteristics for typical oscillators of these types compared with those for various

types of quartz-crystal oscillators found in electronic equipment. For reasons of cost and robustness
cesium oscillators are used worldwide for national primary frequency standards. On the other hand,
local clocks used in computing equipment almost always are designed with uncompensated crystal
oscillators.

For the three atomic oscillators listed in Table 7 the drift/aging column shows the maximum offset
per day from nominal standard frequency due to systematic mechanical and electrical charac-
teristics. In the case of crystal oscillators this offset is not constant, which results in a gradual change
in frequency with time, called aging. Even if a crystal oscillator is temperature compensated by
some means, it must be periodically compared to a primary standard in order to maintain the highest
accuracy. For all types of oscillators the stability column shows the maximum variation in frequency
per day due to circuit noise and environmental factors.

As the telephone networks of the world are evolving rapidly to digital teagypotonsideration

should be given to the methods used for frequency synchronization in digital networks. A network

of clocks in which each oscillator is phase-locked to a single frequency standard is called
isochronous while a network in which some oscillators are phase-locked to different master
oscillators, but with the master oscillators closely synchronized in frequency (nctardgghase

locked), to a single frequency standard is called plesiochronopgedimchronous systems the

phase of some oscillators can slip relative to others and cause occasional data errors in synchronous
transmission systems.

The industry has agreed on a classification of clock oscillators as a function of minimum accuracy,
minimum stability and other factors [ALL74a]. There are three factors which determine the
classification: stability, jitter and wander. Stability refers to the systematic variation of frequency
with time and is synonymous with aging, drift, trends, etc. Jitter (also called timing jitter) refers to
short-term variations in frequency with components greater than 10 Hz, while wander refers to
long-term variations in frequency with components less than 10 Hz. The classification determines
the oscillator stratum (not to be confused with the NTP stratum), with the more accurate oscillators
assigned the lower strata and less accurate oscillators the higher strata:

Mills Page 71

RFC-1305 Network Time Protocol (Version 3) March 1992

Stratum Min Accuracy (per day) Min Stability (per day)
1 1x 10M not pecfied
2 1.6 x 108 1x 10%°
3 4.6 x 10° 3.7 x 10’
4 3.2 x 10° not peciied

The construction, operation and maintenance of stratum-one oscillators is assumed to be consistent
with national standards and often includes cesium oscillators or precision crystal oscillators
synchronized via LORAN-C to national standards. Stratum-two oscillators represent the stability
required for interexchange toll switches such as the AT&T 4ESS and interexchange digital
cross-connect systems, while stratum-three oscillators represent the stability required for exchange
switches such as the AT&T 5ESS and local cross-connect systems. Stratum-four oscillators
represent the stability required for digital channel-banks and PBX systems.

5.3. Time and Frequency Di ssemination

In order that atomic and civil time can be coordinated throughout the world, national administrations
operate primary time and frequency standards and coordinate them cooperatively by observing
various radio broadcasts and through occasional use of portable atomic clocks. Most seafaring
nations of the world operate some sort of broadcast time service for the purpose of calibrating
chronographs, which are used in conjunction with ephemeris data to determine navigational
position. In many countries the service is primitive and limited to seconds-pips broadcast by marine
communication stations at certain hours. For instance, a chronograph error of one second represents
a longitudinal position error of about 0.23 nautical mile at the Equator.

The U.S. National Institute of Standards and Technology (NIST - formerly National Bureau of
Standards) operates three radio services for the dissemination of primary time and frequency
information. One of these uses high-frequency (HF or CCIR band 7) transmissions on frequencies
of 2.5, 5, 10, 15 and 20 MHz from Fort Collins, CO (WWYV), and Kauai, HI (WWVH). Signal
propagation is usually by reflection from the upper ionospheric layers, which vary in height and
composition throughout the day and season and result in unpredictable delay variations at the
receiver. The timecode is transmitted over a 60-second interval at a data rate of 1 bps using a 100-Hz
subcarrier on the broadcast signal. The timecode information includes UTC time-day information,
but does not currently include year or leap-secondiwgr While these transmissions and those of
Canada from Ottawa, Ontario (CHU), and other countries can be recs®etarge areas in the
western hemisphere, reliable frequency comparisons can be made only to the ofderaf e
accuracies are limited to the order of a millisecond [BLA74]. Radio clocks which operate with these
transmissions include the Traconex 1020, which provides accuracies to about ten milliseconds and
is priced in the $1,500 range.

A second service operated by NIST uses low-frequency (LF or CCIR band 5) transmissions on 60
kHz from Boulder, CO (WWVB), and can be receive@r the continental U.S. and adjacent coastal

areas. Signal propagation is via the lower ionospheric layers, which are relatively stable and have
predictable diurnal variations in height. The timecode is transmitted over a 60-second interval at a

Mills Page 72

RFC-1305 Network Time Protocol (Version 3) March 1992

rate of 1 pps using periodic reductions in carrier power. With appropriate receiviageaading
techniques and corrections for diurnal and seasonal propagation effects, frequency comparisons to
within 101t are possible and time accuracies of from a few to 50 microseconds can be obtained
[BLA74]. Some countries in western Europe operate similar services which use transmissions on
60 kHz from Rugby, U.K. (MSF), and on 77.5 kHz from Mainflingen, West Germany (DCF77).
The timecode information includes UTC time-day-year information and leap-second warning.
Radio clocks which operate with these transmissions include the Spectracom 8170 and Kinemet-
rics/TrueTime 60-DC and LF-DC, which provide accuracies to a millisecond or less and are priced
in the $2,500 range. However, these receivers do not extract the year information and leap-second
warning.

The third service operated by NIST uses ultra-high frequency (UHF or CCIR band 9) transmissions
on about 468 MHz from the Geosynchronous Orbit Environmental Satellites (GOES), three of
which cover the western hemisphere. The timecode is interleaved with messages used to interrogate
remote sensors and consists of 60 4-bit binary-coded decimal words transmitted over an interval of
30 seconds. The timecode information includes UTC time-day-year information and leap-second
warning. Radio clocks whicbperate with these transmissions include the Kinemetrics/TrueTime
468-DC, which provides accuracies to 0.5 ms and is priced in the $6,000 range. However, this
receiver does not extract the year information and leap-second warning.

The U.S. Department of Defense is developing the Global Positioning System (GPS) for worldwide
precision navigation. This system will eventually provide 24-hour worldwide coverage using a
constellation of 24 satellites in I®ur orbits. For time-transfer applicatiocB®S has a potential
accuracy in the order of a few nanoseconds; however, various considerations of defense policy may
limit accuracy to hundreds of nanoseconds [VAN84]. The timecode information includes GPS time
and UTC correction; however, there appears to be no leap-second warning. Radio clocks which
operate with these transmissions include the Kinemetrics/TrueTime GPS-DC, which provides
accuracies to 20@s and is priced in the $12,000 range. However, since only about halfeHites

have been launched, expensive rubidium or quartz oscillators are necessary to preserve accuracy
during outages. Also, since this is a single-channel receiver, it must be supplied with geographic
coordinates within a degree from an external source before operation begins.

The U.S. Coast Guard, along with agencies of other countries, has operated the LORAN-C [FRA82]
radionavigation system for many years. It currently provides time-transfer accuracies of less than
a microsecond and eventually may achieve 100 ns within the ground-wave coverage area of a few
hundred kilometers from the transmitter. Beyond the ground wave area signal propagation is via
the lower ionospheric layers, whidecreases accuracies to the order of 50 us. With the recent
addition of the Mid-Continent Chain, the deployment of LORAN-C transmitters now provides
complete coverage of the U.S. LORAN-C timing receivers, such as the Austron 2000, are specialized
and extremely expensive (up to $20,000). They are used primarily to monitor local cesium clocks
and are not suited for unattended, automatic operation. While the LORAN-C system provides a
highly accurate frequency and time reference within the ground wave area, there is no timecode
modulation, so the receiver must be supplied with UTC time to within a few tens of seconds from
an external source before operation begins.

Mills Page 73

RFC-1305 Network Time Protocol (Version 3) March 1992

The OMEGA [VAS78] radionavigation system operated by the U.S. Navy and other countries
consists of eight very-low-frequency (VLF or CCIR band 4) transmitters operating on frequencies
from 10.2 to 13.1 kHz and providing 24-hour worldwide coverage. With appropriate receiving and
averaging techniques and corrections for propagation effects, frequency comparisons and time
accuracies are comparable to the LF systems, but with worldwide coverage [BLA74]. Radio clocks
which operate with these transmissions include the Kinemetrics/TrueTime OM-DC, which provides
accuracies to 1 ms and is priced in the $3,500 range. While the OMEGA system provides a highly
accurate frequency reference, there is no timecode modulation, so the receiver must be supplied
with geographic coordinates within a degree and UTC time within five seconds from an external
source before operation begins. There are several other VLF services intended primarily for
worldwide data communications with characteristics similar to GMEThese services can be

used in a manner sitar to OMEGA, but this requires specialized techniques not suited for
unattended, automatic operation.

Note that not all transmission formats used by NIST radio broadcast services [NBS79] and no
currently available radio clocks include provisions for year information and leap-second warning.
This information must be determined from other sources. NTP includes provisions to distribute
advance warnings of leap seconds using the leap-indicator bits described in the NTP specification.
The protocol is designed #mat these bits can be set manually or by the radio timecode at the primary
time servers and then automatically distributed throughout the synchronization subnet to all other
time servers.

5.4. Calendar Systems

The calendar systems used in #meent world reflect the agricultural, political and ritual needs
characteristic of the societies in which they flourished. Astronomical observations to establish the
winter and summer solstices were in use three to four millennia ago. By the 14th century BC the
Shang Chinese had established the solar year as 365.25 days and the lunar month as 29.5 days. The
lunisolar calendar, in which the ritual month is based on the Moon and the agricultural year on the
Sun, was used throughout the ancient Near East (except Egypt) and Greece from the third
millennium BC. Early calendars used either thirteen lunar months of 28 days or twelve alternating
lunar months of 29 and 30 days and haphazard means to reconcile the 354/364-day lunar year with
the 365-day vague solar year.

The ancient Egyptian lunisolar calendar had twelve 30-day lunar months, but was guided by the
seasonal appearance of the star Sirius (Sothis)dén tw reconcile this calendar with the solar year,

a civil calendar was invented by adding five intercalary days for a total of 365 days. However, in
time it was observed that the civil year was about one-fourth day shorter than the actual solar year
and thus would precess relative to it over a 1460-gygde caled the Sothic cycle. Along with the

Shang Chinese, the ancient Egyptians had thus established the solar year at 365.25 days, or within
about 11 minutes of the present measured value. In 432 BC, about a century after the Chinese had
done so, the Greek astronomer Meton calculated there were 110 lunar months of 29 days and 125
lunar months of 30 days for a total of 235 lunar months in 6940 solar days, or just over 19 years.

Mills Page 74

RFC-1305 Network Time Protocol (Version 3) March 1992

The 19-year cycle, called the Metomigcle, established thenar month at 29.532 solar days, or
within about two minutes of the present measured value.

The Roman republican calendar was based on a lunar year and by 50 BC was eight weeks out of
step with the solar year. Julius Caesar invited the Alexandrian astronomer Sosigenes to redesign
the calendar, which led to the adoption in 46 BC of the Julian calendar. This calendar is based on
a year of 365 days with an intercalary day inserted every four years. However, for the first 36 years

an intercalary day was mistakenly inserted every three years instead of every four. The result was
12 intercalary days instead of nine, and a series of corrections that was not complete until 8 AD.

The seven-day Sumerian week was introduced only in the foemtiry AD by Emperor Constan-

tine 1. During the Roman era a 15-year census cycle, called thadndigtle, was instituted for
taxation purposes. The sequence of day-names for consecutive occurrences of a particular day of
the year does not recur for 28 years, called the solar cycle. Thus, the least common multiple of the
28-year solar cycle, 19-year Metoricleand 15-year Indiction cycle results in a grand 7980-year
supercycle called the Julian Era, which began in 4713 BC. A particular combination of the day of
the week, day of the year, phase of the Moon and round of the census will recur beginning in 3268
AD.

By 1545 the discrepancy in the Julian year relatiiecsolar year had accumulated to ten days.

In 1582, following suggestions by the astronomers Christopher ClaviuswagdLilio, Pope
Gregory Xlll issued a papal bull which decreed, among other things, that the solar year would consist
of 365.2422 days. In order to more closely approximate the new value, only those centennial years
divisible by 400 would be leap years, while the remaining centennial years would not, making the
actual value 365.2425, or within about 26 seconds of the current measured value. Since the
beginning of the Common Era and prior to 1990 there were 474 intercalary days inserted in the
Julian calendar, but 14 of these were removed in the Gregorian calendar. While the Gregorian
calendar is in use throughout most of the world today, some countries did not adopt it until early in
the twentieth century.

While it remains a fascinating field for time historians, the above narrative provides conclusive
evidence that conjugating calendar dates of significant events and assigning NTP timestamps to
them is approximate at best. In principle, reliable dating of such events requires only an accurate
count of the days relative to some globally alarming event, such as a comet passage or supernova
explosion; however, only historically persistent and politically stable societies, such as the ancient
Chinese and Egyptian, andoesally the classic Maya, possessed the means and will to do so.

5.5. The Modified Julian Day System

In order to measure the span of the universe or the decay of the proton, it is necessary to have a
standard day-numbering plan. Accordingly, the International Astronomical Union has adopted the
use of the standard second and Julian Day Number (JDN) to date cosmological events and related
phenomena. The standard day consists of 86,400 standard seconds, where time is expressed as a
fraction of the whole day, and the standard year consists of 365.25 standard days.

Mills Page 75

RFC-1305 Network Time Protocol (Version 3) March 1992

In the scheme devised in 1583 by the French scholar Joseph Julius Scaliger and named after his
father, Julius Caesar Scaliger, JDI9 corresponds to TZnoon) on the first day of the Julian Era,

1 January 4713 BC. The years prior to the Common Era (BC) are reckoned according to the Julian
calendar, while the years of the Common Era (AD) are reckoned according to the Gregorian
calendar. Since 1 January 1 AD in the Gregorian calendar corresponds to 3 January 1 in the Julian
calendar [DER90], JDN 1,721,426.0 corresponds fbarethe first day of the Common Era, 1
January 1 ADThe Modified Julian Date (MJD), which is sometimes used to represent dates near
our own era in conventional time and with fewer digits, is defined as MJD = JD — 2,400,000.5.
Following the convention that our century begar{‘aiml January 1900, at which time the tropical

year was already f20|d, that eclectic instant corresponds to MJD 15,020.0. Thus, the Julian
timescale ticks in standard (atomic) 365.25-day centuries and was set to a given value at the
approximate epoch of a cosmic event which apparently synchronized the entire human community,
the origin of the Common Era.

5.6. Determination of Frequency

For many years the most important use of time and frequency information was for worldwide
navigation and space science, which depend on astronomical observations of the Sun, Moon and
stars [JOR85]. Sidereal time is based on the transit of stars across the celestial meridian of an
observer. The mean sidereal day is 23 hours, 56 minutes and 4.09 seconds, but vati86 aimut
throughout the year due to polar wandering and orbit variations. Ephemeris time is based on tables
with which a standard time interval such as the tropical year - one complete revolution of the Earth
around the Sun - can be determined through observations of the Sun, Moon and planets. In 1958
the standard second was defined as 1/31,556,925.9747 of the tropical year that began this century.
On this scale the tropical year is 365.2421987 days and the lunar month - one complete revolution
of the Moon around the Earth - is 29.53059 days; however, the actual tropical year can be determined
only to an accuracy of about 50 ms and has been increasing by about 5.3 ms per year.

Of the three heavenly oscillators readily appareminitent mariners and astronomers - the Earth
rotation about its axis, the Earth revolution around the Sun and the Moon revolution around the
Earth - none of the three have the intrinsic stability, relative to modern teghntd serve as a
standard reference oscillator. In 1967 the standard second was redefined as “9,192,631,770 periods
of the radiation corresponding to the transition between the two hyperfine levels of the ground state
of the cesium-133 atom.” Since 1972 the time and frequency standards of the world have been based
on International Atomic Time (TAI), which is defined and maintained using multiple cesium-beam
oscillators to an accuracy of a few parts ir]fﬁ(?br better than a microsecond per day. Note that,
while this provides an extraordinarily precise timescale, it does not necessarily agree with conven-
tional solar time and may not in fact even be absolutely uniform, unless subtle atomic conspiracies
can be ruled out.

5.7. Determination of Time and Leap Seconds

The International Bureau of Weights and Measures (IBWM) asé®nomical observations
provided by the U.S. Naval Observatory and other observatories to determine UTC. Starting from
apparent mean solar time as observed, the UTO timescale is determined using corrections for Earth

Mills Page 76

RFC-1305 Network Time Protocol (Version 3) March 1992

UTC Date MJD NTP Time Offset
0l1Jan 72 41,317 2,272,060,800 0
30Jun 72 41,498 2,287,785,600 1
31 Dec 72 41,682 2,303,683,200 2
31 Dec 73 42,047 2,335,219,200 3
31 Dec 74 42,412 2,366,755,200 4
31 Dec 75 42,777 2,398,291,200 5
31 Dec 76 43,143 2,429,913,600 6
31 Dec 77 43,508 2,461,449,600 7
31 Dec 78 43,873 2,492,985,600 8
31 Dec 79 44,238 2,524,521,600 9
30 Jun 81 44,785 2,571,782,400 10
30 Jun 82 45,150 2,603,318,400 11
30 Jun 83 45,515 2,634,854,400 12
30 Jun 85 46,246 2,698,012,800 13
31 Dec 87 47,160 2,776,982,400 14
31 Dec 89 47,891 2,840,140,800 15
31 Dec 90 48,256 2,871,676,800 16

Table 8. Table of Leap-Second Insertions

orbit and inclination (the Equation of Time, as used by sundials), the UT1 (navigator’'s) timescale
by adding corrections for polar migration and the UT2 timescale by adding corrections for known
periodicity variations. While standard frequencies are based on TAIl, conventional civil time is based
on UT1, which is presently slowing relative to TAI by a fraction of a second per year. When the
magnitude of correction approaches 0.7 second, a leap second is inserted or deleted in the TAI
timescale on the last day of June or December.

For the most precise coordination and timestamping of events since 1972, it is necessary to know
when leap seconds are implemented in UTC and how the seconds are numbered. As specified in
CCIR Report 517, which is reproduced in [BLA74], a leap second is inserted following second
23:59:59 on the last day of June or December and becomes second 23:59:60 of that day. A leap
second would be deleted by omitting second 23:59:59 on one of these days, although this has never
happened. Leap seconds were inserted prior to 1 January 1991 on the occasions listed in Table 8
(courtesy U.S. Naval Observatory). Published IBWM corrections consist not only of leap seconds,
which result in step discontinuities relative to TAI, but 100-ms UT1 adjustments called DUT1,
which provide increased accuracy for navigation and space science.

Note that the NTP time column actually shows the epoch following the last second of the day given
in the UTC date and MJD columns (except for the first line), which is the precise epoch of insertion.
The offset column shows the cumulative seconds offset between the uncoordinated (Julian)
timescale and the UTC timescale; that is, the number of seconds to add to the Julian clock in order
to maintain nominal agreement with the UTC clock. Finally, note that the epoch of insertion is
relative to the timescale immediately prior to that epoch; e.g., the epoch of the 31 December 90

Mills Page 77

RFC-1305 Network Time Protocol (Version 3) March 1992

insertion is determined on the timescale in effect following the 31 December 1990 insertion, which
means the actual insertion relative to the Julian clock is fourteen seconds later than the apparent
time on the UTC timescale.

The UTC timescale thus ticks in standard (atomic) seconds and was set to thgl\/a]DmO,?;l?.O

at the epoch determined by astronomical observation t8 be D January 1972 according to the
Gregorian calendar; that is, the inaugural tick of the UTC Era. In fact, the inaugural tick which
synchronized the cosmic oscillators, Julian clock, UTC clock and Gregorian calendar forevermore
was displaced about ten seconds from the civil clock then in use, while the GPS clock is ahead of
the UTC clock by six seconds in late 1990. Subsequently, the UTC clock has marched backward
relative to the Julian timescale exactly one second on scheduled occasions at monumental epoches
embedded in the institutional memory of our civilization. Note in pastiag leap-second
adjustments affect the number of seconds per day and thus the number of seconds per year.
Apparently, should we choose to worry about it, the UTC clock, Julian clock and various cosmic
clocks will inexorably drift apart with time until rationalized by some future papal bull.

5.8. The NTP Time scale and Reckoning with UTC

The NTP timescale is based on the UTC timescale, but notsaeiteslways coincident with it.

At0"on 1 January 1972 (MJD 41,317.0), the first tick of the UTC Era, the NTP clock was set to
2,272,060,800, representing the number of standard seconds réicmuel(l]anuary 1900 (MJD
15,020.0). The insertion of leap seconds in UTC and subsequently into NTP does not affect the
UTC or NTP oscillator, only the conversion to conventional civil UTC time. However, since the
only institutional memory available to NTP are the UTC timecode broadcast services, the NTP
timescale isin effect reset to UTC as each timecode is received. Thus, when a leap second is inserted
in UTC and subsequently in NTP, knowledge of all previous leap seconds is lost.

Another way to describe this is to say there are as many NTP timescales as historic leap seconds.
In effect, a new timescale is established after each new leap second. Thus, all previous leap seconds,
not to mention the apparent origin of the timescale itself, lurch backward one second as each new
timescale is established. If a clock synchronized to NTP in 1990 was used to establish the UTC
epoch of an event that occurred in early 1972 without correctioeyvérg would appear fifteen
seconds late relative to UTC. However, NTP primary time servers resolve the epoch using the
broadcast timecode, so that the NTP clock is set to the broadcast value on the current timescale. As
a result, for the most precise determination of epoch relative to the historic UTC clock, the user
must subtract from the apparent NTP epoch the offsets shown in Table 8 at the relative epoches
shown. This is a feature of almost all present day time-distribution mechanisms.

The chronometry involved can be illustrated with the help of Figure 8, which shows the details of
seconds numbering just before, during and after the last scheduled leap insertion at 23:59:59 on 31
December 1989. Notice the NTP leap bits are set on the day prior to insertion, as indicated by the
“+” symbols on the figure. Since this makes the day one second longer than usual, the NTP day
rollover will not occur until the end of the first occurrence of second 800. The UTC time conversion
routines must notice the apparent time and the leap bits and handle the timescale conversions
accordingly. Immediately after the leap insertion both timescales resume ticking the seconds as if

Mills Page 78

RFC-1305 Network Time Protocol (Version 3) March 1992

uTC NTP
hours| seconds kilosecondsseconds
31 Dec 90 23:59|:59 2,871,590 ,399 +
(leap) 23:59 |:60 2,871,590 ,400 +
1 Jan 91 00:00 | :00 2,871.590 ,400
00:00 | :01 2,871,590 ,401

Figure 8. Comparison of UTC and NTP Timescales at Leap

the leap had never happened. The chronometric correspondence between the UTC and NTP
timescales continues, but NTP has forgotten about all past leap insertions. In NTP chronometric
determination of UTC time intervals spanning leap seconds will thus be inwstiess the exact

times of insertion are known.

It is possible that individual systems may use internal data formats other than the NTP timestamp
format, which is represented in seconds to a precision of about 200 picoseconds; however, a
persuasive argument exists to use a two-part representation, one part for whole days (MJD or some
fixed offset from it) and the other for the seconds (or some scaled value, such as milliseconds). This
not only facilitates conversion between NTP and conventional civil time, but makes the insertion
of leap seconds much easier. All that is required is to change the modulus of the seconds counter,
which on overflow increments the day counter. This design insures that continuity of the timescale
is assured, even if outside synchronization is lost before, during or after leap-seetiathirsince
timestamp data are unaffected, synchronization is assured, even if timestamp data are in flight at
the instant and originated before or at that instant.

Mills Page 79

RFC-1305 Network Time Protocol (Version 3) March 1992

6. Appendix F. The NTP Clock-Combining Algorithm
6.1. Introduction

A common problem in synchronization subnets is systematic time-offset errors resulting from
asymmetric transmission paths, where the networks or transmission media in one direction are
substantially different from the other. The errors can range from microseconds on high-speed ring
networks to large fractions of a second on satellite/landline paths. It has been found experimentally
that these errors can be considerably reduced by combining the apparent offsets of a number of time
servers to produce a more accurate working offset. Following is a description of the combining
method used in the NTP implementation for the Fuzzball [MIL88b]. The method is similar to that
used by national standards laboratories to determine a synthetic laboratory timescale from an
ensemble of cesium clocks [ALL74b]. These procedures are optional and not required in a
conforming NTP implementation.

In the following description thetability of a clock is how well it can maintain a constant frequency,
theaccuracyis how well its frequency and time compare with national standards amitigion

is how precisely these quantities can be maintained within a particular timekeeping system. Unless
indicated otherwise, Theffsetof two clocks is the time difference between them, whileskasv

is the frequency difference (first derivative of offset with time) between them. Real clocks exhibit
some variation in skew (second derivative of offset with time), which is cdliied

6.2. Determining Time and Frequency

Figure 9 shows the overall organization of the NTP time-server model. Timestamps exchanged with
possibly many other subnet peers are used to determine individual roundtrip delays and clock offsets
relative to each peer as described in the NTP specification. As shown in the figure, the computed
delays and offsets are processed by the clock filter to reduce incidental timing noise and the most
accurate and reliable subset determined by the clock-selection algorithm. The resulting offsets of
this subset are first combined as described below and then processed by the phase-locked loop
(PLL). In the PLL the combined effects of the filtering, selection and combining operations is to
produce a phase-correction term. This is processed by the loop filterra tdumtocal clock, which
functions as a voltage-controlled oscillator (VCO). The VCO furnishes the timing (phase) reference
to produce the timestamps used in all calculations.

— Clock Filter— Phase-Locked
. Clock Filter Oscillator

[
- _ Clock Clock
Network Clock Filter— Selection Combining

T _

_ Clock Filter—

(-

Figure 9. Network Time Protocol

R

— Loop Filter —

Mills Page 80

RFC-1305 Network Time Protocol (Version 3) March 1992

6.3. Clock Mode lling

The International Standard (Sl) definitiontiwhe intervalis in terms of the standardcond: “the
duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the cesium-133 atoml tegtresent the standard unit of

time interval so defined andzﬁ be the standard unit of frequency. ®poch denoted by, is

defined as the reading of a counter that runs at freqwearaybegan counting at some agreed initial
epochto, which defines thetandardor absolutetimescale For the purposes of the following
analysis, the epoch of the standard timescale, as well asnédicated by a clock will be
considered continuous. In practice, time is determined relative to a clock constructed from an atomic
oscillator and system of counter/dividers, which defines a timescale associated with that particular
oscillator. Standard time and frequency are then determined fromemldasf such timescales

and algorithms designed to combine them to produce a composite timescale approximating the
standard timescale.

Let T(t) be the time displayed by a clock at epbeblative to the standard timescale:
T(t) = ¥aD(to)[t - to]> + R(to)[t — to] + T(to) + X(t) ,

whereD(to) is the fractional frequency drift per unit tinkfo) the frequency and(to) the time at

some previous epodb. In the usual stationary model these quantities can be assumed constant or
changing slowly with epoch. The random nature of the clock is characterize()bwhich
represents the random noise (jitter) relative to the standard timescale. In thanadysis the
second-order term(to) is ignored and the noise terttt) modelled as a normal distribution with
predictable spectral density or autocorrelation function.

The probability density function of time offseftp T(t)) usually appears as a bell-shaped curve
centered somewhere near zero. The width and general shape of the curve are deterxttihed by

which depends on the oscillator precision and jitter characteristics, as well as the measurement
system and its transmission paths. Beginning at efpdble offset is set to zero, following which

the bell creeps either to the left or right, depending on the valgopand accelerates depending
on the value oD(t0).

6.4. Development of a Composite Time scale

Now consider the time offsets of a number of real clocks connected by real networks. A display of
the offsets of all clocks relative to the standard timescale will appear as a system of bell-shaped
curves slowly precessing relative to each other, but with some further away from nominal zero than
others. The bells will nonally be scatteredver the offset space, more or less close to each other,
with some overlapping and some not. The problem isstonate the true offset relative to the
standard timescale from a system of offsets collected routinely between the clocks.

A composite timescale can be determined from a sequence of offsets measured betvwdeckthe
of an ensemble at nominal intervald.et Ri(to) be the frequency arki(to) the time of théth clock

Mills Page 81

RFC-1305 Network Time Protocol (Version 3) March 1992

at epochyo relative to the standard timescale and let “*” designate the associated estimates. Then,
an estimator foflj computed atp for epochto + T is

Titto+1) = R(to)t + Ti(to) ,

neglecting second-order terms. Consider a seatinflependent time-offset measurements made
between the clocks at epotght T and let the offset between clocknd clockj at that epoch be
Tij(to + 1), defined as

Tij(t0+T) =Ti(to + 1) —Tj(t0+T) .

Note thafTjj = —Tji andTj; = 0. Letwi(t) be a previously determined weight factor associated with
theith clock for the nominal interval The basis for new estimates at eptacht is

n
Tj(to+1) = ZV\A(T)[‘h (to + 1) + Tji(to + T)].
i=1

That is, the apparent time indicated by jtheclock is a weighted average of the estimated time of
each clock at epocty + T plus the time offset measured betweenjtheclock and that clock at
epochtp + 1.

An intuitive grasp of the behavior of this algorithm can be gained with the aid of a few examples.
For instance, ifvi(T) is unity for theith clock and zero for all others, the apparent time for each of
the other clocks is simply the estimated tﬁ(&o + 7). If wi(T) is zero for theth clock, that clock

can never affect any other clock and its apparent time is determined entirely from the other clocks.
If wi(t) = ¥, for alli, the apparent time of thigh clock is equal to the average of the time estimates
computed atp plus the average of the time offsets measured to all other clocks. Finally, in a system
with two clocks andvi(t) = % for each, and if the estimated time at eptpcht is fast by 1 s for

one clock and slow by 1 s for the other, the apparent time for both clocks will coincide with the
standard timescale.

In order to establish a basis for the next intetyélis necessary to update the frequency estimate
ﬁ«(toﬂ) and weight factowi(t). The average frequency assumed foritheclock during the
previous intervat is simply the difference between the times at the beginning and end of the interval
divided byt. A good estimator foR;(to + T) has been found to be the exponential average of these
differences, which is given by

Ti(to + 1) — Ti(to)
T

Rito + 1) = Rto) + ai[Ri(to) -],

whereq; is an experimentally determined weight factor which depends on the estimated frequency
error of theith clock. In order to calculate the weight facieft), it is necessary to determine the

Mills Page 82

RFC-1305 Network Time Protocol (Version 3) March 1992

expected erragi(t) for each clock. In the following, braces “|” indicate absolute value and brackets
“<>"indicate the infinite time average. In practice, the infinite averages are computed as exponential
time averages. An estimate of the magnitude of the unbiased errortbfdloek accumulated over

the nominal intervat is

0.8< Se('l') >

&i(1) = Tito +T) - Tito +7)| + Ve

where €j(t) and geg(t) are the accumulated error of tite clock and entire clock ensemble,
respectively. The accumulated error of the entire ensemble is

m 0

<ef)>=gy 5 1
<ei(t) >

1 0

Finally, the weight factor for thiéh clock is calculated as

When all estimators and weight factors have been updatedjdireairthe estimation interval is
shifted and the new value tafbecomes the old value tof + T.

While not entering into the above calculations, it is useful to estimate the frequency error, since the
ensemble clocks can be located some distance from each other and become isolated for some time
due to network failures. The frequency-offset errdRriits equivalent to the fractional frequency

Yi,

measured between ttik timescale and the standard timestalemporarily dropping the subscript
i for clarity, consider a sequencefindependent frequency-offset sampys (j = 1,2, ..., N)
where the interval between samples is uniform and equalltet T be the nominal interval over

which these samples are averaged. The Allan variaf(be T, 1) [ALL74a] is defined as

2 1 g 2 1DN
<0y(N,T,r)>:<N_1§ya) N
1

>

DDDDDN
o

A particularly useful formulation isl = 2 andT = 1:

Mills Page 83

RFC-1305 Network Time Protocol (Version 3) March 1992

<032/(N =2,T=1,1)>= 032,(T) =<

G+ - Y0

so that

n-1

ofm) = 2(,\,1_1)21 [¥G + 1) - Y012,
J:

While the Allan variance has found application when estimating errors in ensembles of cesium
clocks, its application to NTP is limited due to the computation and storage burden. As described
in the next section, it is possible to estimate errors with some degree of confidence using normal
byproducts of NTP processing algorithms.

6.5. Application to NTP

The NTP clock model is somewhat less complex than the general model described above. For
instance, at the present level of development it is not necessary to separately estimate the time and
frequency of all peer clocks, only the time and frequency of the local clock. If the timekeeping
reference is the local clock itself, then the offsets available in the peer.offset peer variables can be
used directly for thdijj quantities above. In addition, the NTP local-clock model incorporates a
type-Il phase-locked loop, which itself relialg@gtimates frequency errors and corrects accordingly.
Thus, the requirement for estimating frequency is entirely eliminated.

There remains the problem of how to determine a robust and easily computable error gstimate
The method described above, althoaghlytically justifed, is most difficult to implement. Happily,

as a byproduct of the NTP clock-filter algorithm, a useful error estimataikble in the form of

the dispersion. As described in the Nredficaton, the dispersion includes the absolute value of
the weighted average of the offsets between the chosen offset samplerand.tbther samples
retained for selection. The effectiveness of #8mator was compared with the above estimator
by simulation using observed timekeeping data and found to give quite acceptable results.

The NTP clock-combining algorithm can be implemented with only minor modifications to the
algorithms as described in tN& P pecificaton. Although elsewhere in the NTP specification the

use of general-purpose multiply/divide routines has been successfully avoided, there seems to be
no way to avoid them in the clock-combining algorithm. However, for best performance the
local-clock algorithm described elsewhere in this document should be implemented as well, since
the combining algorithms result in a modest increase in phase noise which the revised local-clock
algorithm is designed to suppress.

6.6. Clock-Combining Procedure

The result of the NTP clock-selection procedure is a set of survivors (there must beatdpast

that represent truechimers, or correct clocks. When clock combining is not implemented, one of
these peers, chosen as the most likely candidate, becomes the synchronization source and its
computed offset becomes the final clock correction. Subsequently, the system variables are adjusted

Mills Page 84

RFC-1305 Network Time Protocol (Version 3) March 1992

as described in the NTP clock-update procedure. When clock combining is implemented, these
actions are unchanged, except that the final clock correction is computed by the clock-combining
procedure.

The clock-combining procedure is called from the clock-select procedure. It constructs from the
variables of all surviving peers the final clock correctanThe estimated error required by the
algorithms previously described is based on the synchronization distanoeputed by the
distance procedure, as defined in the NTP specification. The recipradta tie weight of each
clock-offset contribution to the final clock correction. The following pseudo-code describes the
procedure.

begin clock-combining procedure

templ ~ O;
temp2 ~ O;
for (each peerremaining on the candidate list) [* scan all survivors */
N\ distance(peen);
1
femp peer.stratum x NTP.MAXDISPERSE + A’
templ — templ + temp; /* update weight and offset */
temp2 — temp2 + temp x peer.offset;
endif ;
- temp 2; [* compute final correction */
templ

end clock-combining procedure;

The value® is the final clock correction used by the local-clock procedure to adjust the clock.

Mills Page 85

RFC-1305 Network Time Protocol (Version 3) March 1992

7. Appendix G. Computer Clock Modelling and Analysis

A computer clock includes some kind of reference oscillator, which is stabilized by a quartz crystal

or some other means, such as the power grid. Usually, the clock includes a prescaler, which divides
the oscillator frequency to a standard value, such as 1 MHz or 100 Hz, and a counter, implemented
in hardware, software or some combination of the two, which can be read by the processor. For
systems intended to be synchronized to an external source of standard time, there must be some
means to correct the phase and frequency by occasional vernier adjustments produced by the
timekeeping protocol. Special care is necessary in all timekeeping system designs to insure that the
clock indications are always monotonically increasing; that is, system time never “runs backwards.”

7.1. Computer Clock Models

The simplest computer clock consists of a hardware latch which is set by overflow of a hardware
counter or prescaler, and causes a processor intertigit. drhe latch is reset when acknowledged

by the processor, which then increments the value of a software clock cdinetgahase of the

clock is adjusted by adding periodic corrections to the counter as necessary. The frequency of the
clock can be adjusted by changing the value of the increment itself, in order to make the clock run
faster or slower. The precision of this simple clock model is limited to the tick interval, usually in
the order of 10 ms; although in some systems the tick interval can be changed using a kernel variable.

This software clock model requires a processor interrupt on every tick, which can cause significant
overhead if the tick interval is small, say in the order less 1 ms with the newer RISC processors.
Thus, in order to achieve timekeeping precisions less than 1 ms, some kind of hardware assist is
required. A straightforward design consists of a voltage-controlled oscillator (VCO), in which the

64 64
Latch Read Latch Read
64 64
Clock Counter Clock Counter
| |
VCO Prescaler Osc Prescaler
{ Swallow
DAC Latch PD
10 10
I/O Bus I/O Bus
(a) (b)

Figure 10. Hardware Clock Models

Mills Page 86

RFC-1305 Network Time Protocol (Version 3) March 1992

frequency is controlled by a buffered, digital/analog converter (DAC). Under the assumption that
the VCO tolerance is 1D or 100 parts-per-million (ppm) (a reasonable value for inexpensive
crystals) and the precision required is 180(a reasonable goal for a RISC processor), the DAC
must include at least ten bits.

A design sketch of a computer clock constructed entirely of hardware logic components is shown
in Figure 10a. The clock is read by first pulsing the read signal, which latches the current value of
the clock counter, then adding the contents of the clock-counter latch and a 64-bit clock-offset
variable, which is maintained in processor memory. The clock phase is adjusted by adding a
correction to the clock-offset variable, while the clock frequency is adjusted by loading a correction

to the DAC latch. In principle, this clock model can be adapted to any precision by changing the

number of bits of the prescaler or clock counter or changing the VCO frequency. However, it does
not seem useful to reduce precision much below the minimum interrupt latency, which is in the low

microseconds for a modern RISC processor.

If it is not possible to vary the oscillator frequency, which might be the case if the oscillator is an
external frequency standard, a design such as shown in Figure 10b may be used. It includes a
fixed-frequency oscillator and prescaler which includes a dual-modwlalow countethat can

be operated in either divide-by-10 or divide-by-11 modes as controlled by a pulse produced by a
programmable divider (PD). The PD is loaded with a value representing the frequency offset. Each
time the divider overflows a pulse is produced which switches the swallow counter from the
divide-by-10 mode to the divide-by-11 mode and then lageln, which in effect “swhlws” or

deletes a single pulse of the prescaler pulse train.

The pulse train produced by the prescaler is controlled precisely over a small range by the contents
of the PD. If programmed to emit pulses at a low rate, relatively few pulses are swallowed per second
and the frequency counted is near the upper limit of its range; while, if programmedpaleest

at a high rate, relatively many pulses are swallowed and the frequency counted is near the lower
limit. Assuming some degree of freedom in the choice of oscillator frequency and prescaler ratios,
this design can compensate for a wide range of oscillator frequency tolerances.

In all of the above designs it is necessary to limit the amount of adjustment incorporated in any step
to insure that the system clock indications are always monotonically increasing. With the software
clock model this is assured as long as the increment is never negative. When the magnitude of a
phase adjustment exceeds the tick interval (as corrected for the frequency adjustment), itis necessary
to spread the adjustments over mulitple tick intervals. This strategy amounts to a deliberate
frequency offset sustained for an interval equal to the total number of ticks required and, in fact, is

a feature of the Unix clock model discussed below.

In the hardware clock models the same consideratipply/; however, in these designs the tick
interval amounts to a single pulse at the prescaler output, which may be in the order of 1 ms. In
order to avoid decreasing the indicated time when a negative phase correction occurs, it is necessary
to avoid modifying the clock-offset variable in processor memory and to confine all adjustments to
the VCO or prescaler. Thus, all phase adjustments must be performed by means of programmed
frequency adjustments in much the same way as with the software clock model described previously.

Mills Page 87

RFC-1305 Network Time Protocol (Version 3) March 1992

It is interesting to conjecture on the design of a processor assist that could provide all of the above
functions in a compact, general-purpose hardware interface. The interface might consist of a
multifunction timer chip such as the AMD 9513A, which includes five 16-bit counters, each with
programmable load and hold registers, plus an onboard crystal oscillator, prescaler and control
circuitry. A 48-bit hardware clock counter would utilize three of the 16-bit counters, while the fourth
would be used as the swallow counter and the fifth as the programmable divider. With the addition
of a programmable-array logic device and architecture-specific host interface, this compact design
could provide all the functions necessary for a comprehensive timekeeping system.

7.1.1. The Fuzzball Clock Model

The Fuzzball clock model uses a combination of hardware and software to provide precision timing
with a minimum of software and processor overhead. The model includes an oscillator, prescaler
and hardware counter; however, the oscillator frequency remairtaiebaisd the hardware counter
produces only a fraction of the total number of bits required by the clock counter. A typical design
uses a 64-bit software clock counter and a 16-bit hardware counter which counts the prescaler output.
A hardware-counter overflow causes the processor to increment the software counter at the bit

corresponding to the frequenc'x\}fg, whereN is the number of bits of the hardware counterfgnd

is the counted frequency at the prescaler output. The processor reads the clock counter by first
generating a read pulse, which latches the hardware counter, and then adding its contents, suitably
aligned, to the software counter.

The Fuzzball clock can be corrected in phase by adding a (signed) adjustment to the software clock
counter. In practice, this is done only when the local time is substantially different from the time
indicated by the clock and may violate the monotonicity requirement. Vernier phase adjustments
determined in normal system operation must be limited to no more than the period of the counted
frequency, which is 1 kHz for LSI-11 Fuzzballs. In the Fuzzball model these adjustments are
performed at intervals of 4 s, called #gustment intervalwhich provides a maximum frequency
adjustment range of 250 ppm. The adjustment opportunities are created using the interval-timer
facility, which is a feature of most operating systems and independent of the time-of-day clock.
However, if the counted frequency is increased from 1 kHz to 1 MHz for enhanced precision, the
adjustment frequency must be increased to 250 Hz, which substantially increases processor
overhead. A modified design suitable for high precision clocks is presented in the next section.

In some applications involving the Fuzzball model, an external pulse-per-second (pps) signal is
available from a reference source such as a cesium clock oreG&t#er. Such a signal generally
provides much higher accuracy than the serial character string produced by a radio timecode
receiver, typically in the low nanoseconds. In the Fuzzball model this signal is processed by an
interface which produces a hardware interrupt coincident with the arrival of the pps pulse. The
processor then reads the clock counter and computes the residual modulo 1 s of the clock counter.
This represents the local-clock error relative to the pps signal.

Assuming the seconds numbering of the clock counter has been determined by a reliable source,
such as a timecode receiver, the offset within the second is determined by the residual computed
above. In the NTP local-clock model the timecode receivélTd? esablishes the time to within

Mills Page 88

RFC-1305 Network Time Protocol (Version 3) March 1992

+128 ms, called the aperture, which guarantees the seconds numbering to within the second. Then,
the pps residual can be used directly to correct the oscillator, since the offset must be less than the
aperture for a correctly operating timecode receiver and pps signal.

The above technique has an inherent error equal to the latency of the interrupt system, which in
modern RISC processors is in the low tens of microseconds. It is possible to improve accuracy by
latching the hardware time-of-day counter directly by the pps pulse and then reading the counter in
the same way as usual. This requires additional circuitry to prioritize the pps signal relative to the
pulse generated by the program to latch the counter.

7.1.2. The Unix Clock Model

The Unix 4.3bsd clock model is based on two system settineofdayndadjtime together with

two kernel variablesck andtickadj. Thesettimeofdagall unceremoniously resets the kernel clock

to the value given, while tredjtimecall slews the kernel clock to a new value numerically equal

to the sum of the present time of day and the (signed) argument giveradijttmecall. In order

to understand the behavior of the Unix clock as controlled by the Fuzzball clock model described
above, it is helpful to explore the operationgdftimein more detail.

The Unix clock model assumes an interrupt produced by an onboard frequency source, such as the
clock counter and prescaler described previously, to deliver a pulse train in the 100-Hz range. In
priniciple, the power grid frequency can be used, although it is much less stable than a crystal
oscillator. Each interrupt causes an increment ctitkdo be added to the clock counter. The value

of the increment is chosen so that the clock counter, plus an initial offset established by the
settimeofdayall, is equal to the time of day in microseconds.

The Unix clock can actually run at three different rates, one correspondicig tehich is related
to the intrinsic frequency of the particular oscillator used as the clock source,tmhkerttickad;
and the third tdick - tickadj. Normally the rate corresponding tiok is used; but, ifidjtimeis
tick
tickadj
other of the two rates are used, depending on the stynTbk effect is to slew the clock to a new
value at a small, constant rate, rather than incorporate the adjustment all at once, which could cause
the clock to be set backward. With common valuégkf 10 ms andickadj= 5 ps, the maximum

. . —6
frequency adjustment rangeiéfit—imZiwlg or £500 ppm. Even larger ranges may be
10

called, the argumendtgiven is used to calculate an intersaF o during which one or the

required in the case of some workstations (e.g., SPARCstations) with extremely poor component
tolerances.

When precisions not less than about 1 ms are required, the Fuzzball clock model can be adapted to
the Unix model by software simulation, as describe8ention 5 of theNTP specification, and

calling adjtime at each adjustment interval. When precisions substantially better than this are
required, the hardware microsecond clock provided in some workstations can be used together with
certain refinements of the Fuzzball and Unix clock models. The particular design described below

Mills Page 89

RFC-1305 Network Time Protocol (Version 3) March 1992

+100 ppm ¢ +100pus

B
D

| |
Os | 05s 1 S 15s
o
-100 ppm

E -150pus

Figure 11. Clock Adjustment Process

is appropriate for a maximum oscillator frequency tolerance of 100 ppm (.01%), which can be
obtained using a relatively inexpensive quartz crystal oscillator, but is readily scalable for other
assumed tolerances.

The clock model requires the capability to slew the clock frequency over thetf®ppm with

an intrinsic oscillator frequency error as great®30 ppm. Figure 11 shows the timing relationships

at the extremes of the requirements envelope. Starting from an assumed offset of nominal zero and
an assumed error of +100 ppm at time O s, the line AC shows how the uncorrected offset grows

with time. Leto represent the adjustment interval arttle interval AB, in seconds, anditdie the

slew, or rate at which corrections are introduced, in ppm. For an accpeagfycation of100pus,
then

o< 100ps N 100ps _ r
~100ppm (r - 100 ppm r-100°

The line AE represents the extreme case where the clock is to be stE¥yggbm. Since the slew
must be complete at the end of the adjustment interval,

These relationships are satisfied only # 200ppmando < 2 s. Using = 300ppmfor conven-
ience,0 = 1.5 s and < 0.5 s. For the Unix clock model wititk = 10 ms, this results in the value
of tickadj= 3 ps.

One of the assumptions made in the Unix clock model is that the period of adjustment computed in
theadjtimecall must be completed before the next call is made. If not, this results in an error message
to the system log. However, in order to correct for the intrinsic frequency offset of the clock
oscillator, the NTP clock model requiradjtimeto be called at regular adjustment intervals ef

Mills Page 90

RFC-1305 Network Time Protocol (Version 3) March 1992

_PD Y Clock Filter S

% ﬁ Loop Filter —

Figure 12. NTP Phase-Lock Loop (PLL)oslel

Variable Description
vd phase detector output
Vs clock filter output
Ve loop filter output
Or reference phase
0o VCO phase
We PLL crossover frequency

Table 9. Notation Used in PLL Analysis

Parameter Value Description
o 272 VCO gain
o 22 adjustment interval
T 26 PLL time constant
T 23 clock-filter delay
Kt 222 frequency weight

Table 10. PLL Parameters

Using the algorithms described here and the architecture constants in the NTP specification, these
adjustments will always complete.

7.2. Mathematical Model of the NTP Logical Clock

The NTP logical clock can be represented by the feedback-control model shown in Figure 12. The
model consists of an adaptive-parameter, phase-lock loop (PLL), which continuously adjusts the
phase and frequency of an oscillator to compensate for its intrinsic jitter, wander and drift. A
mathematical analysis of this model developed along the lines of [SMI86] is presented in following
sections, along with a design example useful for implementation guidance in operating-systems

Mills Page 91

RFC-1305 Network Time Protocol (Version 3) March 1992

environments such as Unix and Fuzzball. Table 9 summarizes the quantities ordinarily treated as
variables in the model. By conventionjs used for internal loop variable® for phasew for
frequency and for time. Table 10 summarizes those quantities ordinarily fixed as constants in the
model. Note that these are all expressed as a power of two in order to simplify the implementation.

In Figure 12 the variabl6r represents the phase of the reference signabatite phase of the
voltage-controlled oscillator (VCO). The phase detector (PD) produces a wajtegmresenting
the phase differendgé — 6o . The clock filter functions as a tapped delay line, with the owput
taken at the tap selected by the clock-filter algorithm described in the péERicaton. The loop
filter, represented by the equations given below, produces a VCO correction wg)tagech
controls the oscillator frequency and thus the pBase

The PLL behavior is completely determined by its open-loop, Laplace transfer fua¢sjon the
sdomain. Since both frequency and phase corrections are required, an appropriate design consists
of a type-Il PLL, which is defined by the function

o

1S
G =—F51+),

= 550+)

whereox is the crossover frequency (also called loop gain)s the corner frequency (required

for loop gability) andt determines the PLL time constamtd thus the bandwidth. While this is a
first-order function and some improvement in phase noise might be gained from a higher-order

function, in practice the improvement is lost due to the effects of the clock-filter delay, as described
below.

The open-loop transfer functida(s) is constructed by breaking the loop at p@mn Figure 12

and computing the ratio of the output ph@g@) to the reference phabg(s). This function is the
product of the individual transfer functions for the phase detector, clock filter, loop filter and VCO.
The phase detector delivers a voltagé) = 6y(t), so its transfer function is simpkq(s) =

o(t)

expressed in V/rad. The VCO delivers a frequency chAonge = ave(t), wherea is the

VCO gain in rad/V-sec an@b(t) = a J’vc(t) dt. Its transfer function is the Laplace transform of the

integral,Fo(S) = 9 , expressed in rad/V. The clock filter contributes a stochastic delay due to the

clock-filter algorlthm; but, for present purposes, this delay will be assumed a cohssanits

transfer function is the Laplace transform of the detalg) = s LetF(s) be the transfer function
of the loop filter, which has yet to be determined. The open-loop transfer fuB¢taa the product
of these four individual transfer functions:

Mills Page 92

RFC-1305 Network Time Protocol (Version 3) March 1992

G =X (1+ (T;) = F(9FIF(SF(S) = 16 TSF(9) % .

u (
%8

For the moment, assume that the prodieis small, so thae "S= 1. Making the following
substitutions,

2_0 _Kg
we = Ks and wz= Ke
and rearranging yields
1 1
F(s)=—"+ ,
KgT Kit’s

which corresponds to a constant term plus an integrating term scaled by the PLL time tonstant
This form is convenient for implementation as a sampled-data system, as described later.

With the parameter values given in Table 10, the Bode plot of the open-loop transfer function
G(s) consists of a —12 dB/octave line which intersects the 0-dB baseddneéflz rad/s, together

with a +6 dB/octave line at the corner frequeagy= 2% rad/s. The damping factgr= 20();2 =2

suggests the PLL will be stable and have a large phase margin together with a low overshoot.
However, if the clock-filter delay is not small compared to the loop delay, which is approximately

equal towic, the aboveanalysis becomes unrelialdaed the loop can become unstable. With the
values determined as aboVes ordinarily small enough to be neglected.
Assuming the output is taken\gf the closed-loop transfer functiét(s) is

_ V(9 _Fa(9e "
o9 1+G()

H(s)

If only the relative response is needed and the clock-filter delay can be nedié¢stedn be written

1 &
H(S)_1+G(S)_S2 00% 2
Tt 2

For some input functiol(s) the output functioh(s)H(s) can be inverted to find the time response.
Using a unit-step inpu{(s) 2% and the values determined as above, This yields a PLL risetime of

about 52 minutes, a maximum overshoot of about 4.8 percaboutl.7 hours and settling time
to within one percent of the initial offset in about 8.7 hours.

Mills Page 93

RFC-1305 Network Time Protocol (Version 3) March 1992

7.3. Parameter Management

A very important feature of the NTP PLL design is the ability to adapt its behavior to match the
prevailing stability of the local oscillator and transmission conditions in the network. This is done
using thea andt parameters shown in Table 10. Mechanisms for doing this are described in
following sections.

7.4. Adjusting VCO Gain (a)

Thea parameter is determined by the maximum frequency tolerance of the local oscillator and the
maximum jitter requirements of the timekeeping system. This parameter is usually an architecture
constant and fixed during system operation. In the implementation model described below, the
reciprocal ofa, called the adjustment interva) determines the time between corrections of the

local clock, and thus the valuef The value ob can be determined by the following procedure.

The maximum frequency tolerance for board-mounted, uncompensated quartz-crystal oscillators is
probably in the range of 1‘b(100 ppm). Many if not most Internet timekeeping systems can tolerate
jitter to at least the order of the intrinsic local-clock resolution, cglkedisionin the NTP
specificaton, which is commonly in the range from one to 20 ms. Assumil'”?gs]@eak-to-peak

as the most demanding case, the interval between clock corrections must be no more than

10°
2x10%
of the Unix operating-system kernel. However, in order to support future anticipated improvements

in accuracy possible with faster workstations, it may be useful to decréass little as one-tenth
the present value.

o= =5 sec. For the NTP reference modet 4 sec in order to allow for known features

Note that ifo is changed, it is necessary to adjust the parami¢tensdKg in order to retain the
same loop bandwidth; in particular, the sasgeandwy. Sincea varies as the reciprocal of if
o is changed to something other th&nas in Table 10, it is necessary to divide dGthndKg by

o .
2 to obtain the new values.

7.5. Adjusting PLL Bandwidth (1)

A key feature of the type-Il PLL design is its capability to compensate for the intrinsic frequency
errors of the local oscillator. This requires a initial period of adaptation in order to refine the

frequency estimate (see later sections of this appendix)t paemeter determines the PLL time
constant and thus the loop bandwidth, which is approximately eq‘(clgl When operated with a

relatively large bandwidth (smal), as in the analysis above, the PLL adapts quickly to changes in
the input reference signal, but has poor long term stability. Thus, it is possible to accumulate
substantial errors if the system is deprived of the reference signal for an extended period. When
operated with a relatively small bandwidth (largethe PLL adapts slowly to changes in the input

Mills Page 94

RFC-1305 Network Time Protocol (Version 3) March 1992

Variable Value Description
U update interval
p poll interval
f frequency error
g phase error
h compliance
Kh 213 compliance weight
Ks 2t compliance maximum
Kt 2t compliance multiplier
Ku 20 poll-interval factor

Table 11. Notation Used in PLL Analysis

reference signal, and may even fail to lock onto it. Assuming the frequency estimate has stabilized,
it is possible for the PLL to coast for an extended period without external corrections and without
accumulating significant error.

In order to achieve the best performance without requiring individual tailoring of the loop
bandwidth, it is necessary to compute each valudated on the measured values of offset, delay

and dispersion, as produced by the NTP protocol itself. The traditional way of doing this in precision
timekeeping systems based on cesium clocks, is to refatde Allan variance, which is defined

as the mean of the first-order differences of sequential samples measured during a specified interval
T,

N-1
STOR 2(,\,1_1)21 [¥G + 2 - Y12,

wherey is the fractional frequency measured witlpes to the local timescadadN is the number
of samples.

In the NTP local-clock model the Allan variance (called the compliande, Table 11) is
approximated on a continuous basis by exponentially averaging the first-order differences of the
offset samples using an empirically determined averaging constant. Using somewhat ad-hoc
mapping functions determined from simulation and experience, the compliance is manipulated to
produce the loop time constant and update interval.

7.6. The NTP Clock Model

The PLL behavior can also be described by a set of recurrence equations, which depend upon several
variables and constants. The variables and parameters used in these equations are shown in Tables
9, 10 and 11. Note the use of powers of two, which facilitates implementation using arithmetic shifts
and avoids the requirement for a multiply/divide capability.

Mills Page 95

RFC-1305 Network Time Protocol (Version 3) March 1992

t(i - 1) t(i) t(i + 1)
10 u(i + 1) time

Figure 13. Timing Intervals

A capsule overview of the design may be helpful in understanding how it operates. The logical
clock is continuously adjusted in small increments at fixed intervats dihe increments are
determined while updating the variables shown in Tables 9lanavhich are computed from
received NTP messages as described in the NTP specification. Updates computed from these

messages occur at discrete times as each is received. The intdvgblseen updates are variable
and can range up to about 17 minutes. As part of update processing the corhpaimreputed
and used to adjust the PLL time constanFinally, the update intervg for transmitted NTP
messages is determined as a fixed multipte of

Updates are numbered from zero, with those in the neighborhood tf tipelate shown in Figure
13. All variables are initialized at= 0 to zero, except the time constafd) =1, poll interval
H(0) =1 (from Table 10) and compliant€0) = Ks. After an intervalu(i) (i > 0) from the previous
update thath update arrives at timigi) including the time offsets(i). Then, after an interval
p(i + 1) thei+1th update arrives at timi@ + 1) including the time offsetg(i + 1). When the update
vs(i) is received, the frequency erif¢ir+ 1) and phase err@(i + 1) are computed:

_ Vs(i)
(i)
Note that these computations depend on the value of the time carfgtamd poll intervaju(i)

previously computed from thelth update. Then, the time constant for the next interval is computed
from the current value of the compliarit@

M+D:KD+Mm§D,gﬁ+l
|

T(

(i + 1) = max{Ks - [h(i)], 1] .
Next, using the new value of calledt’ to avoid confusion, the poll interval is computed
p(l + 1) =Kut'.

Finally, the complianchi(i + 1) is recomputed for use in tielth update:

m+n:mn+““$:mm.

The factort’ in the above has the effect of adjusting the bandwidth of the PLL as a function of
compliance. When the compliance has been low over some relatively long peisodcreased
and the bandwidth is decreased. In this mode small timing fluctuations due to jitter in the network

Mills Page 96

RFC-1305 Network Time Protocol (Version 3) March 1992

are suppressed and the PLL attains the most accurate frequency estimate. On the other hand, if the
compliance becomes high due to greatly increased jitter or a systematic frequency’ afset,
decreased and the bandwidth is increased. In this mode the PLL is most adaptive to transients which
can occur due to reboot of the system or a major timing error. In order to maintain optimum stability,

the poll intervalp is varied directly witft.

A model suitable for simulation and parameter refinement can be constructed from the above
recurrence relations. It is convenient to set the temporary vaaiatayg + 1). At each adjustment

f(i + 1)
Kt

interval o the quantityi + iIs added to the local-clock phase and the quagtityis
Kg g

. . [.
subtracted frona. For convenience, lat be the greatest mtegerji%ﬁ); that is, the number of

adjustments that occur in thth interval. Thus, at the end of thh interval just before thig-1th
update, the VCO control voltage is:

V(i +1):vc(i)+[1—(1—Klg)”] ofi + 1) +Kﬂff(i +1).

Detailed simulation of the NTP PLL with the values specified in Tables 9, 10 and 11 and the clock
filter described in the NTP specification results in the following characteristics: For a 100-ms phase
change the loop reaches zero error in 39 minutes, overshoots 7 ms at 54 minutes and settles to less
than 1 ms in about six hours. For a 50-ppm frequency change the loop reaches 1 ppm in about 16
hours and 0.1 ppm in about 26 hours. When the magnitude of correction exceeds a few milliseconds
or a few ppm for more than a few updates, the compliance begins to increase, which causes the loop
time constant and update interval to decrease. When the magnitude of correction falls below about
0.1 ppm for a few hours, the compliance begins to decrease, which causes the loop time constant
and update interval to increase. The effect is to provide a broad capture range exceeding 4 s per day,
yet the capability to resolve oscillator skew well below 1 ms per day. These characteristics are
appropriate for typical crystal-controlled oscillators with or without temperature compensation or
oven control.

Mills Page 97

RFC-1305 Network Time Protocol (Version 3) March 1992

8. Appendix H. Analysis of Errors and Correctness Principles
8.1. Introduction

This appendix contains an analysis ofoesrarising in the generation and processing of NTP
timestamps and the determination of delays and offsets. It establishes error bounds as a function of
measured roundtrip delay and dispersion to the root (primary reference source) of the synchroniza-
tion subnet. It also discusses correctness assertions about these error bounds and the time-transfer,
filtering and selection algorithms used in NTP.

The notatiorw =[u, V] in the following describes the interval in whiahs the lower limit and

the upper limit, inclusive. Thus,= min(w) < v=maxWw), and for scalaa, w+a=[u+a,Vv+a].

Table 12 shows a summary of other notation used in the analysis. The notati@esignates the
(infinite) average ok, which is usually approximated by an exponential average, while the notation

X designates an estimator far The lower-case Greek lettefs & ande are used to designate
measurement data for the local clock fwear clock, while the upper-case Greek let&rA and

E are used to designate measurement data for the local clock relative to the primary reference source
at the root of the synchronization subnet. Exceptions will be noted as they arise.

8.2. Timestamp Errors

The standard second (1 s) is defined as “9,192,631,770 periods of the radiation corresponding to
the transition between the two hyperfine levels of the ground state of the cesium-133 atom”
[ALL74b], which implies a granularity of about 1.1x1Bs. Other intervals can be determined as
rational multiples of 1 s. While NTP time has an inherent resolution of about #3x100cal

clocks ordinarily have resolutions much worse than this, so the inherent error in resolving NTP time
relative to the 1 s can be neglected.

Variable Description
r reading error
P max reading error
f frequency error
) max frequency error
0,0 clock offset
5, A roundtrip delay
e E error/dispersion
t time
T time interval
T NTP timestamp
S clock divider increment

Table 12. Notation Used in Error Analysis

Mills Page 98

RFC-1305 Network Time Protocol (Version 3) March 1992

In this analysis the local clock is represented by a counter/divider which increments at intervals of

s seconds and is driven by an oscillator which operates at freqf@n%yfor some integen. A

timestampT(t) is determined by reading the clock at an arbitrary tiffiee argument will be

usually omitted for conciseness). Strictly speaksig, not knownexactly,but can be assumed
bounded from above by the maximum reading grdihe reading error itself is represented by the
random variable bounded by the intervdt p, 0], wherep depends on the particular clock
implementation. Since the intervals between reading the same clock are almost always independent
of and much larger thag successive readings can be considered independent and identically
distributed. The frequency error of the clock oscillator is represented by the random \fariable
bounded by the intervdt ¢, ¢], whered represents the maximum frequency tolerance of the
oscillator throughout its service life. Whiléor a particular clock is a random variable with respect

to the population of all clocks, for any one clock it ordinarily changes only slowly with time and
can usually be assumed a constant for that clock. Thus, an NTP timestamp can be represented by
the random variablé&:

T=t+r+ft,

wheret represents a clock readingyepresents the time interval since this reading and minor
approximations inherent in the measurementarie neglected.

In order to assess the nature and expected magnitude of timestamp errors and the calculations based
on them, it is useful to examine the characteristics of the probability density functiong:(df)

and pr(X) for r andf respectively. Assuming the clock reading and counting processes are
independent, the pdf foris uniform over the intervdl p, 0]. With conventional manufacturing
processes and temperature variations the pdfdan be approximated by a truncated, zero-mean
Gaussian distribution with standard deviatmnin conventional manufacturing processess
maneuvered so that the fraction of samples rejected outside the iftepydl is acceptable. The

pdf for the total timestamp errefx) is thus the sum of threandf contributions, computed as

09 = [Pr(Yprx -

which appears as a bell-shaped curve, symmetric ab%lamd bounded by the interval

[min(r) + min(ft), maxr) + maxft)] =[- p — ¢T, ¢1] .
Sincef changes only slowly over time for any single clock,

€ = [min(r) + ft, maxr) +ft] = [-p, O] + T,

Mills Page 99

RFC-1305 Network Time Protocol (Version 3) March 1992

T2 T3
. 6o «J \
B
T4

T1
Figure 14. Measuring Delay and Offset

wheree without argument designates the interval afd designates the pdf. In the following
development subscripts will be used on various quantities to indicate to which entity or timestamp
the quantity applies. Occasionalgywill be used to designate an absolute maximum error, rather
than the interval, but the distinction will be clear from context.

8.3. Measurement Errors

In NTP the roundtrip delay and clock offset between pgersA andB are determined by a
procedure in which timestamps are exchanged via the network paths between them. The procedure
involves the four most recent timestamps numbered as shown in Figure 14, wBgreginesents

the true clock offset of pe&trelative to peeA. TheT1 andTs timestamps are determined relative

to theA clock, while thelT2 andT3 timestamps are determined relative toBlodock. The measured

roundtrip delayd and clock offse of B relative toA are given by

(T2—T1) + (T3 - Ta) .

0=(T4—-T1)-(T3—-T2) and 6= 5

The errors inherent in determining the timestampd2, T3 andT4 are, respectively,
€1=[-pA 0], e2=[-pB, 0], e3=[-pB, 0] +fB(T3 —T2), €4=[-pA, O] +fa(Ta—T1).

For specific peer andB, wherefa andfg can be considered constants, the interval containing the
maximum error inherent in determinidds given by

[min(e4) — maxge1) — maxez) + min(e2), maxe4) — min(e1) — min(e3) + maxez)]
=[-pAa-pB, PA+pB] +fA(Ta—T1) — (T3 —T2) .
In the NTP local clock model the residual frequency efppasidfg are minimized through the use
of a type-Il phase-lock loop (PLL). Under most conditions these errors will be small and can be
ignored. The pdf for the remaining errors is symmetric, sodthatd> is an unbiased maximum-
likelihood estimator for the true roundtrip delay, independent of the particular valpasaofl

PB.

However, in order to reliably bound the errors under all conditions of component variation and
operational regimes, the design of the PLL and the tolerance of its intrinsic oscillator must be

Mills Page 100

RFC-1305 Network Time Protocol (Version 3) March 1992

controlled so that it is not possible under any circumstancef for fg to exceed the bounds
[- dA dA] Or [- B, ¢B], respectively. Settingd = max(pa, pB) for convenience, the absolute
maximum errogg inherent in determining roundtrip delays given by

e=p+¢A(Ta—Ti) +¢B(T3-T2),
neglecting residuals.

As in the case fod, wherefa andfg can be considered constants, the interval containing the
maximum error inherent in determinifds given by

[min(e2) — maxe1) + min(e3) — maxe4), maxe2) — min(e1) + maxes) — min(e4)]
2

L fB(T3 — T2) —fa(Ta —T)
=[-pB, pa] + 5 :

Under most conditions the errors duéd@ndfg will be small and can be ignored pik = pg = p;
that is, if both the/z\A andB clocks have the same resolution, the pdf for the remaining errors is
symmetric, so thad = <6> is an unbiased maximume-likelihood estimator for the true clock offset

B0, independent of the particular valuepoif pa # pB, <6> is not an unbiased estimator; however,
the bias error is in the order of

PA~PB
5

and can usually be neglected.

Again settingp = maxpa, pB) for convenience, the absolute maximum emgrinherent in
determining clock offsef is given by

_P+O0A(T4—T1) + ¢B(T3 - T2)
€= 2 .

8.4. Network Errors

In practice, errors due to stochastic network delays usually dominate. In general, it is not possible
to characterize network delays as a stationary random process, since network queues can grow and
shrink in chaotic fashion and arriving customer traffic is frequently bursty. However, it is a simple
exercise to calculate bounds on clock offseors as a function of measured delay. Let
T2-Ti=aandT3-T4=Dh. Then,

a+b

d=a-b and 6= 5

The true offset oB relative toA is calleddp in Figure 14. Lek denote the actual delay between the
departure of a message frévmand its arrival aB. Thereforex + 8o = T2 — T1 = a. Sincex must be

Mills Page 101

RFC-1305 Network Time Protocol (Version 3) March 1992

positive in our universes=a—0p= 0, which require®p < a. A similar argument requires that
b < B, so surelyb < Bp < a. This inequality can also be expressed

a+b a-b
= — <

<a+b+a—b_
2 2~ B

b Bo=—5 2

a,
which is equivalent to
0 - 2 <00<6 +2 .

In the previous section bounds on delay and offset errors were determined. Thus, the inequality can
be written

+ €5
2)

€ o)
6seose+£e+

o+
0—-¢ep-

whereegg is the maximum offset error ad is the maximum delay error derived previously. The
guantity

&
g:ge+§:p+¢A(T4—T1)+¢B(T3—T2),

called the peer dispersion, defines the maximum error in the inequality. Thus, the correctness
intervall can be defined as the interval

o) o
|—[e—§—£,e+§+ﬁ],

in which the clock offseC =6 is the midpoint. By construction, the true off€et must lie
somewhere in this interval.

8.5. Inherited Errors

As described in the NTRpscificaton, the NTP time server maintains the local cl@kogether

with the root roundtrip delafk and root dispersioh relative to the primary reference source at the

root of the synchronization subnet. The values of these variables are either included in each update
message or can be derived as described in thesp@d#ication. In addition, the protocol exchange

and clock-filter algorithm provide the clock off€and roundtrip dela§ of the local clock relative

to the peer clock, as well as i@rs error accumulations as described below. The following
discussion establishes how errors inherent in the time-transfer process accumulate within the subnet
and contribute to the overall error budget at each server.

An NTP measurement update includes three parts: clock 6ffsmindtrip delay) and maximum
error or dispersios of the local clock relative to a peer clock. In case of a primary clock update,
these values are usually all zero, althoaighn be tailored to reflect thpexcfied maximum error

Mills Page 102

RFC-1305 Network Time Protocol (Version 3) March 1992

Packet Variables Filter Peer Variables System Variables
pkt.- peer.- SYS.-
VI(T2-T1) +(T3-Tg)) — 6 — 0=6 clock offset =0

(Ta—-T1) - (Tz3-T2) — Oi — 0=19 @— rootdelayA =& + A'

p+¢(Ta-Ti) — g +OTi — e=¢gi+¢eg rootdispersionE =
e+dT+er+10 +E

rootdelayA’ = A

rootdispersion
E=E+p+¢rt

Figure 15. Error Accumulations

of the primary reference source itself. In other c&sasdd are calculated directly from the four

most recent timestamps, as described in the NTP specification. The disgensatindes the
following contributions:

1.

Each time the local clock is read a reading error is incurred due to the finite granularity or
precision of the implementation. This is called the measurement dispgrsion

Once an offset is determined, an error due to frequency offset or skew accumulates with time.
This is called the skew dispersidyt, where¢ represents the skew-rate constant

(NNTTpﬁhlfAﬁ\);iziWin the NTP specification) ardis the interval since the dispersion was last

updated.

When a series of offsets are determined at regular intervals and accumulated in a window of
samples, as in the NTP clock-filter algorithm, the (estimated) additional error due to offset
sample variance is called the filter dispersign

When a number of peers are considered for synchronization and two or more are determined to
be correctly synchronized to a primary reference source, as in the NTP clock-selection algorithm,
the (estimated) additional error due to offset sample variance is called the selection dispersion

€z.

Figure 15 shows how these errors accumulate in the ordinary course of NTP processing. Received
messages from a single peer are represented Ipatket variables. From the four most recent
timestampd1, T2, T3 andT4 the clock offset and roundtrip delay sample for the local clock relative

to the peer clock are calculated directly. Included in the message are the root roundtdpateday

root dispersiorE’ of the peer itself;, however, before sending, the peer adds the measurement

Mills Page 103

RFC-1305 Network Time Protocol (Version 3) March 1992

dispersiorp and skew dispersiapr, where these quantities are determined by the peariarle
interval according to the peer clock since its clock was last updated.

The NTP clock-filter procedure saves the most recent saf@ledd; in the clock filter as described

in the NTP specification. The quantitigandd characterize the local clock maximum reading error
and frequency error, respectively. Each sample includes the dispgrsipr ¢(T4 — T1), which

is set upon arrival. Each time a new sample arrives all samples int¢énexfd updated with the
skew dispersioti, whereti is the interval since the last sample arrived, as recorded in the variable
peer.update. The clock-filter algorithm determines the selected clock@®fsesr.offset), together

with the associated roundtrip delaypeer.delay) and filter dispersi@s, which is added to the
associated sample dispersmmno form the peer dispersi@npeer.dispersion).

The NTP clock-selection procedure selects a single peer to become the synchronization source as
described in the NTP specification. The operation of the algorithm determines the final clock offset
© (local clock), roundtrip delas (sys.rootdelay) and dispersi&nsys.rootdispersion) relative to

the root of the synchronization subnet, as shown in Figure 15. Note the inclusion of the selected
peer dispersion and skew accumulation since the dispersion was last updated, as well as the select
dispersiorez computed by the clock-select algorithm itself. Also, note that, in order to preserve
overall synchronization subnet stability, the final clock of&et in fact determined from the offset

of the local clock relative to the peer clock, rather than the root of the subnet. Finally, note that the
packet variableA’ andE' are in fact determined from the latest message received, not at the precise
time the offset selected by the clock-filter algorithm was determined. Minor errors arising due to
these simplifications will be ignored. Thus, the total dispersion accumulation relative to the root of
the synchronization subnet is

E=e+¢t+es+|O+E,

wheret is the time since the peer variables were last update®aigdthe initial absolute error in
setting the local clock.

The three values of clock offset, roundtrip delay and dispersion are all adttiit/es, if©;, Aj and
Ei represent the values at peeelative to the root of the synchronization subnet, the values

Oj() =Oi + (1), Aj()=Ai+9j, E(t) =Ei+ei+eg(t),

represent the clock offset, roundtrip delay and dispersion of péémet. The time dependence

of 6j(t) andgj(t) represents the local-clock correction and dispersion accumulated since the last
update was received from pegwhile the ternej represents the dispersion accumulated byipeer
from the time its clock was last set until the latest update was sent tp Neee that, while the

offset of the local clock relative to the peer clock can be determined directly, the offset relative to
the root of the synchronization subnet is not directly determinable, except on a probabilistic basis
and within the bounds established in this and the previous section.

Mills Page 104

RFC-1305 Network Time Protocol (Version 3) March 1992

Correct DTS

Correct NTP

Figure 16. Confidence Intervals and Intersections

The NTP synchronization subnet topology is that of a tree rooted at the primary server(s). Thus,
there is an unbroken path from every time server to the primary reference source. Accuracy and
stability are proportional to synchronization distancelefined as

A
N=E+ E .
The selection algorithm favors the minimum-distance paths and thus maximizes accuracy and
stability. Since®@o, Ao and Eg are all zero, the sum of the clock offsets, roundtrip delays and
dispersions of each server along the minimum-distance path from the root of the synchronization
subnet to a given servieare the clock offsédi, roundtrip delayhi and dispersiok; inherited by
and characteristic of that server.

8.6. Correctn ess Principles

In order to minimize the occurrence of errors due to incorrect clocks and maximize the reliability
of the service, NTP relies on multipteeers and disjoint peer paths whenever possible. In the
previous development it was shown that, if the primary reference source at the root of the
synchronization subnet is in fact a correct clock, then the true 8ffselative to that clock must

be contained in the interval

[©@-A0+A] E[O—E—Q,O+E+g] :
When a number of clocks are involved, it is not clear beforehand which are correct and which are
not; however, as cited previously, there are a number of techniques based on clustering and filtering
principles which yield a high probability of detecting and discarding incorrect clocks. Marzullo and
Owicki [MARS85] devised an algorithm designed to find an appropriate interval containing the
correct time given the confidence intervalsnotlocks, of which no more thénare considered
incorrect. The algorithm finds the smallest single intersection containing all points in at least
m - f of the given confidence intervals.

Figure 16 illustrates the operation of this algorithm with a scenario involving four doéksC
andD, with the calculated time (shown by thesymbol) and confidence interval shown for each.

Mills Page 105

RFC-1305 Network Time Protocol (Version 3) March 1992

These intervals are computed as described in previous sections of this appendix. For instance, any
point in theA interval may possibly represent the actual time associated with that clock. If all clocks
are correct, there must exist a nonempty ietgran including alldur intervals; but, clearly this is

not the case in this scenario. However, if it is assumed that one of the clocks is incorr&z}, (e.g.,

it might be possible to find a nonempty intersection including all but one of the intervals. If not, it
might be possible to find a nonempty intersection including all but two of the intervals and so on.

The algorithm proposed by DEC for use in the Digital Time Service [DEC89] is based on these
principles. For the scenario illustrated in Figliée it computes the interval fan= 4 clocks, three

of which turn out to be correct and one not. The low endpoint of thegoters isfound as follows.

A variablef is initialized with the number of presumed incorrect clocks, in this case zero, and a
counter is initialized at zero. Starting from the lowest endpoint, the algorithm increregréach

low endpoint, decrementsat each high endpoint, and stops whemm - f. The counter records

the number of intersections and thus the number of presumed correct clockeXanpie the

counter never reaches four, fsig increased by one and the procedure is repeated. This time the
counter reaches three and stops at the low endpoint of the intersection marked DTS. The upper
endpoint of this intersection is found using a similar procedure.

This algorithm will always find the smallest single intersection containing points in at least one of
the originalm - f confidence intervals as long as the number of incorrect clocks is less than half the
m
2
intervals; moreover, some or all of the calculated times (such @dridfigure 16) may lie outside

the intersection. In the NTP clock-selection procedure the above algorithm is modified so as to
include at leastn— f of the calculated times. In the modified algorithm a counteiinitialized at

zero. When starting from either endpoeis incremented at each calculated time; however, neither

f norcare reset between finding the low and high endpoints of the intersection. If after both endpoints
have been found >f, f is increased by one and the entire procedure is repeated. The revised

algorithm finds the smallest intersectiomof- f intervals containing at least— f calculated times.

As shown in Figure 16, the modified algorithm produces the intersection marked NifiElathicig

the calculated time fdC.

totalf <. However, some points in the intersection may not be containedrir-dlbf the original

In the NTP clock-selection procedure the peers represented by the clocks in the final intersection,
called the survivors, are placed on a candidate list. In the remaining steps of the procedure one or
more survivors may be discarded from the list as outlyers. Finally, the clock-combining algorithm
described in Appendix F provides a weighted average of the remaining survivors based on
synchronization distance. The resultegifimates represent a synthetic peer with offset between the
maximum and minimum offsets of the remaining survivors. This defines the clock@®@ffseal

roundtrip total delayA and total dispersida which the local clock inherits. In principle, these values
could be included in the time interface provided by the operating system to the user, so that the user
could evaluate the quality of indications directly.

Mills Page 106

RFC-1305 Network Time Protocol (Version 3) March 1992

9. Appendix I. Selected C-Language Program Listings

Following are C-language program listings of selected algorithms described in thpé¢ies-

tion. While these have been tested as part of a software simulator using data collected in regular
operation, they do not necessarily represent a standard implementation, since many other imple-
mentations could in principle conform to the NTP specification.

9.1. Common Definitions and Variables

The following definitions are common to all procedures and peers.

#define NMAX 40 /* max clocks */

#define FMAX 8 [* max filter size */
#define HZ 1000 [* clock rate */

#define MAXSTRAT 15 [* max stratum */

#define MAXSKEW 1 /* max skew error per MAXAGE */
#define MAXAGE 86400 /* max clock age */
#define MAXDISP 16 [* max dispersion */
#define MINCLOCK 3 /* min survivor clocks */
#define MAXCLOCK 10 /* min candidate clocks */
#define FILTER .5 [* filter weight */

#define SELECT .75 [* select weight */

The folowing are peer state variables (one set for each peer).

double filtp[NMAX][FMAX]; /* offset samples */
double fildp[NMAX][FMAX]; /* delay samples */
double filep[NMAX][FMAX]; /* dispersion samples */
double tp[NMAX]; [* offset */

double dp[NMAX]; [* delay */

double ep[NMAX]; [* dispersion */

double rp[NMAX]; /* last offset */

double utc[NMAX]; /* update tstamp */

int sSttNMAX]; [* stratum */

The following are system state variables and tonts.

double rho = 1./HZ; /* max reading error */
double phi = MAXSKEW/MAXAGE; /* max skew rate */

double bot, top; /* confidence interval limits */
double theta; [* clock offset */

double delta; [* roundtrip delay */

double epsil; [* dispersion */

double tstamp; [* current time */

int source; /* clock source */

int n1, n2; /* min/max clock ids */

Mills Page 107

RFC-1305 Network Time Protocol (Version 3) March 1992

The folowing are temporary lists shared by all peers and procedures.

double list[3*NMAX]; [* temporary list*/
int index[3*NMAX]; [* index list */

9.2. Clock-Filter Algorithm

/*

clock filter algorithm

n = peer id, offset = sample offset, delay = sample delay, disp = sample dispersion;
computes tp[n] = peer offset, dp[n] = peer delay, ep[n] = peer dispersion

*/

void filter(int n, double offset, double delay, double disp) {

Mills

inti, j, k, m; [* int temps */
double x; /* double temps */
for (i = FMAX-1;i>0; i--) { [* update/shift filter */

filtp[n][i] = filtp[n][i—1]; fildp[n][i] = fildp[n][i—1];
filep[n][i] = filep[n][i-1]+phi*(tstamp—utc[n]);
}

utc[n] = tstamp; filtp[n][0] = offset—tp[0]; fildp[n][O] = delay; filep[n][O] = disp;
m = 0; /[* construct/sort temp list */
for (i=0; i < FMAX; i++) {
if (filep[n][i] >= MAXDISP) continue;
listfm] = filep[n][i]+fildp[n][i}/2.; index[m] = i;
for j=0;) <m;j++){
if (list[j] > listim]) {
x = list[j]; k = index[j]; list[j] = listfm]; index[j] = index[m];
listfm] = x; index[m] = k;

}
}
m = m+1;
}
if (m <= 0) ep[n] = MAXDISP; [* compute filter dispersion */
else {
ep[n] = 0;

for (i = FMAX-1;i>=0; i- -) {
if (i < m) x = fabs(filtp[n][index[O]]-filtp[n][index[i]]);
else x = MAXDISP;
ep[n] = FILTER*(ep[n]+x);
}
i = index|0]; ep[n] = ep[n]+filep[n][i]; tp[n] = filtp[n][i]; dp[n] = fildp[n][i];

Page 108

RFC-1305 Network Time Protocol (Version 3) March 1992

}

return;

}

9.3. Interval Intersection Algorithm
/*
compute interval intersection

computes bot = lowpoint, top = highpoint (bot > top if no intersection)
*/

void dts() {
int f; /* intersection ceiling */
int end; /* endpoint counter */
int clk; /* falseticker counter */
inti, j, k, m, n; [* int temps */
double x, y; [* double temps */
m=0;i=0;

for (n = n1; n <= n2; n++) {/* construct endpoint list */
if (ep[n] >= MAXDISP) continue;
m=m+1;
list[i] = tp[n]—dist(n); index[i] = —1; /* lowpoint */
for G=0;) <i; j++) {
if ((list[j] > list[i]) || ((list[j] == list[i]) && (index[j] > index][i]))) {
x = list[j]; k = index([j]; list[j] = list[i]; index][j] = index]i];
list[i] = x; index][i] = k;

}

i =i+1;

list[i] = tp[n]; index]i] = O; /* midpoint */
for(=0;j<i; j++) {
if ((list[j] > list[i]) || ((list[j] == list[i]) && (index[j] > index]i]))) {
x = list[j]; k = index][j]; list[j] = list[i]; index[j] = index][i];
list[i] = x; index][i] = k;
}
}

i =i+1;
list[i] = tp[n]+dist(n); index[i] = 1; /* highpoint */
for (j=0;]<i; j++) {
if ((list[j] > list[i]) || ((list[j] == list[i]) && (index[j] > index][i]))) {
x = list[j]; k = index[j]; list[j] = list[i]; index[j] = index([i];

Mills Page 109

RFC-1305 Network Time Protocol (Version 3) March 1992

list[i] = x; index[i] = k;

}
)
1 =1+1;
}
if (m <= 0) return;
for (f = 0; f < m/2; f++) { [* find intersection */
clk =0; end = 0; * lowpoint */

for (j=0;]<i;j++) {
end = end-index([j]; bot = list[j];
if (end >= (m-f)) break;
if (index[j] == 0) clk = clk+1;
}
end =0; /* highpoint */
for j=i-1;j>=0;j--){
end = end+index[j]; top = list[j];
if (end >= (m-f)) break;
if (index[j] == 0) clk = clk+1;
}
if (clk <=f) break;
}

return;

}
9.4. Clock-Selection Algorithm

/*
select best subset of clocks in candidate list
bot = lowpoint, top = highpoint; constructs index = candidate index list,
m = number of candidates, source = clock source,

theta = clock offset, delta = roundtrip delay, epsil = dispersion
*/

void select() {

double xi; [* max select dispersion */
double eps; /* min peer dispersion */
inti, j, k, n; [* int temps */

double x, vy, z; /* double temps */

m = 0;

for (n = n1; n <= n2; n++) {/* make/sort candidate list */
if ((st[n] > 0) && (st[n] < MAXSTRAT) && (tp[n] >= bot) && (tp[n] <= top)) {
listfm] = MAXDISP*st[n]+dist(n); index[m] = n;

Mills Page 110

RFC-1305 Network Time Protocol (Version 3) March 1992

for =0;j<m;j++) {
if (list[j] > listim]) {
x = list[j]; k = index[j]; list[j] = listfm]; index[j] = index[m];
listfm] = x; index[m] = k;

}
m = m+1;
}
}
if (m<=0){
source = 0; return;
}

if (m > MAXCLOCK) m = MAXCLOCK;

while (1) { [* cast out falsetickers */
xi = 0.; eps = MAXDISP;
for = 0;j<m;j++){
x=0.;
for (k = m-1; k >= 0; k—-)
x = SELECT*(x+fabs(tp[index[j]]-tp[index[K]]));

if (x> xi) {

Xi=x;1=]; [* max(xi) */

}
x = ep[index[j]]+phi*(tstamp—utc[index][j]]);
if (X <eps) eps = x; [* min(eps) */

}
if (xi <=eps) || (m <= MINCLOCK)) break;
if (index[i] == source) source = 0;
for (j = i; j < m=1; j++) index[j] = index][j+1];
m=m-1;

}

i = index|[0]; [* declare winner */
if (source =)
if (source == 0) source =1,
else if (st[i] < st[source]) source = i;
theta = combine(); delta = dp[i]; epsil = ep[i]+phi*(tstamp—utc[i])+xi;
return;

}
9.5. Clock—Combining Procedure

/*
compute weighted ensemble average

Mills Page 111

RFC-1305 Network Time Protocol (Version 3) March 1992

index = candidate index list, m = number of candidates; returns combined clock offset

*/

double combine() {

inti; [* int temps */
double x, vy, z; /* double temps */
z=0.;,y=0,;
for 1=0;i<m;i++) { [* compute weighted offset */
] = index[i]; x = dist())); z = z+tp[j]/x; y = y+1./x;
}
return zly; [* normalize */

}

9.6. Subroutine to Compute Synchronization Distance

/*

compute synchronization distance

n = peer id; returns synchronization distance

*/

double dist(int n) {

Mills

return ep[n]+phi*(tstamp—utc[n])+fabs(dp[n])/2.;

Page 112

RFC-1305 Network Time Protocol (Version 3) March 1992

Security considerations
see Section 3.6 and Appendix C

Author’s address
David L. Mills
Electrical Engineering Department
University of Delaware
Newark, DE 19716
Phone (302) 451-8247
EMail mills@udel.edu

Mills Page 113

