
A. Appendix A. NTP Data Format - Version 3

The format of the NTP Message data area, which immediately follows the UDP header, is shown
in Figure 4. Following is a description of its fields.

Leap Indicator (LI): This is a two-bit code warning of an impending leap second to be inserted/de-
leted in the last minute of the current day, with bit 0 and bit 1, respectively, coded as follows:

00 no warning
01 last minute has 61 seconds
10 last minute has 59 seconds)
11 alarm condition (clock not synchronized)

Version Number (VN): This is a three-bit integer indicating the NTP version number, currently
three (3).

Mode: This is a three-bit integer indicating the mode, with values defined as follows:

0 reserved
1 symmetric active
2 symmetric passive
3 client
4 server
5 broadcast
6 reserved for NTP control message (see Appendix B)
7 reserved for private use

Stratum: This is a eight-bit integer indicating the stratum level of the local clock, with values defined
as follows:

LI VN Mode Precision

Root Delay (32)

Poll

Root Dispersion (32)

Transmit Timestamp (64)

Reference Timestamp (64)

Originate Timestamp (64)

Receive Timestamp (64)

Stratum

Reference Identifier (32)

0 318 16 24

Authenticator (optional) (96)

Figure 4. NTP Message Header
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0 unspecified
1 primary reference (e.g., radio clock)
2-255 secondary reference (via NTP)

The values that can appear in this field range from zero to NTP.INFIN inclusive.

Poll Interval: This is an eight-bit signed integer indicating the maximum interval between successive
messages, in seconds to the nearest power of two. The values that can appear in this field range
from NTP.MINPOLL to NTP.MAXPOLL inclusive.

Precision: This is an eight-bit signed integer indicating the precision of the local clock, in seconds
to the nearest power of two.

Root Delay: This is a 32-bit signed fixed-point number indicating the total roundtrip delay to the
primary reference source, in seconds with fraction point between bits 15 and 16. Note that this
variable can take on both positive and negative values, depending on clock precision and skew.

Root Dispersion: This is a 32-bit signed fixed-point number indicating the maximum error relative
to the primary reference source, in seconds with fraction point between bits 15 and 16. Only
positive values greater than zero are possible.

Reference Clock Identifier: This is a 32-bit code identifying the particular reference clock. In the
case of stratum 0 (unspecified) or stratum 1 (primary reference), this is a four-octet, left-justified,
zero-padded ASCII string. While not enumerated as part of the NTP specification, the following
are suggested ASCII identifiers:

Stratum Code Meaning

0 DCN DCN routing protocol
0 NIST NIST public modem
0 TSP TSP time protocol
0 DTS Digital Time Service
1 ATOM Atomic clock (calibrated)
1 VLF VLF radio (OMEGA, etc.)
1 callsign Generic radio
1 LORC LORAN-C radionavigation
1 GOES GOES UHF environment satellite
1 GPS GPS UHF satellite positioning

In the case of stratum 2 and greater (secondary reference) this is the four-octet Internet address
of the primary reference host.

Reference Timestamp: This is the local time at which the local clock was last set or corrected, in
64-bit timestamp format.

Originate Timestamp: This is the local time at which the request departed the client host for the
service host, in 64-bit timestamp format.

Receive Timestamp: This is the local time at which the request arrived at the service host, in 64-bit
timestamp format.
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Transmit Timestamp: This is the local time at which the reply departed the service host for the client
host, in 64-bit timestamp format.

Authenticator (optional): When the NTP authentication mechanism is implemented, this contains
the authenticator information defined in Appendix C.
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B. Appendix B. NTP Control Messages

In a comprehensive network-management environment, facilities are presumed available to perform
routine NTP control and monitoring functions, such as setting the leap-indicator bits at the primary
servers, adjusting the various system parameters and monitoring regular operations. Ordinarily,
these functions can be implemented using a network-management protocol such as SNMP and
suitable extensions to the MIB database. However, in those cases where such facilities are not
available, these functions can be implemented using special NTP control messages described herein.
These messages are intended for use only in systems where no other management facilities are
available or appropriate, such as in dedicated-function bus peripherals. Support for these messages
is not required in order to conform to this specification.

The NTP Control Message has the value 6 specified in the mode field of the first octet of the NTP
header and is formatted as shown below. The format of the data field is specific to each command
or response; however, in most cases the format is designed to be constructed and viewed by humans
and so is coded in free-form ASCII. This facilitates the specification and implementation of simple
management tools in the absence of fully evolved network-management facilities. As in ordinary
NTP messages, the authenticator field follows the data field. If the authenticator is used the data
field is zero-padded to a 32-bit boundary, but the padding bits are not considered part of the data
field and are not included in the field count.

IP hosts are not required to reassemble datagrams larger than 576 octets; however, some commands
or responses may involve more data than will fit into a single datagram. Accordingly, a simple
reassembly feature is included in which each octet of the message data is numbered starting with
zero. As each fragment is transmitted the number of its first octet is inserted in the offset field and
the number of octets is inserted in the count field. The more-data (M) bit is set in all fragments
except the last.

Most control functions involve sending a command and receiving a response, perhaps involving
several fragments. The sender chooses a distinct, nonzero sequence number and sets the status field
and R and E bits to zero. The responder interprets the opcode and additional information in the data
field, updates the status field, sets the R bit to one and returns the three 32-bit words of the header
along with additional information in the data field. In case of invalid message format or contents
the responder inserts a code in the status field, sets the R and E bits to one and, optionally, inserts
a diagnostic message in the data field.

Some commands read or write system variables and peer variables for an association identified in
the command. Others read or write variables associated with a radio clock or other device directly
connected to a source of primary synchronization information. To identify which type of variable
and association a 16-bit association identifier is used. System variables are indicated by the identifier
zero. As each association is mobilized a unique, nonzero identifier is created for it. These identifiers
are used in a cyclic fashion, so that the chance of using an old identifier which matches a newly
created association is remote. A management entity can request a list of current identifiers and
subsequently use them to read and write variables for each association. An attempt to use an expired
identifier results in an exception response, following which the list can be requested again.

Some exception events, such as when a peer becomes reachable or unreachable, occur spontaneously
and are not necessarily associated with a command. An implementation may elect to save the event
information for later retrieval or to send an asynchronous response (called a trap) or both. In case
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of a trap the IP address and port number is determined by a previous command and the sequence
field is set as described below. Current status and summary information for the latest exception
event is returned in all normal responses. Bits in the status field indicate whether an exception has
occurred since the last response and whether more than one exception has occurred.

Commands need not necessarily be sent by an NTP peer, so ordinary access-control procedures may
not apply; however, the optional mask/match mechanism suggested elsewhere in this document
provides the capability to control access by mode number, so this could be used to limit access for
control messages (mode 6) to selected address ranges. 

B.1. NTP Control Message Format

The format of the NTP Control Message header, which immediately follows the UDP header, is
shown in Figure 5. Following is a description of its fields. Bit positions marked as zero are reserved
and should always be transmitted as zero.

Version Number (VN): This is a three-bit integer indicating the NTP version number, currently
three (3).

Mode: This is a three-bit integer indicating the mode. It must have the value 6, indicating an NTP
control message.

Response Bit (R): Set to zero for commands, one for responses.

Error Bit (E): Set to zero for normal response, one for error response.

More Bit (M): Set to zero for last fragment, one for all others.

Operation Code (Op): This is a five-bit integer specifying the command function. Values currently
defined include the following:

0 reserved
1 read status command/response
2 read variables command/response
3 write variables command/response
4 read clock variables command/response
5 write clock variables command/response

00 VN 6 Sequence 

Status

Op

Data (468 octets max)

REM

Authenticator (optional) (96)

Association ID

0 318 16 24

Offset Count

Padding (zeros)

Figure 5. NTP Control Message Header
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6 set trap address/port command/response
7 trap response
8-31 reserved

Sequence: This is a 16-bit integer indicating the sequence number of the command or response.

Status: This is a 16-bit code indicating the current status of the system, peer or clock, with values
coded as described in following sections.

Association ID: This is a 16-bit integer identifying a valid association.

Offset: This is a 16-bit integer indicating the offset, in octets, of the first octet in the data area.

Count: This is a 16-bit integer indicating the length of the data field, in octets.

Data: This contains the message data for the command or response. The maximum number of data
octets is 468.

Authenticator (optional): When the NTP authentication mechanism is implemented, this contains
the authenticator information defined in Appendix C.

B.2. Status Words

Status words indicate the present status of the system, associations and clock. They are designed to
be interpreted by network-monitoring programs and are in one of four 16-bit formats shown in
Figure 6 and described in this section. System and peer status words are associated with responses
for all commands except the read clock variables, write clock variables and set trap address/port
commands. The association identifier zero specifies the system status word, while a nonzero
identifier specifies a particular peer association. The status word returned in response to read clock
variables and write clock variables commands indicates the state of the clock hardware and decoding
software. A special error status word is used to report malformed command fields or invalid values.

LI

Peer Status

Clock Status

Error Code

Count

Count

Reserved

System Status

Peer Status Word

Radio Status

Error Status

Code

Code

Code

Clock Source 

Sel

0 6 8 12 15

0 2 8 12 15

0 8 15

0 8 15

Figure 6. Status Word Formats
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B.2.1. System Status Word

The system status word appears in the status field of the response to a read status or read variables
command with a zero association identifier. The format of the system status word is as follows:

Leap Indicator (LI): This is a two-bit code warning of an impending leap second to be inserted/de-
leted in the last minute of the current day, with bit 0 and bit 1, respectively, coded as follows:

00 no warning
01 last minute has 61 seconds
10 last minute has 59 seconds)
11 alarm condition (clock not synchronized)

Clock Source: This is a six-bit integer indicating the current synchronization source, with values
coded as follows:

0 unspecified or unknown
1 Calibrated atomic clock (e.g., HP 5061)
2 VLF (band 4) or LF (band 5) radio (e.g., OMEGA, WWVB)
3 HF (band 7) radio (e.g., CHU, MSF, WWV/H)
4 UHF (band 9) satellite (e.g., GOES, GPS)
5 local net (e.g., DCN, TSP, DTS)
6 UDP/NTP
7 UDP/TIME
8 eyeball-and-wristwatch
9 telephone modem (e.g., NIST)
10-63 reserved

System Event Counter: This is a four-bit integer indicating the number of system exception events
occurring since the last time the system status word was returned in a response or included in a
trap message. The counter is cleared when returned in the status field of a response and freezes
when it reaches the value 15.

System Event Code: This is a four-bit integer identifying the latest system exception event, with
new values overwriting previous values, and coded as follows:

0 unspecified
1 system restart
2 system or hardware fault
3 system new status word (leap bits or synchronization change)
4 system new synchronization source or stratum (sys.peer or

sys.stratum change)
5 system clock reset (offset correction exceeds CLOCK.MAX)
6 system invalid time or date (see NTP specification)
7 system clock exception (see system clock status word)
8-15 reserved
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B.2.2. Peer Status Word

A peer status word is returned in the status field of a response to a read status, read variables or write
variables command and appears also in the list of association identifiers and status words returned
by a read status command with a zero association identifier. The format of a peer status word is as
follows:

Peer Status: This is a six-bit code indicating the status of the peer determined by the packet
procedure, with bits assigned as follows:

0 configured (peer.config)
1 authentication enabled (peer.authenable)
2 authentication okay (peer.authentic)
3 reachability okay (peer.reach ≠ 0)

Peer Selection (Sel): This is a three-bit integer indicating the status of the peer determined by the
clock-selection procedure, with values coded as follows:

0 rejected
1 passed sanity checks
2 passed correctness checks
3 passed truncation checks
4 passed outlyer checks
5 current synchronization selection
6 current synchronization source

Peer Event Counter: This is a four-bit integer indicating the number of peer exception events that
occurred since the last time the peer status word was returned in a response or included in a trap
message. The counter is cleared when returned in the status field of a response and freezes when
it reaches the value 15.

Peer Event Code: This is a four-bit integer identifying the latest peer exception event, with new
values overwriting previous values, and coded as follows:

0 unspecified
1 peer IP error
2 peer authentication failure (peer.authentic bit was one now zero)
3 peer unreachable (peer.reach was nonzero now zero)
4 peer reachable (peer.reach was zero now nonzero)
5 peer clock exception (see peer clock status word)
6-15 reserved

B.2.3. Clock Status Word

There are two ways a reference clock can be attached to a NTP service host, as an dedicated device
managed by the operating system and as a synthetic peer managed by NTP. As in the read status
command, the association identifier is used to identify which one, zero for the system clock and
nonzero for a peer clock. Only one system clock is supported by the protocol, although many peer
clocks can be supported. A system or peer clock status word appears in the status field of the response
to a read clock variables or write clock variables command. This word can be considered an
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extension of the system status word or the peer status word as appropriate. The format of the clock
status word is as follows:

Clock Status: This is an eight-bit integer indicating the current clock status, with values coded as
follows:

0 clock operating within nominals
1 reply timeout
2 bad reply format
3 hardware or software fault
4 propagation failure
5 bad date format or value
6 bad time format or value
7-255 reserved

Clock Event Code: This is an eight-bit integer identifying the latest clock exception event, with new
values overwriting previous values. When a change to any nonzero value occurs in the radio
status field, the radio status field is copied to the clock event code field and a system or peer
clock exception event is declared as appropriate.

B.2.4. Error Status Word

An error status word is returned in the status field of an error response as the result of invalid message
format or contents. Its presence is indicated when the E (error) bit is set along with the response (R)
bit in the response. It consists of an eight-bit integer coded as follows:

0 unspecified
1 authentication failure
2 invalid message length or format
3 invalid opcode
4 unknown association identifier
5 unknown variable name
6 invalid variable value
7 administratively prohibited
8-255 reserved

B.3. Commands

Commands consist of the header and optional data field shown in Figure 6. When present, the data
field contains a list of identifiers or assignments in the form

<identifier>[=<value>],<identifier>[=<value>],...

where <identifier> is the ASCII name of a system or peer variable specified in Table 2 or Table 3
and <value> is expressed as a decimal, hexadecimal or string constant in the syntax of the C
programming language. Where no ambiguity exists, the “sys.” or “peer.” prefixes shown in Table
2 or Table 4 can be suppressed. Whitespace (ASCII nonprinting format effectors) can be added to
improve readability for simple monitoring programs that do not reformat the data field. Internet
addresses are represented as four octets in the form [n.n.n.n], where n is in decimal notation and the
brackets are optional. Timestamps, including reference, originate, receive and transmit values, as
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well as the logical clock, are represented in units of seconds and fractions, preferably in hexadecimal
notation, while delay, offset, dispersion and distance values are represented in units of milliseconds
and fractions, preferably in decimal notation. All other values are represented as-is, preferably in
decimal notation.

Implementations may define variables other than those listed in Table 2 or Table 3. Called
extramural variables, these are distinguished by the inclusion of some character type other than
alphanumeric or “.” in the name. For those commands that return a list of assignments in the response
data field, if the command data field is empty, it is expected that all available variables defined in
Table 3 or Table 4 of the NTP specification will be included in the response. For the read commands,
if the command data field is nonempty, an implementation may choose to process this field to
individually select which variables are to be returned.

Commands are interpreted as follows:

Read Status (1): The command data field is empty or contains a list of identifiers separated by
commas. The command operates in two ways depending on the value of the association
identifier. If this identifier is nonzero, the response includes the peer identifier and status word.
Optionally, the response data field may contain other information, such as described in the Read
Variables command. If the association identifier is zero, the response includes the system
identifier (0) and status word, while the data field contains a list of binary-coded pairs

<association identifier> <status word>,

one for each currently defined association.

Read Variables (2): The command data field is empty or contains a list of identifiers separated by
commas. If the association identifier is nonzero, the response includes the requested peer
identifier and status word, while the data field contains a list of peer variables and values as
described above. If the association identifier is zero, the data field contains a list of system
variables and values. If a peer has been selected as the synchronization source, the response
includes the peer identifier and status word; otherwise, the response includes the system
identifier (0) and status word. 

Write Variables (3): The command data field contains a list of assignments as described above. The
variables are updated as indicated. The response is as described for the Read Variables
command.

Read Clock Variables (4): The command data field is empty or contains a list of identifiers separated
by commas. The association identifier selects the system clock variables or peer clock variables
in the same way as in the Read Variables command. The response includes the requested clock
identifier and status word and the data field contains a list of clock variables and values, including
the last timecode message received from the clock.

Write Clock Variables (5): The command data field contains a list of assignments as described
above. The clock variables are updated as indicated. The response is as described for the Read
Clock Variables command.

Set Trap Address/Port (6): The command association identifier, status and data fields are ignored.
The address and port number for subsequent trap messages are taken from the source address

55



and port of the control message itself. The initial trap counter for trap response messages is taken
from the sequence field of the command. The response association identifier, status and data
fields are not significant. Implementations should include sanity timeouts which prevent trap
transmissions if the monitoring program does not renew this information after a lengthy interval.

Trap Response (7): This message is sent when a system, peer or clock exception event occurs. The
opcode field is 7 and the R bit is set. The trap counter is incremented by one for each trap sent
and the sequence field set to that value. The trap message is sent using the IP address and port
fields established by the set trap address/port command. If a system trap the association identifier
field is set to zero and the status field contains the system status word. If a peer trap the association
identifier field is set to that peer and the status field contains the peer status word. Optional
ASCII-coded information can be included in the data field.
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C. Appendix C. Authentication Issues

NTP robustness requirements are similar to those of other multiple-peer distributed protocols used
for network routing, management and file access. These include protection from faulty implemen-
tations, improper operation and possibly malicious replay attacks with or without data modification.
These requirements are especially stringent with distributed protocols, since damage due to failures
can propagate quickly throughout the network, devastating archives, routes and monitoring systems
and even bring down major portions of the network in the fashion of the classic Internet Worm.

The access-control mechanism suggested in the NTP specification responds to these requirements
by limiting access to trusted peers. The various sanity checks resist most replay and spoofing attacks
by discarding old duplicates and using the originate timestamp as a one-time pad, since it is unlikely
that even a synchronized peer can predict future timestamps with the precision required on the basis
of past observations alone. In addition, the protocol environment resists jamming attacks by
employing redundant time servers and diverse network paths. Resistance to stochastic disruptions,
actual or manufactured, are minimized by careful design of the filtering and selection algorithms.

However, it is possible that a determined intruder can disrupt timekeeping operations between peers
by subtle modifications of NTP message data, such as falsifying header fields or certain timestamps.
In cases where protection from even these types of attacks is required, a specifically engineered
message-authentication mechanism based on cryptographic techniques is necessary. Typical mecha-
nisms involve the use of cryptographic certificates, algorithms and key media, together with secure
media databases and key-management protocols. Ongoing research efforts in this area are directed
toward developing a standard methodology that can be used with many protocols, including NTP.
However, while it may eventually be the case that ubiquitous, widely applicable authentication
methodology may be adopted by the Internet community and effectively overtake the mechanism
described here, it does not appear that specific standards and implementations will happen within
the lifetime of this particular version of NTP.

The NTP authentication mechanism described here is intended for interim use until specific
standards and implementations operating at the network level or transport level are available.
Support for this mechanism is not required in order to conform to the NTP specification itself. The
mechanism, which operates at the application level, is designed to protect against unauthorized
message-stream modification and misrepresentation of source by insuring that unbroken, authenti-
cated paths exist between a trusted, stratum-one server in a particular synchronization subnet and
all other servers in that subnet. It employs a crypto-checksum, computed by the sender and checked
by the receiver, together with a set of predistributed algorithms, certificates and cryptographic keys
indexed by a key identifier included in the message. However, there are no provisions in NTP itself
to distribute or maintain the certificates, algorithms or keys. These quantities may occasionally be
changed, which may result in inconsistent key information while rekeying is in progress. The nature
of NTP itself is quite tolerant to such disruptions, so no particular provisions are included to deal
with them.

The intent of the authentication mechanism is to provide a framework that can be used in conjunction
with selected mode combinations to build specific plans to manage clockworking communities and
implement policy as necessary. It can be selectively enabled or disabled on a per-peer basis. There
is no specific plan proposed to manage the use of such schemes; although several possibilities are
immediately obvious. In one scenario a group of time servers peers among themselves using
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symmetric modes and shares one secret key, say key 1, while another group of servers peers among
themselves using symmetric modes and shares another secret key, say key 2. Now, assume by policy
it is decided that selected servers in group 1 can provide synchronization to group 2, but not the
other way around. The selected servers in group 1 are given key 2, but operated only in server mode,
so cannot accept synchronization from group 2; however, group 2 has authenticated access to
group-1 servers. Many other scenarios are possible with suitable combinations of modes and keys.

A packet format and crypto-checksum procedure appropriate for NTP is specified in the following
sections. The cryptographic information is carried in an authenticator which follows the (unmodi-
fied) NTP header fields. The crypto-checksum procedure uses the Data Encryption Standard (DES)
[NBS77]; however, only the DES encryption algorithm is used and the decryption algorithm is not
necessary. This feature is specifically targeted toward governmental sensitivities on the export of
cryptographic technology, since the DES decryption algorithm need not be included in NTP
software distributions and thus cannot be extracted and used in other applications to avoid message
data disclosure.

C.1. NTP Authentication Mechanism

When it is created and possibly at other times, each association is allocated variables identifying
the certificate authority, encryption algorithm, cryptographic key and possibly other data. The
specific procedures to allocate and initialize these variables are beyond the scope of this specifica-
tion, as are the association of the identifiers and keys and the management and distribution of the
keys themselves. For example and consistency with the conventions of the NTP specification, a set
of appropriate peer and packet variables might include the following:

Authentication Enabled Bit (peer.authenable): This is a bit indicating that the association is to
operate in the authenticated mode. For configured peers this bit is determined from the startup
environment. For non-configured peers, this bit is set to one if an arriving message includes the
authenticator and set to zero otherwise.

Authenticated Bit (peer.authentic): This is a bit indicating that the last message received from the
peer has been correctly authenticated. 

Key Identifier (sys.keyid, peer.keyid, pkt.keyid): This is an integer identifying the cryptographic
key used to generate the message-authentication code. The system variable sys.keyid is used
for active associations. The peer.keyid variable is initialized at zero (unspecified) when the
association is mobilized. For purposes of authentication an unassigned value is interpreted as
zero (unspecified).

Cryptographic Keys (sys.key): This is a set of 64-bit DES keys. Each key is constructed as in the
Berkeley Unix distributions, which consists of eight octets, where the seven low-order bits of
each octet correspond to the DES bits 1-7 and the high-order bit corresponds to the DES
odd-parity bit 8. By convention, the unspecified key 0 (zero), consisting of eight odd-parity zero
octets, is used for testing and presumed known throughout the NTP community. The remaining
keys are distributed using methods outside the scope of NTP.

Crypto-Checksum (pkt.check): This is a crypto-checksum computed by the encryption procedure.

The authenticator field consists of two subfields, one consisting of the pkt.keyid variable and the
other the pkt.check variable computed by the encrypt procedure, which is called by the transmit
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procedure described in the NTP specification, and by the decrypt procedure, which is called by the
receive procedure described in the NTP specification. Its presence is revealed by the fact the total
datagram length according to the UDP header is longer than the NTP message length, which includes
the header plus the data field, if present. For authentication purposes, the NTP message is
zero-padded if necessary to a 64-bit boundary, although the padding bits are not considered part of
the NTP message itself. The authenticator format shown in Figure 7 has 96 bits, including a 32-bit
key identifier and 64-bit crypto-checksum, and is aligned on a 32-bit boundary for efficient
computation. Additional information required in some implementations, such as certificate authority
and encryption algorithm, can be inserted between the (padded) NTP message and the key identifier,
as long as the alignment conditions are met. Like the authenticator itself, this information is not
included in the crypto-checksum. Use of these data are beyond the scope of this specification. These
conventions may be changed in future as the result of other standardization activities.

C.2. NTP Authentication Procedures

When authentication is implemented there are two additional procedures added to those described
in the NTP specification. One of these (encrypt) constructs the crypto-checksum in transmitted
messages, while the other (decrypt) checks this quantity in received messages. The procedures use
a variant of the cipher-block chaining method described in [NBS80] as applied to DES. In principal,
the procedure is independent of DES and requires only that the encryption algorithm operate on
64-bit blocks. While the NTP authentication mechanism specifies the use of DES, other algorithms
could be used by prior arrangement.

C.2.1. Encrypt Procedure

For ordinary NTP messages the encryption procedure operates as follows. If authentication is not
enabled, the procedure simply exits. If the association is active (modes 1, 3, 5), the key is determined
from the system key identifier. If the association is passive (modes 2, 4) the key is determined from
the peer key identifier, if the authentic bit is set, or as the default key (zero) otherwise. These
conventions allow further protection against replay attacks and keying errors, as well as facilitate
testing and migration to new versions. The crypto-checksum is calculated using the 64-bit NTP
header and data words, but not the authenticator or padding bits.

begin  encrypt procedure
if  (peer.authenable = 0) exit ; /* do nothing if not enabled */
if  (peer.hostmode = 1 or  peer.hostmode = 3 or  peer.hostmode = 5)

keyid ← sys.keyid; /* active modes use system key */
else

if  (peer.authentic = 1) /* passive modes use peer key */
 keyid ← peer.keyid;

else
 keyid ← 0; /* unauthenticated use key 0 */

Crypto-Checksum (64)

0 318 16 24

Key Identifier (32)

Figure 7. Authenticator Format
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temp ← 0; /* calculate crypto-checksum */
for  (each 64-bit header and data word) begin

temp ← temp xor  word;
temp ← DES(temp, keyid);
endfor ;

pkt.keyid ← keyid; /* insert packet variables */
pkt.check ← temp;
end  encrypt procedure;

C.2.2. Decrypt Procedure

For ordinary messages the decryption procedure operates as follows. If the peer is not configured,
the data portion of the message is inspected to determine if the authenticator fields are present. If
so, authentication is enabled; otherwise, it is disabled. If authentication is enabled and the authen-
ticator fields are present and the crypto-checksum succeeds, the authentication bit is set to one;
otherwise, it is set to zero.

begin  decrypt procedure
peer.authentic ← 0;
if  (peer.config = 0) /* if not configured, enable per packet */

if  (authenticator present)
peer.authenable ← 1;

else
peer.authenable ← 0;

if  (peer.authenable = 0 or  authenticator not present)) exit ;
peer.keyid ← pkt.keyid; /* use peer key */
temp ← 0; /* calculate crypto-checksum */
for  (each 64-bit header and data word) begin

temp ← temp xor  word;
temp ← DES(temp, peer.keyid);
endfor ;

if  (temp == pkt.check) peer.authentic ← 1; /* declare result */
end  decrypt procedure;

C.2.3. Control-Me ssage Procedures

In anticipation that the functions provided by the NTP control messages will eventually be subsumed
by a comprehensive network-managment function, the peer variables are not used for control
message authentication. If an NTP command message is received with an authenticator field, the
crypto-checksum is computed as in the decrypt procedure and the response message includes the
authenticator field as computed by the encrypt procedure. If the received authenticator is correct,
the key for the response is the same as in the command; otherwise, the default key (zero) is used.
Commands causing a change to the peer data base, such as the write variables and set trap
address/port commands, must be correctly authenticated; however, the remaining commands are
normally not authenticated in order to minimize the encryption overhead.
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D. Appendix D. Differences from Previous Versions.

The original NTP, later called NTP Version 0, was described in RFC-958 [MIL85c]. Subsequently,
Version 0 was superseded by Version 1 (RFC-1059 [MIL88a]), and Version 2 (RFC-1119 [MIL89].
The Version-2 description was split into two documents, RFC-1119 defining the architecture and
specifying the protocol and algorithms, and another [MIL90b] describing the service model,
algorithmic analysis and operating experience. In previous versions these two objectives were
combined in one document. While the architecture assumed in Version 3 is identical to Version 2,
the protocols and algorithms differ in minor ways. Differences between NTP Version 3 and previous
versions are described in this Appendix. Due to known bugs in very old implementations, continued
support for Version-0 implementations is not recommended. It is recommended that new imple-
mentations follow the guidelines below when interoperating with older implementations.

Version 3 neither changes the protocol in any significant way nor obsoletes previous versions or
existing implementations. The main motivation for the mew version is to refine the analysis and
implementation models for new applications at much higher network speeds to the gigabit-per-sec-
ond regime and to provide for the enhanced stability, accuracy and precision required at such speeds.
In particular, the sources of time and frequency errors have been rigorously examined and error
bounds established in order to improve performance, provide a model for correctness assertions and
indicate timekeeping quality to the user. Version 3 also incorporates two new optional features, (1)
an algorithm to combine the offsets of a number of peer time servers in order to enhance accuracy
and (2) improved local-clock algorithms which allow the poll intervals on all synchronization paths
to be substantially increased in order to reduce network overhead. Following is a summary of
previous versions of the protocol together with details of the Version 3 changes.

1. Version 1 supports no modes other than symmetric-active and symmetric-passive, which are
determined by inspecting the port-number fields of the UDP packet header as described in the
NTP specification. The low-order three bits of the first octet, specified as zero in Version 1, are
used for the mode field in Version 2. Version-2 and Version-3 implementations interoperating
with Version-1 implementations should operate in a passive mode only and use the value one
in the version number (pkt.version) field and zero in the mode (pkt.mode) field in transmitted
messages.

2. Version 1 does not support the NTP control message described in Appendix B. Certain old
versions of the Unix NTP daemon ntpd use the high-order bits of the stratum field (pkt.stratum)
for control and monitoring purposes. While these bits are never set during normal Version-1,
Version-2 or Version-3 operations, new implementations may use the NTP reserved mode 6
described in Appendix B and/or private reserved mode 7 for special purposes, such as remote
control and monitoring, and in such cases the format of the packet following the first octet can
be arbitrary. While there is no guarantee that different implementations can interoperate using
private reserved mode 7, it is recommended that vanilla ASCII format be used whenever
possible.

3. Version 1 does not support authentication. The key identifiers, cryptographic keys and proce-
dures described in Appendix C are new to Version 2 and continued in Version 3, along with the
corresponding variables, procedures and authenticator fields. In the NTP message described in
Appendix A and NTP control message described in Appendix B the format and contents of the

62



header fields are independent of the authentication mechanism and the authenticator itself
follows the header fields, so that previous versions will ignore the authenticator.

4. In Version 1 the total dispersion (pkt.rootdispersion) field of the NTP header was called the
estimated drift rate, but not used in the protocol or timekeeping procedures. Implementations
of the Version-1 protocol typically set this field to the current value of the skew-compensation
register, which is a signed quantity. In a Version 2 implementation apparent large values in this
field may affect the order considered in the clock-selection procedure. Version-2 and Version-3
implementations interoperating with older implementations should assume this field is zero,
regardless of its actual contents.

5. Version 2 and Version 3 incorporate several sanity checks designed to avoid disruptions due to
unsynchronized, duplicate or bogus timestamp information. The checks in Version 3 are
specifically designed to detect lost or duplicate packets and resist invalid timestamps. The
leap-indicator bits are set to show the unsynchronized state if updates are not received from a
reference source for a considerable time or if the reference source has not received updates for
a considerable time. Some Version-1 implementations could claim valid synchronization
indefinitely following loss of the reference source.

6. The clock-selection procedure of Version 2 was considerably refined as the result of accumu-
lated experience with the Version-1 implementation. Additional sanity checks are included for
authentication, range bounds and to avoid use of very old data. The candidate list is sorted twice,
once to select a relatively few robust candidates from a potentially large population of unruly
peers and again to order the resulting list by measurement quality. As in Version 1, The final
selection procedure repeatedly casts out outlyers on the basis of weighted dispersion.

7. The local-clock procedure of Version 2 were considerably improved over Version 1 as the result
of analysis, simulation and experience. Checks have been added to warn that the oscillator has
gone too long without update from a reference source. The compliance register has been added
to improve frequency stability to the order of a millisecond per day. The various parameters
were retuned for optimum loop stability using measured data over typical Internet paths and
with typical local-clock hardware. In version 3 the phase-lock loop model was further refined
to provide an adaptive-bandwidth feature that automatically adjusts for the inherent stabilities
of the reference clock and local clock while providing optimum loop stability in each case. 

8. Problems in the timekeeping calculations of Version 1 with high-speed LANs were found and
corrected in Version 2. These were caused by jitter due to small differences in clock rates and
different precisions between the peers. Subtle bugs in the Version-1 reachability and polling-rate
control were found and corrected. The peer.valid and sys.hold variables were added to avoid
instabilities when the reference source changes rapidly due to large dispersive delays under
conditions of severe network congestion. The peer.config, peer.authenable and peer.authentic
bits were added to control special features and simplify configuration.

9. In Version 3 The local-clock algorithm has been overhauled to improve stability and accuracy.
Appendix G presents a detailed mathematical model and design example which has been refined
with the aid of feedback-control analysis and extensive simulation using data collected over
ordinary Internet paths. Section 5 of RFC-1119 on the NTP local clock has been completely
rewritten to describe the new algorithm. Since the new algorithm can result in message rates far
below the old ones, it is highly recommended that they be used in new implementations. Note
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that this algorithm is not integral to the NTP protocol specification itself and its use does not
affect interoperability with previous versions or existing implementations; however, in order to
insure overall NTP subnet stability in the Internet, it is essential that the local-clock charac-
teristics of all NTP time servers conform to the analytical models presented previously and in
this document. 

10. In Version 3 a new algorithm to combine the offsets of a number of peer time servers is presented
in Appendix F. This algorithm is modelled on those used by national standards laboratories to
combine the weighted offsets from a number of standard clocks to construct a synthetic
laboratory timescale more accurate than that of any clock separately. It can be used in an NTP
implementation to improve accuracy and stability and reduce errors due to asymmetric paths in
the Internet. The new algorithm has been simulated using data collected over ordinary Internet
paths and, along with the new local-clock algorithm, implemented and tested in the Fuzzball
time servers now running in the Internet. Note that this algorithm is not integral to the NTP
protocol specification itself and its use does not affect interoperability with previous versions
or existing implementations.

11. Several inconsistencies and minor errors in previous versions have been corrected in Version
3. The description of the procedures has been rewritten in pseudo-code augmented by English
commentary for clarity and to avoid ambiguity. Appendix I has been added to illustrate
C-language implementations of the various filtering and selection algorithms suggested for NTP.
Additional information is included in Section 5 and in Appendix E, which includes the tutorial
material formerly included in Section 2 of RFC-1119, as well as much new material clarifying
the interpretation of timescales and leap seconds. 

12. Minor changes have been made in the Version-3 local-clock algorithms to avoid problems
observed when leap seconds are introduced in the UTC timescale and also to support an auxiliary
precision oscillator, such as a cesium clock or timing receiver, as a precision timebase. In
addition, changes were made to some procedures described in Section 3 and in the clock-filter
and clock-selection procedures described in Section 4. While these changes were made to correct
minor bugs found as the result of experience and are recommended for new implementations,
they do not affect interoperability with previous versions or existing implementations in other
than minor ways (at least until the next leap second).

13. In Version 3 changes were made to the way delay, offset and dispersion are defined, calculated
and processed in order to reliably bound the errors inherent in the time-transfer procedures. In
particular, the error accumulations were moved from the delay computation to the dispersion
computation and both included in the clock filter and selection procedures. The clock-selection
procedure was modified to remove the first of the two sorting/discarding steps and replace with
an algorithm first proposed by Marzullo and later incorporated in the Digital Time Service.
These changes do not significantly affect the ordinary operation of or compatibility with various
versions of NTP, but they do provide the basis for formal statements of correctness as described
in Appendix H.
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E. Appendix E. The NTP Timescale and its Chronometry

Following is an extended discussion on computer network chronometry, which is the precise
determination of computer time and frequency as determined in a computer network relative to
international standards and the determination of conventional civil time and date according to the
modern calendar. It describes the methods conventionally used to establish civil time and date and
the various timescales now in use. In particular, it characterizes the Network Time Protocol (NTP)
timescale relative to the Coordinated Universal Time (UTC) timescale, and establishes the precise
interpretation of UTC leap seconds in the NTP timescale.

In the following discussion the terms time, epoch, oscillator, clock, calendar, date and timescale
are used in a technical sense. Strictly speaking, the time of an event is an abstraction which
determines the ordering of events in some given frame of reference called a timescale. There is a
unique timescale established by international agreement which defines UTC. A time relative to the
UTC timescale is called the epoch of that time. An oscillator is a generator capable of maintaining
precise frequency (relative to the given timescale) to a specified tolerance. A clock is an oscillator
together with a counter which records the (fractional) number of ticks since being initialized with
a given value at a given epoch with respect to the UTC timescale. In general, time is not continuous
and depends on the precision of the counter with respect to the frame of reference. 

A calendar is a mapping from epoch in the UTC timescale to the times and dates used in everyday
life. Since multiple calendars are in use today and sometimes disagree on the dating of the same
events in the past, the chronometry of past and present events is an art practiced by historians. One
of the goals of this presentation is to provide a standard chronometry for precision dating of present
and future events in a global networking community. To synchronize frequency means to adjust the
oscillators in the network to run at the same frequency, to synchronize time means to set the clocks
so that all agree at a particular epoch with respect to the UTC timescale, and to synchronize clocks
means to synchronize them in both frequency and time.

In order to synchronize clocks there must be some way to directly or indirectly compare their times.
If two clocks can communicate directly over paths of precisely known delay, then their time
difference can be determined directly. If not, but they can communicate with a third clock over paths
of precisely known delay, their differences can be determined relative to the third clock and the
difference of each clock communicated to the other. Called the common-view method, this method
is often used with a satellite clock to coordinate national timescales to the UTC timescale.

Timescales for our world are based on cosmic oscillators such as the Sun, Moon and certain pulsars,
as well as Earthbound oscillators based on atomic transitions of exquisite stability. Since the
stabilities of these oscillators vary widely and their frequencies are not known exactly, the UTC
timescale has been chosen by international agreement as a synthesis of many observations of many
timescales. The timescales produced by various national laboratories are coordinated using real-
time, common-view observations of the differences between the timescales, with the results
published in regular notices after the fact1. The term time metrology is used to describe the study
of algorithms and protocols with which the UTC timescale can be constructed from both cosmic
and Earthbound timescales. One of the goals of this presentation is to describe a standard
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chronometry to rationalize conventional computer time and the UTC timescale; in particular, how
to handle leap seconds.

It is important to realize that it is not possible at the present state of the art to establish a permanent
time and frequency standard which operates continuously and is completely reliable. A physically
realizable standard is an active device, requires power and environmental resources, must occasion-
ally be repaired and has only a flicker of life compared to the age of the universe. By international
agreement the UTC timescale in use today is based on a mathematical average of a large ensemble
of atomic clocks, which are routinely compared using common-view methods. While this does
improve the stability and reliability of the institutional memory of the timescale, it also assumes
there are no subtle atomic conspiracies not yet discovered and that all the clocks in the ensemble
do not burn out at the same instant. The recent discovery of millisecond pulsars may provide a useful
sanity check for the timescale, as well as a means to detect gravitational waves.

E.1. Primary Frequency and Time Standards

A primary frequency standard is an oscillator that can maintain extremely precise frequency relative
to a physical phenomenon, such as a transition in the orbital states of an electron or the rotational
period of an astronomical body. Existing atomic oscillators are based on the transitions of hydrogen,
cesium, rubidium and mercury atoms, although other means using active and passive masers and
lasers of various kinds and even pulsars are available [ALL89]. Table 7 shows the characteristics
for typical oscillators of various types including quartz-crystal oscillators commonly found in
electronic equipment. Pulsars are not included in the table because their long term stability, estimated
at 6x10-14, is believed better than all other available sources except other pulsars, but only one of
them has been studied so far [RAW87]. Future developments are expected to yield stabilities in the
order of 10-18, but this requires cryogenic devices and places extreme demands on oscillator and
counter technology. For reasons of cost and robustness, cesium oscillators are used worldwide for
national primary frequency standards. On the other hand, local clocks used in computing equipment
almost always are designed with uncompensated crystal oscillators.

For the three atomic oscillators listed in Table 7 the drift/aging column shows the maximum
frequency offset per day from nominal standard frequency due to systematic environmental,
mechanical and electrical characteristics. The characteristics of cesium clocks have been extensively
studied and a parametric model developed [TRY83]. In the case of crystal oscillators the frequency
is not constant, which results in a gradual change in frequency with time, called aging. Even if a
crystal oscillator is temperature compensated by some means, it must be periodically compared to

Oscillator type Stability (per day) Drift /Aging (per
day)

Hydrogen maser 2 x 10-14 1 x 10-12/yr
Cesium beam 3 x 10-13 3 x 10-12/yr
Rubidium gas cell 5 x 10-12 3 x 10-11/mo
Oven-controlled crystal 1 x 10-9 0-50 deg C 1 x 10-10

Digital-comp crystal 5 x 10-8  0-60 deg C 1 x 10-9

Temp-compensated crystal 5 x 10-7 0-60 deg C 3 x 10-9

Uncompensated crystal ~1 x 10-6 per deg C don’t ask

Table 7. Characteristics of Standard Oscillators
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a primary standard in order to maintain the highest accuracy. For all types of oscillators the stability
column shows the maximum variation in frequency per day due to circuit noise and environmental
factors.

As the telephone networks of the world are evolving rapidly to digital technology, consideration
should be given to the methods used for frequency synchronization in digital networks. A network
of clocks in which each oscillator is phase-locked to a single frequency standard is called
isochronous, while a network in which some oscillators are phase-locked to different master
oscillators, but with the master oscillators closely synchronized in frequency (not necessarily phase
locked), to a single frequency standard is called plesiochronous. In plesiochronous systems the
phase of some oscillators can slip relative to others and cause occasional data errors in synchronous
transmission systems.

The industry has agreed on a classification of clock oscillators as a function of minimum accuracy,
minimum stability and other factors [BEL86]. There are three factors which determine the stability
of a clock: drift, jitter and wander. Drift refers to long-term systematic variations of frequency with
time and is synonymous with aging, trends, etc. Jitter (also called timing jitter) refers to short-term
variations in frequency with components greater than 10 Hz, while wander refers to intermediate-
term variations in frequency with components less than 10 Hz. The classification determines the
oscillator stratum (not to be confused with the NTP stratum), with the more accurate oscillators
assigned the lower strata and less accurate oscillators the higher strata:

Stratum Min Accuracy (per day) Min Stability (per day)

1 1 x 10-11 not specified
2 1.6 x 10-8 1 x 10-10

3 4.6 x 10-6 3.7 x 10-7

4 3.2 x 10-5 not specified

The construction, operation and maintenance of stratum-one oscillators is assumed to be consistent
with national standards and often includes cesium oscillators and sometimes precision crystal
oscillators synchronized via LORAN-C or GPS to national standards. Stratum-two oscillators
represent the stability required for interexchange toll switches such as the AT&T 4ESS and
interexchange digital cross-connect systems, while stratum-three oscillators represent the stability
required for exchange switches such as the AT&T 5ESS and local cross-connect systems. Stratum-
four oscillators represent the stability required for digital channel-banks and PBX systems.

E.2. Determination of Time and Frequency

For many years the most important use of time and frequency information was for worldwide
navigation and space science, which depend on astronomical observations of the Sun, Moon and
stars [JOR85]. Sidereal time is based on the transit of stars across the celestial meridian of an
observer. The mean sidereal day is 23 hours, 56 minutes and 4.09 seconds, but varies about ±30 ms
throughout the year due to polar wandering and orbit variations. Ephemeris time is based on tables
with which a standard time interval such as the tropical year - one complete revolution of the Earth
around the Sun - can be determined through observations of the Sun, Moon and planets. In 1958
the standard second was defined as 1/31,556,925.9747 of the tropical year that began this century.
On this scale the tropical year is 365.2421987 days and the lunar month - one complete revolution
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of the Moon around the Earth - is 29.53059 days; however, the actual tropical year can be determined
only to an accuracy of about 50 ms and has been increasing by about 5.3 ms per year.

Of the three heavenly oscillators readily apparent to ancient mariners and astronomers - the Earth
rotation about its axis, the Earth revolution around the Sun and the Moon revolution around the
Earth - none of the three have the intrinsic stability, relative to modern technology, to serve as a
standard reference oscillator. In 1967 the standard second was redefined as “9,192,631,770 periods
of the radiation corresponding to the transition between the two hyperfine levels of the ground state
of the cesium-133 atom.” Since 1972 the time and frequency standards of the world have been based
on International Atomic Time (TAI), which is defined and maintained using multiple cesium-beam
oscillators to an accuracy of a few parts in 1013, or better than a microsecond per day.

The Bureau International de l’Heure (BIH) uses astronomical observations provided by the U.S.
Naval Observatory (USNO) and other observatories to determine UTC. Starting from apparent mean
solar time as observed, the UT0 timescale is determined using corrections for Earth orbit and
inclination (the Equation of Time, as used by sundials), the UT1 (navigator’s) timescale by adding
corrections for polar migration and the UT2 timescale by adding corrections for known periodicity
variations. While standard frequencies are based on TAI, conventional civil time is based on UT1,
which is presently slow relative to TAI by a fraction of a second per year. SInce the UTC timescale
runs at the TAI rate, when the magnitude of UT1 correction approaches 0.7 second, a leap second
is inserted or deleted in the UTC timescale on the last day of June or December.

The TAI timescale is generated by an algorithm which combines the relative time differences
measured between contributing national standards laboratories using common-view methods. The
national standards laboratories themselves usually use another algorithm, not necessarily that used
for international coordination, to generate a laboratory timescale from an ensemble of laboratory
clocks. Not all laboratories have a common view on these algorithms, however. In the U.S. the
national timescale is officially coordinated by both NIST and USNO, although both laboratories
cling to their own timescales as well. Coordination methods incorporate both Kalman-filter and
parameter-estimation (ARIMA) models [BAR87]. The NIST algorithm which generates NBS(AT1)
is described in [WEI89], while the USNO algorithm which generates UTC(USNO) is described in
[PER78].

E.3. Time and Frequency Dissemination

In order that atomic and civil time can be coordinated throughout the world, national administrations
operate primary time and frequency standards and coordinate them cooperatively by observing
various radio broadcasts and through occasional use of portable atomic clocks. Most seafaring
nations of the world operate some sort of broadcast time service for the purpose of calibrating
chronographs, which are used in conjunction with ephemeris data to determine navigational
position. In many countries the service is primitive and limited to seconds-pips broadcast by marine
communication stations at certain hours. For instance, a chronograph error of one second represents
a longitudinal position error of about 0.23 nautical mile at the Equator.

The U.S. National Institute of Standards and Technology (NIST - formerly National Bureau of
Standards) operates three radio services for the dissemination of primary time and frequency
information. One of these uses high-frequency (HF or CCIR band 7) transmissions on frequencies
of 2.5, 5, 10, 15 and 20 MHz from Fort Collins, CO (WWV), and 2.5, 5, 10, and 15 MHz from
Kauai, HI (WWVH). Signal propagation is usually by reflection from the upper ionospheric layers,
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which vary in height and composition throughout the day and season and result in unpredictable
delay variations at the receiver. The timecode is transmitted over a 60-second interval at a data rate
of 1 bps using a 100-Hz subcarrier on the broadcast signal. The timecode information includes UTC
time-day information, but does not currently include year or leap-second warning. While these
transmissions and those of Canada from Ottawa, Ontario (CHU), and other countries can be received
over large areas in the western hemisphere, reliable frequency comparisons can be made only to the
order of 10-7 and time accuracies are limited to the order of a millisecond [BLA74]. Radio clocks
which operate with these transmissions include the Traconex 1020, which provides accuracies to
about 10 ms and is priced in the $1,500 range.

A second service operated by NIST uses low-frequency (LF or CCIR band 5) transmissions on 60
kHz from Boulder, CO (WWVB), and can be received over the continental U.S. and adjacent coastal
areas. Signal propagation is via the lower ionospheric layers, which are relatively stable and have
predictable diurnal variations in height. The timecode is transmitted over a 60-second interval at a
rate of 1 bps using periodic reductions in carrier power. With appropriate receiving and averaging
techniques and corrections for diurnal and seasonal propagation effects, frequency comparisons to
within 10-11 are possible and time accuracies of from a few to 50 µs can be obtained [BLA74].
Some countries in western Europe operate similar services which use transmissions on 60 kHz from
Rugby, U.K. (MSF), and on 77.5 kHz from Mainflingen, West Germany (DCF77). The timecode
information includes UTC time-day-year information and leap-second warning. Radio clocks which
operate with these transmissions include the Spectracom 8170 and Kinemetrics/TrueTime 60-DC
and LF-DC, which provide accuracies to a millisecond or less and are priced in the $2,500 range.
However, these receivers do not extract the year information and leap-second warning. 

The third service operated by NIST uses ultra-high frequency (UHF or CCIR band 9) transmissions
on about 468 MHz from the Geosynchronous Orbit Environmental Satellites (GOES), three of which
cover the western hemisphere. The timecode is interleaved with messages used to interrogate remote
sensors and consists of 60 4-bit binary-coded decimal words transmitted over an interval of 30
seconds. The timecode information includes UTC time-day-year information and leap-second
warning. Radio clocks which operate with these transmissions include the Kinemetrics/TrueTime
468-DC, which provides accuracies to 0.5 ms and is priced in the $4,000 range. However, this
receiver does not extract the year information and leap-second warning.

The U.S. Department of Defense is developing the Global Positioning System (GPS) for worldwide
precision navigation. By 1993 this system will provide 24-hour worldwide coverage using a
constellation of 21 satellites in 12-hour orbits. For time-transfer applications GPS has a potential
accuracy in the order of a few nanoseconds; however, various considerations of defense policy may
limit accuracy to a few tens of nanoseconds [VAN84]. The timecode information includes GPS time
and UTC correction; however, there appears to be no leap-second warning. Radio clocks which
operate with these transmissions include the Kinemetrics/TrueTime GPS-DC, which provides
accuracies to 200 µs and is priced in the $12,000 range. However, since by late 1990 only 14 of the
planned 21 satellites are operational, expensive rubidium or quartz crystal-controlled oscillators are
necessary to preserve accuracy during outages. Also, since this is a single-channel receiver, it must
be supplied with geographic coordinates within a degree from an external source before operation
begins.

The U.S. Coast Guard, along with agencies of other countries, has operated the LORAN-C
radionavigation system for many years [FRA82]. It currently provides time-transfer accuracies of
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less than a microsecond within the ground-wave coverage area of a few hundred kilometers from
the transmitter. Beyond the ground wave area signal propagation is via the lower ionospheric layers,
which decreases accuracies to the order of 50 µs. The current deployment of LORAN-C transmitters
does not permit complete coverage of the U.S., although additional stations are scheduled to be
deployed in the next couple of years. LORAN-C timing receivers, such as the Austron 2000, are
specialized and extremely expensive (up to $20,000). They are used primarily to monitor local
cesium clocks and are not suited for unattended, automatic operation. While the LORAN-C system
provides a highly accurate frequency and time reference within the ground wave area, there is no
timecode modulation, so the receiver must be supplied with UTC time to within a few tens of seconds
from an external source before operation begins. 

The OMEGA radionavigation system operated by the U.S. Navy and other countries consists of
eight very-low-frequency (VLF or CCIR band 4) transmitters operating on frequencies from 10.2
to 13.1 kHz and providing 24-hour worldwide coverage [VAS78]. With appropriate receiving and
averaging techniques and corrections for propagation effects, frequency comparisons and time
accuracies are comparable to the LF systems, but with worldwide coverage [BLA74]. Radio clocks
which operate with these transmissions include the Kinemetrics/TrueTime OM-DC, which provides
accuracies to 1 ms and is priced in the $3,500 range. While the OMEGA system provides a highly
accurate frequency reference, there is no timecode modulation, so the receiver must be supplied
with geographic coordinates within a degree and UTC time within five seconds from an external
source before operation begins. There are several other VLF services intended primarily for
worldwide data communications with characteristics similar to OMEGA. These services can be
used in a manner similar to OMEGA, but this requires specialized techniques not suited for
unattended, automatic operation. 

Note that not all transmission formats used by NIST radio broadcast services [NBS79] and no
currently available radio clocks include provisions for year information and leap-second warning.
This information must be determined from other sources. NTP includes provisions to distribute
advance warnings of leap seconds using the leap-indicator bits described in the NTP specification.
The protocol is designed so that these bits can be set manually or automatically at the primary time
servers and then automatically distributed throughout the synchronization subnet to all other time
servers.

E.4. Calendar Systems 1

The calendar systems used in the ancient world reflect the agricultural, political and ritual needs
characteristic of the societies in which they flourished. Astronomical observations to establish the
winter and summer solstices were in use three to four millennia ago. By the 14th century BC the
Shang Chinese had established the solar year as 365.25 days and the lunar month as 29.5 days. The
lunisolar calendar, in which the ritual month is based on the Moon and the agricultural year on the
Sun, was used throughout the ancient Near East (except Egypt) and Greece from the third
millennium BC. Early calendars used either thirteen lunar months of 28 days or twelve alternating
lunar months of 29 and 30 days and haphazard means to reconcile the 354/364-day lunar year with
the 365-day vague solar year.
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The ancient Egyptian lunisolar calendar had twelve 30-day lunar months, but was guided by the
seasonal appearance of the star Sirius (Sothis). In order to reconcile this calendar with the solar year,
a civil calendar was invented by adding five intercalary days for a total of 365 days. However, in
time it was observed that the civil year was about one-fourth day shorter than the actual solar year
and thus would precess relative to it over a 1460-year cycle called the Sothic cycle. Along with the
Shang Chinese, the ancient Egyptians had thus established the solar year at 365.25 days, or within
about 11 minutes of the present measured value. In 432 BC, about a century after the Chinese had
done so, the Greek astronomer Meton calculated there were 110 lunar months of 29 days and 125
lunar months of 30 days for a total of 235 lunar months in 6940 solar days, or just over 19 years.
The 19-year cycle, called the Metonic cycle, established the lunar month at 29.532 solar days, or
within about two minutes of the present measured value.

The Roman republican calendar was based on a lunar year and by 50 BC was eight weeks out of
step with the solar year. Julius Caesar invited the Alexandrian astronomer Sosigenes to redesign the
calendar, which led to the adoption in 46 BC of the Julian calendar. This calendar is based on a year
of 365 days with an intercalary day inserted every four years. However, for the first 36 years an
intercalary day was mistakenly inserted every three years instead of every four. The result was 12
intercalary days instead of nine, and a series of corrections that was not complete until 8 AD.

The seven-day Sumerian week was introduced only in the fourth century AD by Emperor Constan-
tine I. During the Roman era a 15-year census cycle, called the Indiction cycle, was instituted for
taxation purposes. The sequence of day-names for consecutive occurrences of a particular day of
the year does not recur for 28 years, called the solar cycle. Thus, the least common multiple of the
28-year solar cycle, 19-year Metonic cycle and 15-year Indiction cycle results in a grand 7980-year
supercycle called the Julian Era, which began in 4713 BC. A particular combination of the day of
the week, day of the year, phase of the Moon and round of the census will recur beginning in 3268
AD.

By 1545 the discrepancy in the Julian year relative to the solar year had accumulated to ten days.
In 1582, following suggestions by the astronomers Christopher Clavius and Luigi Lilio, Pope
Gregory XIII issued a papal bull which decreed, among other things, that the solar year would consist
of 365.2422 days. In order to more closely approximate the new value, only those centennial years
divisible by 400 would be leap years, while the remaining centennial years would not, making the
actual value 365.2425, or within about 26 seconds of the current measured value. Since the
beginning of the Christian Era and prior to 1990 there were 474 intercalary days inserted in the
Julian calendar, but 14 of these were removed in the Gregorian calendar. While the Gregorian
calendar is in use throughout most of the world today, some countries did not adopt it until early in
the twentieth century.

While it remains a fascinating field for time historians, the above narrative provides conclusive
evidence that conjugating calendar dates of significant events and assigning NTP timestamps to
them is approximate at best. In principle, reliable dating of such events requires only an accurate
count of the days relative to some globally alarming event, such as a comet passage or supernova
explosion; however, only historically persistent and politically stable societies, such as the ancient
Chinese and Egyptian, and especially the classic Maya, possessed the means and will to do so.
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E.5. The Modified Julian Day System

In order to measure the span of the universe or the decay of the proton, it is necessary to have a
standard day-numbering plan. Accordingly, the International Astronomical Union has adopted the
use of the standard second and Julian Day Number (JDN) to date cosmological events and related
phenomena. The standard day consists of 86,400 standard seconds, where time is expressed as a
fraction of the whole day, and the standard year consists of 365.25 standard days.

In the scheme devised in 1583 by the French scholar Joseph Julius Scaliger and named after his
father, Julius Caesar Scaliger, JDN 0.0 corresponds to 12h (noon) on the first day of the Julian Era,
1 January 4713 BC. The years prior to the Christian Era (BC) are reckoned according to the Julian
calendar, while the years of the Christian Era (AD) are reckoned according to the Gregorian calendar.
Since there is no year zero or day zero in Roman reckoning and 1 BC is a leap year, JDN 1,721,426.0
corresponds to 12h on the first day of the Christian Era, 1 January 1 AD. The Modified Julian Date
(MJD), which is sometimes used to represent dates near our own era in conventional time and with
fewer digits, is defined as MJD = JD – 2,400,000.5. Following the convention that our century began
at 0h on 1 January 1900, at which time the tropical year was already 12h old, that eclectic instant
corresponds to MJD 15,021.0. Thus, the Julian timescale ticks in standard (atomic) 365.25-day
centuries and was set to a given value at the approximate epoch of a cosmic event which apparently
synchronized the entire human community, the origin of the Christian Era.

E.6. Determination of Leap Seconds

For the most precise coordination and timestamping of events since 1972, it is necessary to know
when leap seconds are implemented in UTC and how the seconds are numbered. As specified in
CCIR Report 517, which is reproduced in [BLA74], a leap second is inserted following second
23:59:59 on the last day of June or December and becomes second 23:59:60 of that day. A leap

UTC Date MJD NTP Time Offset

01 Jan 72 41,318 2,272,060,800 0
31 Jun 72 41,500 2,287,872,000 1
31 Dec 72 41,683 2,303,683,200 2
31 Dec 73 42,048 2,335,219,200 3
31 Dec 74 42,413 2,366,755,200 4
31 Dec 75 42,778 2,398,291,200 5
31 Dec 76 43,144 2,429,913,600 6
31 Dec 77 43,509 2,461,449,600 7
31 Dec 78 43,874 2,492,985,600 8
31 Dec 79 44,239 2,524,521,600 9
31 Jun 81 44,787 2,571,868,800 10
31 Jun 82 45,152 2,603,404,800 11
31 Jun 83 45,517 2,634,940,800 12
31 Jun 85 46,248 2,698,099,200 13
31 Dec 87 47,161 2,776,982,400 14
31 Dec 89 47,892 2,840,140,800 15
31 Dec 90 48,257 2,871,590,400 16

Table 8. Table of Leap-Second Insertions
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second would be deleted by omitting second 23:59:59 on one of these days, although this has never
happened. Leap seconds were inserted prior to 1 January 1990 on the occasions listed in Table 8
(courtesy USNO). Published BIH corrections consist not only of leap seconds, which result in step
discontinuities relative to TAI, but 100-ms UT1 adjustments called DUT1, which provide increased
accuracy for navigation and space science.

Note that the NTP time column actually shows the epoch following the last second of the day given
in the UTC date and MJD columns (except for the first line), which is the precise epoch of insertion.
The offset column shows the cumulative seconds offset between the uncoordinated (Julian)
timescale and the UTC timescale; that is, the number of seconds to add to the Julian clock in order
to maintain nominal agreement with the UTC clock. Finally, note that the epoch of insertion is
relative to the timescale immediately prior to that epoch; e.g., the epoch of the 31 Dec 89 insertion
is determined on the timescale in effect following the 31 Dec 87 insertion, which means the actual
insertion relative to the Julian clock is fourteen seconds later than the apparent time on the UTC
timescale.

The UTC timescale thus ticks in standard (atomic) seconds and was set to the value 0h MJD 41,318.0
at the epoch determined by astronomical observation to be 0h on 1 January 1972 according to the
Gregorian calendar; that is, the inaugural tick of the UTC Era. In fact, the inaugural tick which
synchronized the cosmic oscillators, Julian clock, UTC clock and Gregorian calendar forevermore
was displaced about ten seconds from the civil clock then in use, while the GPS clock is ahead of
the UTC clock by five seconds even today. Subsequently, the UTC clock has marched backward
relative to the Julian timescale exactly one second on scheduled occasions at monumental epoches
embedded in the institutional memory of our civilization. Note in passing that leap-second
adjustments affect the number of seconds per day and thus the number of seconds per year.
Apparently, should we choose to worry about it, the UTC clock, Julian clock and various cosmic
clocks will inexorably drift apart with time until rationalized by some future papal bull.

E.7. The NTP Tim escale and Reckoning with UTC

The NTP timescale is based on the UTC timescale, but not necessarily always coincident with it.
At 0h on 1 January 1972 (MJD 41,318.0), the first tick of the UTC Era, the NTP clock was set to
2,272,060,800, representing the number of standard seconds since 0h on 1 January 1900 (MJD
15,021.0). The insertion of leap seconds in UTC and subsequently into NTP does not affect the
UTC or NTP oscillator, only the conversion to conventional civil UTC time. However, since the
only institutional memory available to NTP are the UTC timecode broadcast services, the NTP
timescale is in effect reset to UTC as each timecode is received. Thus, when a leap second is inserted
in UTC and subsequently in NTP, knowledge of all previous leap seconds is lost.

Another way to describe this is to say there are as many NTP timescales as historic leap seconds.
In effect, a new timescale is established after each new leap second. Thus, all previous leap seconds,
not to mention the apparent origin of the timescale itself, lurch backward one second as each new
timescale is established. If a clock synchronized to NTP in early 1991 was used to establish the
UTC epoch of an event that occurred in early 1972 without correction, the event would appear
sixteen seconds late relative to UTC. However, NTP primary time servers resolve the epoch using
the broadcast timecode, so that the NTP clock is set to the broadcast value on the current timescale.
As a result, for the most precise determination of epoch relative to the historic UTC clock, the user
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must subtract from the apparent NTP epoch the offsets shown in Table 8 at the relative epoches
shown. This is a feature of almost all present day time-distribution mechanisms.

The chronometry involved can be illustrated with the help of Figure 8, which shows the details of
seconds numbering just before, during and after the last scheduled leap insertion at 23:59:59 on 31
December 1989. Notice the NTP leap bits are set on the day prior to insertion, as indicated by the
“+” symbols on the figure. Since this makes the day one second longer than usual, the NTP day
rollover will not occur until the end of the first occurrence of second 800. The UTC time conversion
routines must notice the apparent time and the leap bits and handle the timescale conversions
accordingly. Immediately after the leap insertion both timescales resume ticking the seconds as if
the leap had never happened. The chronometric correspondence between the UTC and NTP
timescales continues, but NTP has forgotten about all past leap insertions. In NTP chronometric
determination of UTC time intervals spanning leap seconds will thus be in error, unless the exact
times of insertion are known.

It is possible that individual systems may use internal data formats other than the NTP timestamp
format, which is represented in seconds to a precision of about 232 ps; however, a persuasive
argument exists to use a two-part representation, one part for whole days (MJD or some fixed offset
from it) and the other for the seconds (or some scaled value, such as milliseconds). This not only
facilitates conversion between NTP and conventional civil time, but makes the insertion of leap
seconds much easier. All that is required is to change the modulus of the seconds counter, which
on overflow increments the day counter. This design insures that continuity of the timescale is
assured, even if outside synchronization is lost before, during or after leap-second insertion. Since
timestamp data are unaffected, synchronization is assured, even if timestamp data are in flight at
the instant and originated before or at that instant.
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F. Appendix F. The NTP Clock-Combining Algorithm

As described in the NTP specification, the NTP clock-selection algorithm operates to select a single
peer for synchronization based on stratum and synchronization distance. The result is that the
synchronization subnet forms a tree with the primary server(s) at the root and other servers at
increasing levels toward the leaves. However, since each server on the tree ordinarily runs the NTP
protocol with at least two other servers at equal or lower stratum, there ordinarily will exist other
peers for each server that can provide diversity paths for backup and cross checking. While these
other paths are not ordinarily used directly for synchronization, it is possible that increased accuracy
can be obtained by averaging their offsets according to weights based on measured dispersions.

In order to improve accuracy and minimize the effects of individual clock variations, it is the practice
in national standards laboratories to construct a synthetic timescale based on an ensemble of at least
three contributing primary clocks. The timescale is produced by an algorithm using periodic
measurements of the time offsets between the various clocks of the ensemble. The algorithm
combines the offsets using computed weights to produce an ensemble timescale more accurate than
the timescale of any clock in the ensemble. The algorithm used by U.S. Naval Observatory (USNO)
is based on autoregressive, integrated, moving-average (ARIMA) models [PER78], while the
algorithm used by the National Institute of Science and Technology (NIST, formerly NBS) is
evolved from Kalman-filter models [JON83], [TRY83], [WEI89]. These algorithms result in
long-term fractional frequency stabilities in the order of 1.5x10-14.

These models suggest an approach in which the overall accuracy of an NTP time server can be
improved by combining the offsets of all peers that survive the clock-selection algorithm, rather
than just the selected peer itself. According to the selection criteria, each of the peer offsets represents
a valid statistical sample of the true offset relative to the primary server(s), so that a useful
clock-combining algorithm can average them according to an appropriate weighting function.

Following is a description of the combining method used in the NTP implementation for the Fuzzball
[MIL88b]. The method is adapted from that used by NIST to determine the NBS(AT1) synthetic

Variable Description

Xi(t) estimated time offset of clock i at time t
Yi(t) estimated frequency offset of clock i at time t
Xi,j(t) measured time difference between clocks i and j at time t
wi(τ) weight factor for clock i over the interval τ
mi time constant of exponential filter to estimate frequency offset
Nτ time constant of exponential filter to estimate mean squared error
Ki constant used to correct estimates due to inclusion of all clocks

εi(τ) error in estimated time offset of clock i over the interval τ
<εi

2(τ)>t total mean squared error in estimated time offset of clock i
including the interval τ ending at time t

τ time interval between measurements
n number of clocks in the ensemble

τmini value of τ at minimum σyi(τ) on Allan variance curve for clock i

Table 9. Notation Used in Combining Analysis
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laboratory timescale from an ensemble of cesium clocks [WEI89]. The NIST method, while not a
Kalman filter in the strict sense, can be shown equivalent to that method by suitable choice of gains
and time constants. See [WEI89] for a discussion of the fine points of these issues, which will not
be explored further here. These procedures are optional and not required in a conforming NTP
implementation.

In the following description the stability of a clock is how well it can maintain a constant frequency,
the accuracy is how well its frequency and time compare with national standards and the precision
is how precisely these quantities can be maintained within a particular timekeeping system. Unless
indicated otherwise, The time offset (sometimes called clock offset) of two clocks is the time
difference between them, while the frequency offset (sometimes called skew) is the frequency
difference (first derivative of offset with time) between them. Real clocks exhibit some variation in
frequency offset (second derivative of time offset with time), which is called drift, along with a
random pertubation called noise. Table 9 contains the names of the significant variables of the
analysis along with a short description of their functions.

F.1. Determining Time and Frequency

Figure 9 shows the overall organization of the NTP time-server model. Timestamps exchanged with
possibly several other subnet peers are used to determine individual roundtrip delays and clock
offsets relative to each peer as described in the NTP specification. As shown in the figure, the
computed delays and offsets are processed by the clock filter to reduce incidental timing noise and
the most accurate and reliable subset determined by the clock-selection algorithm. The resulting
offsets of this subset are first combined as described below and then processed by a type-II
phase-locked loop (PLL) in a manner similar to that described in [BAR87]. In the PLL the combined
effects of the filtering, selection and combining operations is to produce a phase-correction term.
This is processed by the loop filter to control the local clock, which functions as a voltage-controlled
oscillator (VCO). The VCO furnishes the timing (phase) reference to produce the timestamps used
in all calculations.

F.2. Clock Modelling

The International Standard (SI) definition of standard time interval is in terms of the standard
second: “the duration of 9,192,631,770 periods of the radiation corresponding to the transition
between the two hyperfine levels of the ground state of the cesium-133 atom.” Let u represent the

standard unit of time interval so defined and v = 
1
u

 be the standard unit of frequency. The epoch,

denoted by t, is defined as the reading of a counter that runs at the standard frequency v and began
counting at some agreed initial epoch t0, which defines the standard or absolute timescale. In

Clock Filter

Clock Filter

Clock Filter

Peer Selection
Clock
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Loop Filter
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Figure 9. Network Time Protocol
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practice, time is determined relative to a clock constructed from an atomic oscillator and system of
counter/dividers, which defines a timescale associated with that particular oscillator.  The time of
an arbitrary clock c, denoted by Tc(t), is defined as the reading of c at the epoch t, which defines
the c timescale. Standard time and frequency are then determined from an ensemble of clock
timescales and algorithms designed to combine them to produce a composite ensemble timescale
approximating the standard timescale. In the following analysis the standard timescale and and all
functions defined on it are considered continuous.

For the clocks normally used in time and frequency transfer, the time of a particular clock c at epoch
t can be expressed

Tc(t) = 1⁄2Dc(t0)[t − t0]2 + Rc(t0)[t − t0] + Tc(t0) + xc(t) ,

where Dc(t0) is the frequency drift per unit time, Rc(t0) the frequency and Tc(t0) the time at the initial
epoch t0. In a stationary model the functions Dc(t) and Rc(t) can be assumed constant or changing
slowly with epoch for a particular clock. The random nature of the clock is characterized by xc(t),
which represents the random noise (jitter) relative to the standard timescale. In the usual analysis
the second-order term Dc(t) is considered constant and not estimated, while the noise term xc(t)
characterized by two parameters: white-noise frequency-modulation (FM) level and random-walk
FM level. In the following, braces “|” indicate absolute value, brackets “<>” indicate the infinite
time average and a carat “^” over an estimated quantity indicates the predicted value of that quantity
based on previous estimates.

F.3. Development of a Composite Timescale

Consider an ensemble of n clocks and let Ti(t) be the time, also called the timestamp, displayed by
clock i at epoch t relative to the standard timescale. A composite timescale can be determined from
a sequence of time differences measured between the n clocks at nominal intervals τ. Let Xi(t) and
Yi(t) be the estimated time and frequency offsets, respectively, of clock i at epoch t relative to the
standard timescale. Then, the predicted time offset for clock i at the next measurement epoch
t + τ is

X̂i(t + τ) = Xi(t) + Yi(t)τ .

Consider a set of n independent measurements made between the n clocks at t + τ and let the time
difference between clocks i and j at that epoch be defined as

Xij (t + τ) ≡ Tj(t + τ) − Ti(t + τ) .

Note that Xij  = −Xji  and Xii = 0.

Let wi(τ) be a previously determined weight factor associated with clock i for the nominal interval
τ. The estimated time offset for clock j at t + τ, given the predicted time offsets and the measured
time differences at that epoch, is

Xj(t + τ) = ∑wi

i=1

n

(τ)[X̂i(t + τ) + Xij(t + τ)].

That is, the estimated offset of clock j at epoch t + τ is a weighted average of the predicted offset
of each clock plus the measured difference between that clock and clock j at that epoch.
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An intuitive grasp of the behavior of this algorithm can be gained with the aid of a few examples.
For instance, if wi(τ) is unity for clock i and zero for all others, the estimated time offset for clock
i is simply the predicted offset X̂i(t + τ) and for each of the other clocks is that offset plus the
measured difference Xij (t + τ). If wi(τ) is zero for clock i, that clock can never affect any other clock,
so its estimated time offset is determined entirely from the other clocks. If wi(τ) = 1⁄n for all i, the
estimated time offset of clock i is equal to the average of the predicted offsets plus the average of
the measured differences for all clocks. Finally, in a system with two clocks and wi(τ) = 1⁄2 for each,
and if the estimated offset at t + τ is fast by one second for one clock and slow by one second for
the other, the resulting timescale for both clocks will coincide with the standard timescale.

In order to establish a basis for the next interval beginning at t + τ, it is necessary to update the
frequency prediction Ŷi(t + τ) and weight factor wi(τ). The frequency offset predicted for clock i at
epoch t + τ is

Ŷi(t + τ) = 
Xi(t + τ) − Xi(t)

τ  ,

which is simply the difference between the time offsets at the beginning and end of the interval
divided by τ. A good estimator for Yi(t + τ) has been found to be the exponential average of past
predictions defined by

Yi(t + τ) = 
1

mi + 1
 [Ŷi(t + τ) + miYi(t)] ,

where mi is an experimentally determined weight factor which depends on the measured stability
of clock i and is given by

mi = 1⁄2 [−1 + 



1
3

 + 
4τmini

2

3τ2




1⁄2
] ,

where τmini corresponds to the intersection of the white-noise FM and random-walk FM curves
shown on the Allan variance characteristic for clock i. For high performance cesium-beam
oscillators, τmini is about 105 seconds [ALL89], which is comparable to the usual measurement
interval τ 86,400 seconds, or one day, so that mi is about 0.408.

In order to calculate the weight factor wi(τ), it is necessary to determine the expected error εi(τ) for
each clock, which ordinarily involves infinite averages; however, in practice infinite averages are
computed as exponential time averages. An estimate of the magnitude of the unbiased error of clock
i accumulated over the nominal interval τ is

εi(τ) = |X̂i(t + τ) − Xi(t + τ)| + Ki ,

where Ki accounts for the fact that clock i is itself included in the set to be averaged. The total mean
squared error of clock i accumulated to epoch t + τ is given by the exponential average

<εi
2(τ)>t+τ = 

1
Nτ + 1

 [εi
2(τ) + Nτ<εi

2(τ)>t] ,
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where in the case of cesium clocks Nτ is typically in the order of twenty days. The initial value of

<εi
2> can be estimated as τ2σyi

2(τ), where σyi(τ) is the Allan variance of clock i associated with the
interval τ. Dropping the subscript on the <> term for clarity, since all subsequent calculations refer
to the estimates at epoch t + τ, the total mean square time offset error of the ensemble is then

< εx
2(τ) > = 







∑ 
i=1

n
1

< εi
2(τ) >








 −1

. 

Finally, the weight factor for the clock i is calculated as

wi(τ) = 
< εx

2(τ) >
< εi

2(τ) >
 

and the additive factor Ki is calculated by

Ki = 
0.8<εx

2(τ)>
<εi

2(τ)>1⁄2  ,

where the factor 0.8 reflects the assumption that the time offset errors are normally distributed.
When all predictors, estimators and weight factors have been updated, the origin of the measurement
interval is shifted and the new value of t becomes the old value of t + τ.

The above procedures produce the estimated time and frequency offsets for each clock; however,
they do not produce the ensemble timescale directly. In order to do that, one of the clocks, usually
the “best” one in terms of estimated error, is chosen as the reference and used to generate the actual
laboratory standard. Corrections to this standard can be incorporated either in the form of a hardware
microstepper, which adjusts the phase of the standard frequency in fine-grain steps, or they can be
published and distributed for retroactive corrections.

While not entering directly into the above calculations, it is of interest to estimate the frequency
stability of each clock. The frequency stability of clock i can be determined from a sequence of
first-order differences

yi(t + τ) = 
Yi(t + τ) − Yi(t)

τ

measured between successive frequency-offset estimates. Temporarily dropping the subscript i for
clarity, consider a sequence of N independent samples y(j) (j = 1, 2, …, N) where the interval
between samples is uniform and equal to T. Let τ be the nominal interval over which these samples

are averaged. The Allan variance σy
2(N, T, τ) [ALL74a] is defined as

<σy
2(N, T, τ) > = < 

1
N − 1

 






∑ 
j=1

N

y(j)2 − 
1
N

 






∑ 
j=1

N

y(j)







2






 > ,

A particularly useful formulation is N = 2 and T = τ:
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<σy
2(N = 2, T = τ, τ)> ≡ σy

2(τ) = <[y(j + 1) − y(j)]2

2
>

= 
1

2(N − 1)∑ 
j=1

n−1

[y(j + 1) − y(j)]2 .

While the Allan variance has found application when estimating errors in ensembles of cesium
clocks, its application to NTP is limited due to the computation and storage burden. As described
in the next section, it is possible to estimate errors with some degree of confidence using normal
byproducts of NTP processing algorithms.

F.4. Application to NTP

The NTP clock model is somewhat less complex than the general model described above. For
instance, at the present level of development it is not necessary to separately estimate the time and
frequency of all peer clocks, only the time and frequency of the local clock. If the timekeeping
reference is the local clock itself, then the offsets available in the peer.offset peer variables can be
used directly for the Tij  quantities above. In addition, the NTP local-clock model incorporates a
type-II phase-locked loop, which itself reliably estimates frequency errors and corrects accordingly.
Thus, the requirement for estimating frequency is entirely eliminated.

There remains the problem of how to determine a robust and easily computable error estimate εi.
The method described above, although analytically justified, is most difficult to implement. Happily,
as a byproduct of the NTP clock-filter algorithm, a useful error estimate is available in the form of
the dispersion. As described in the NTP specification, the dispersion includes the absolute value of
the weighted average of the offsets between the chosen offset sample and the n − 1 other samples
retained for selection. The effectiveness of this estimator was compared with the above estimator
by simulation using observed timekeeping data and found to give quite acceptable results.

The NTP clock-combining algorithm can be implemented with only minor modifications to the
algorithms as described in the NTP specification. Although elsewhere in the NTP specification the
use of general-purpose multiply/divide routines has been successfully avoided, there seems to be
no way to avoid them in the clock-combining algorithm. However, for best performance the
local-clock algorithm described elsewhere in this document should be implemented as well, since
the combining algorithms result in a modest increase in phase noise which the revised local-clock
algorithm is designed to suppress.

F.5. Clock-Combining Procedure

The result of the NTP clock-selection procedure is a set of survivors (there must be at least one)
that represent truechimers, or correct clocks. As described in the NTP specification, the survivor bit
is set to one for each peer that survives the clock-selection procedure and set to zero otherwise.
When clock combining is not implemented, one of these peers, chosen as the most likely candidate,
becomes the synchronization source and its computed offset becomes the final clock correction.
Subsequently, the system variables are adjusted as described in the NTP clock-update procedure.
When clock combining is implemented, these actions are unchanged, except that the final clock
correction is computed by the clock-combining procedure. 
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The clock-combining procedure is called from the clock-select procedure. It constructs from the
variables of all surviving peers the final clock correction Θ. The estimated error required by the
algorithms previously described is based on the synchronization distance Λ computed by the
distance procedure, as defined in the NTP specification. The reciprocal of Λ is the weight of each
clock-offset contribution to the final clock correction. The following pseudo-code describes the
procedure.

begin  clock-combining procedure
temp1 ← 0;
temp2 ← 0;
for  (each peer remaining on the candidate list) /* scan all survivors */

call  dist(peer);

temp ← 
1
Λ;

temp1 ← temp1 + temp; /* update weight and offset */
temp2 ← temp2 + temp × peer.offset;
endif ;

Θ ← 
temp2
temp1

; /* compute final correction */

end  clock-combining procedure;

The value Θ is the final clock correction used by the local-clock procedure to adjust the clock.
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G. Appendix G. NTP Phase-Lock Loop Analysis

This appendix describes and analyzes the NTP local-clock model. The NTP local clock is specifi-
cally designed to provide an adaptive reference source for the server host that can adapt to oscillators
of varying stability from mains-frequency sources to cesium clock sources.

G.1. Mathematical Model

The NTP logical clock can be represented by the feedback-control model shown in Figure 10. The
model consists of an adaptive-parameter, phase-lock loop (PLL), which continuously adjusts the
phase and frequency of an oscillator to compensate for its intrinsic jitter, wander and drift. A
mathematical analysis of this model developed along the lines of [SMI86] is presented in following
sections, along with a design example useful for implementation guidance in operating-systems
environments such as Unix and Fuzzball. Table 10 summarizes the quantities ordinarily treated as
variables in the model, in which Greek letters stand for those variables used in the analysis and
Roman letters stand for additional temporaries used for convenience in the design example. Table
10 summarizes those quantities ordinarily fixed as constants in the model.

In Figure 10 the variable θr represents the phase of the reference signal and θo the phase of the
voltage-controlled oscillator (VCO). The phase detector (PD) produces a voltage Vd representing

VCO 

θr +

θo − Clock Filter

Loop Filter

Vs

Vc

PD Vd

Figure 10. NTP Phase-Lock Loop (PLL) Model

Variable Description

Vd phase detector output
Vs clock filter output
Vc loop filter output
θr reference phase
θo VCO phase
ωc PLL crossover frequency
ωz PLL corner frequency
τ PLL time constant
µ update interval
ρ poll interval
f frequency error
g phase error
h compliance

Table 10. Notation Used in PLL Analysis
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the phase difference θr − θo . The clock filter functions roughly as a tapped delay line, with the
output Vs taken at the tap selected by the clock-filter algorithm described in the NTP specification.
The loop filter, represented by the equations given below, produces a VCO correction Vc, which
controls the oscillator frequency and thus the phase θo.

Since both frequency and phase corrections are required, an appropriate design consists of a type-II
PLL, which is defined by the open-loop transfer function

G(s) = 
ωc

2

τ2s2
 (1 + 

τs
ωz

) ,

where ωc is the crossover frequency (also called loop gain), ωz is the corner frequency (required
for loop stability) and τ determines the PLL time constant and thus the bandwidth. While this is a
first-order function and some improvement in phase noise might be gained from a higher-order
function, in practice the improvement is lost due to the effects of the clock-filter delay as described
below.

The transfer function G(s) is the product of the individual transfer functions for the phase detector,

clock filter, loop filter and VCO. The phase detector delivers a voltage Vd = 
θr − θo

2π V/rad, so the

transfer function is simply Fd(s) = 
Vd

θr − θo
 = 

1
2π. The VCO delivers a frequency change

∆ω = 
d θo

dt
 = 

Vc

σ  , where σ is the adjustment interval (equivalently,  
1
σ is the VCO gain in rad/V-sec),

so the transfer function is the Laplace transform of the integral, Fo(s) = 
2π
σs

. The clock filter

contributes a stochastic delay due to the clock-filter algorithm; but, for present purposes, this delay
will be assumed a constant T times the PLL time constant τ, so its transfer function is the Laplace

transform of the delay, Fs(s) = e−Tτs. Let F(s) be the transfer function of the loop filter, which has
yet to be determined. The open-loop transfer function is the product of these four individual transfer
functions:

G(s) = 
ωc

2

τ2s2 (1 + 
τs
ωz

) = Fd(s)Fs(s)F(s)Fo(s) = 
1
2π e−Tτs F(s) 2π

σs
 .

For the moment, assume that the product Tτs is small, so that e−Tτs ≈ 1. Making the following
substitutions, 

ωc
2 = 

1
Kf σ

     and     ωz = 
Kg

Kf

and rearranging yields

F(s) = 
1

Kg τ
 + 

1

Kf τ2s
 ,

which corresponds to a constant term plus an integrating term scaled by the loop time constant.
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With the parameter values given in Table 10 and τ = 1, the Bode plot of the open-loop transfer
function G(s) consists of a –12 dB/octave line which intersects the 0-dB baseline at

ωc = 2−12 rad/sec, together with a +6 dB/octave line at the corner frequency ωz = 2−14 rad/sec. The

damping factor ζ = 
ωc

2ωz
 = 2 suggests the PLL will be stable and have a large phase margin together

with a low overshoot.

Assuming the output is taken at Vs , the closed-loop transfer function H(s) is

H(s) ≡ 
Vs(s)
θr(s)  = 

Fd(s)e−Tτs

1 + G(s)  .

If only the relative response is needed and the clock-filter delay can be neglected, H(s) can be written

H(s) = 
1

1 + G(s) = 
s2

s2 + 
ωc

2

ωz τ
s + 

ωc
2

τ2

 .

For some input function I(s) the output function I(s)H(s) can be inverted to find the time response.

With a unit-step input I(s) = 
1
s
 and the values given above for ωc, ωz and τ = 1, the PLL has a risetime

of about 52 minutes, an overshoot of about 4.8 percent and a settling time to within one percent of
about 8.7 hours. This analysis is valid only if the clock-filter delay is small compared to the loop

delay, or Tτ << 
τ

ωc
. With the parameters in Table 10 and the values computed above, the filter delay

is less than the loop delay by a factor of eight, which is ordinarily small enough to be neglected.

A very important feature of the NTP PLL design is the ability to adjust τ to match the prevailing
transmission conditions in the network. For the PLL to perform well throughout the expected range
of conditions, but without affecting the overshoot characteristics, τ can be adjusted over a consid-
erable range with the loop bandwidth varying directly as its inverse.

Parameter Value Description

σ 4 sec adjustment interval

T 29 sec clock-filter delay

Kf 222 frequency weight

Kg 28 phase weight

Kh 213 compliance weight

Ks 24 compliance max

Kt 214 compliance multiplier

Ku 26 sec update interval min

Table 11. PLL Parameters
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G.2. Implementation

The PLL behavior can also be described by a set of recurrence equations, which depend upon several
variables and constants. The variables and parameters used in these equations are shown in Tables
9 and 11. Note the use of powers of two, which facilitates implementation using arithmetic shifts
and avoids the requirement for a multiply/divide capability.

A capsule overview of the design may be helpful in understanding how it operates. The logical clock
is continuously adjusted in small increments at fixed intervals of σ. The increments are determined
while updating the variables shown in Table 9, which are computed from received NTP messages
as described in the NTP specification. Updates computed from these messages occur at discrete
times as each is received. The intervals µ between updates are variable and can range up to about
17 minutes. As part of update processing the  compliance h is computed and used to adjust the PLL
time constant τ. Finally, the poll interval ρ for transmitted NTP messages is determined as a fixed
multiple of τ.

Updates are numbered from zero, with those in the neighborhood of the ith update shown in Figure
11. All variables are initialized at i = 0 to zero, except the time constant τ(0) = 1, poll interval
µ(0) = Ku and compliance h(0) = Ks. After an interval µ(i) from the previous update the ith update
arrives at time t(i) including the time offset Vs(i). Then, after an interval µ(i + 1) the i+1th update
arrives at time t(i + 1) including the time offset Vs(i +1). When the updateVs(i) is received,
recompute the frequency error f(i + 1) and phase error g(i + 1):

f(i + 1) = f(i) + 
µ(i)Vs(i)

τ(i)2
 ,     g(i + 1) = 

Vs(i)
τ(i)  .

Note that these computations depend on the value of the time constant τ(i) and poll interval µ(i)
previously computed from the i−1th update. Then, recompute the time constant and poll interval
from the current value of the compliance h(i):

τ(i + 1) = max[Ks − | h(i)|, 1] ,     ρ(i + 1) = Ku τ(i + 1) .

Finally, recompute the compliance h(i + 1) for use in the i+1th update:

h(i + 1) = h(i) + 
Kt τ(i + 1)Vs(i) − h(i)

Kh
 .

The factor τ(i + 1) in the above has the effect of adjusting the response of the system according to
the loop bandwidth. When the bandwith has been decreased after a long period of low compliance
(high values of τ), the response to changes in frequency is enhanced; while, once the bandwidth has
been increased, the response is suppressed. This characteristic is important to avoid overshoot as
the bandwidth is being decreased following a period of relative instability. 

t(i − 1) t(i) t(i + 1)

µ(i + 1)µ(i) time

Figure 11. Timing Intervals
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In order to model the adjustment process, set the temporary variable a = g(i + 1). At each adjustment

interval σ add the quantity 
a

Kg
 + 

f(i + 1)
Kf

 to the local-clock phase and subtract the quantity 
a

Kg
 from

a. For convenience, let n be the greatest integer in 
µ(i)
σ ; that is, the number of adjustments that occur

in the ith interval. Thus, at the end of the ith interval just before the i+1th update, the VCO control
voltage is:

Vc(i + 1) = Vc(i) + [1 − (1 − 
1

Kg
)n] g(i + 1) + 

n
Kf

 f(i + 1) .

As the magnitudes of successive corrections increase, due perhaps to increasing dispersive delays
in the network, the compliance h increases, causing the PLL time constant τ to decrease and resulting
in increased loop bandwidth and capture range to follow relatively rapid variations in reference or
local oscillator frequencies. When corrections are low, h decreases, causing τ to increase and
resulting in decreased loop bandwidth and improved frequency stability. In order to maintain
optimum stability, the poll interval ρ is varied directly with τ.

Detailed simulation of the NTP PLL with the values specified in Table 9 and Table 10 and the clock
filter described in the NTP specification results in the following characteristics: For a 100-ms phase
change the loop reaches zero error in 39 minutes, overshoots 7 ms at 54 minutes and settles to less
than 1 ms in about six hours. For a 50-ppm frequency change the loop reaches 1 ppm in about 16
hours and 0.1 ppm in about 26 hours. When the magnitude of correction exceeds a few milliseconds
or a few ppm for more than a few updates, the compliance begins to increase, which causes the loop
time constant and update interval to decrease. When the magnitude of correction falls below about
0.1 ppm for a few hours, the compliance begins to decrease, which causes the loop time constant
and update interval to increase. The effect is to provide a broad capture range exceeding four seconds
per day, yet the capability to resolve oscillator skew well below a millisecond per day. These
characteristics are appropriate for typical crystal-controlled oscillators with or without temperature
compensation or oven control.

G.3. References

[SMI86]  Smith, J. Modern Communications Circuits. McGraw-Hill, New York, NY, 1986.
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H. Appendix H. Analysis of Errors and Correctness Principles

This appendix contains an analysis of errors arising in the generation and processing of NTP
timestamps and the determination of delays and offsets. It establishes error bounds as a function of
measured roundtrip delay and dispersion to the root (primary reference source) of the synchroniza-
tion subnet. It also discusses correctness assertions about these error bounds and the time-transfer,
filtering and selection algorithms used in NTP.

The notation w = [u, v] in the following describes the interval in which u is the lower limit and v
the upper limit, inclusive. Thus, min(w) = u ≤ v = max(w), and for scalar a, w + a = [u + a, v + a].
Table 12 shows a summary of other notation used in the analysis. The notation < x > designates the
(infinite) average of x, which is usually approximated by an exponential average, while the notation
x̂ designates an estimator for x. The lower-case Greek letters θ, δ and ε are used to designate
measurement data for the local clock to a peer clock, while the upper-case Greek letters Θ, ∆ and
Ε are used to designate measurement data for the local clock relative to the primary reference source
at the root of the synchronization subnet. Exceptions will be noted as they arise.

H.1. Timestamp Errors

The standard second is defined as “9,192,631,770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the cesium-133 atom” [ALL74b],
which implies a granularity of about 1.1x10-10 standard seconds. Other intervals can be determined
as rational multiples of the standard second. While NTP time has an inherent resolution of about
2.3x10-10 standard seconds, local clocks ordinarily have resolutions much worse than this, so the
inherent error in resolving NTP time relative to the standard second can be neglected.

In this analysis the local clock is represented by a counter/divider which increments at intervals of

s seconds and is driven by an oscillator which operates at frequency fc = 
n
s
 for some integer n. A

timestamp T(t) is determined by reading the clock at an arbitrary time t (the argument t will be
usually omitted for conciseness). Strictly speaking, s is not known exactly, but can be assumed
bounded from above by the maximum reading error ρ. The reading error itself is represented by the

Variable Description

r reading error
ρ max reading error
f frequency error
ϕ max frequency error

θ, Θ clock offset
δ, ∆ roundtrip delay
ε, Ε error/dispersion

t time
τ time interval
T NTP timestamp
s clock divider increment
fc clock oscillator frequency

Table 12. Notation Used in Error Analysis

89



random variable r bounded by the interval [− ρ, 0], where ρ depends on the particular clock
implementation. Since the intervals between reading the same clock are almost always independent
of and much larger than s, successive readings can be considered independent and identically
distributed. The frequency error of the clock oscillator is represented by the random variable f
bounded by the interval [− ϕ, ϕ], where ϕ represents the maximum frequency tolerance of the
oscillator throughout its service life. While f for a particular clock is a random variable with respect
to the population of all clocks, for any one clock it ordinarily changes only slowly with time and
can usually be assumed a constant for that clock. Thus, an NTP timestamp can be represented by
the random variable T:

T = t + r + fτ ,

where t represents a clock reading, τ represents the time interval since this reading and minor
approximations inherent in the measurement of τ are neglected.

In order to assess the nature and expected magnitude of timestamp errors and the calculations based
on them, it is useful to examine the characteristics of the probability density functions (pdf) pr(x)
and pf(x) for r and f respectively. Assuming the clock reading and counting processes are inde-
pendent, the pdf for r is uniform over the interval [− ρ, 0]. With conventional manufacturing
processes and temperature variations the pdf for f can be approximated by a truncated, zero-mean
Gaussian distribution with standard deviation σ. In conventional manufacturing processes σ is
maneuvered so that the fraction of samples rejected outside the interval [− ϕ, ϕ] is acceptable. The
pdf for the total timestamp error ε(x) is thus the sum of the r and f contributions, computed as

ε(x) = ∫ 
−∞

∞
pr(t)pf(x − t)dt ,

which appears as a bell-shaped curve, symmetric about − 
ρ
2

 and bounded by the interval

[min(r) + min(fτ), max(r) + max(fτ)] = [− ρ − ϕτ, ϕτ] .

Since f changes only slowly over time for any single clock,

ε ≡ [min(r) + fτ, max(r) + fτ] = [− ρ, 0] + fτ ,

where ε without argument designates the interval and ε(x) designates the pdf. In the following
development subscripts will be used on various quantities to indicate to which entity or timestamp
the quantity applies. Occasionally, ε will be used to designate an absolute maximum error, rather
than the interval, but the distinction will be clear from context.

θ0

T1 T4

T2 T3A

B

Figure 12. Measuring Delay and Offset
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H.2. Measurement Errors

In NTP the roundtrip delay and clock offset between two peers A and B are determined by a
procedure in which timestamps are exchanged via the network paths between them. The procedure
involves the four most recent timestamps numbered as shown in Figure 12, where the θ0 represents
the true clock offset of peer B relative to peer A. The T1 and T4 timestamps are determined relative
to the A clock, while the T2 and T3 timestamps are determined relative to the B clock. The measured
roundtrip delay δ and clock offset θ of B relative to A are given by

δ = (T4 − T1) − (T3 − T2)    and    θ = 
(T2 − T1) + (T3 − T4)

2
 .

The errors inherent in determining the timestamps T1, T2, T3 and T4 are, respectively,

ε1 = [− ρA, 0],  ε2 = [− ρB, 0],  ε3 = [− ρB, 0] + fB(T3 − T2),  ε4 = [− rA, 0] + fA(T4 − T1) .

For specific peers A and B, where fA and fB can be considered constants, the interval containing the
maximum error inherent in determining δ is given by

[min(ε4) − max(ε1) − max(ε3) + min(ε2), max(ε4) − min(ε1) − min(ε3) + max(ε2)]
= [− ρA − ρB, ρA + ρB] + fA(T4 − T1) − fB(T3 − T2) .

In the NTP local clock model the residual frequency errors fA and fB are minimized through the use
of a second-order phase-lock loop (PLL). Under most conditions these errors will be small and can
be ignored. The pdf for the remaining errors is symmetric, so that δ̂ = <δ> is an unbiased
maximum-likelihood estimator for the true roundtrip delay, independent of the particular values of
ρA and ρB.

However, in order to reliably bound the errors under all conditions of component variation and
operational regimes, the design of the PLL and the tolerance of its intrinsic oscillator must be
controlled so that it is not possible under any circumstances for fA or fB to exceed the bounds
[− ϕA, ϕA] or [− ϕB, ϕB], respectively. Setting ρ = ρA + ρB for convenience, the absolute maximum
error εδ inherent in determining roundtrip delay δ is given by

εδ ≡ ρ + ϕA(T4 − T1) + ϕB(T3 − T2) ,

neglecting residuals.

As in the case for δ, where fA and fB can be considered constants, the interval containing the
maximum error inherent in determining θ is given by

[min(ε2) − max(ε1) + min(ε3) − max(ε4), max(ε2) − min(ε1) + max(ε3) − min(ε4)]
2

= [− ρB, ρA] + 
fB(T3 − T2) − fA(T4 − T1)

2
 .

Under most conditions the errors due to fA and fB will be small and can be ignored. If ρA = ρB = ρ;
that is, if both the A and B clocks have the same resolution, the pdf for the remaining errors is
symmetric, so that θ̂ = <θ> is an unbiased maximum-likelihood estimator for the true clock offset
θ0, independent of the particular value of ρ. If ρA ≠ ρB, <θ> is not an unbiased estimator; however,
the bias error is in the order of
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ρA − ρB

2
 .

and can usually be neglected.

Again setting ρ = ρA + ρB for convenience, the interval the absolute maximum error εθ inherent in
determining clock offset θ is given by

εθ ≡ 
ρ + ϕA(T4 − T1) + ϕB(T3 − T2)

2
 .

H.3. Network Errors

In practice, errors due to stochastic network delays usually dominate. In general, it is not possible
to characterize network delays as a stationary random process, since network queues can grow and
shrink in chaotic fashion and arriving customer traffic is frequently bursty. However, It is a simple
exercise to calculate bounds on clock offset errors as a function of measured delay. Let
T2 − T1 = a and T3 − T4 = b. Then,

δ = a − b    and    θ = 
a + b

2
 .

The true offset of B relative to A is called θ0 in Figure 12. Let x denote the actual delay between the
departure of a message from A and its arrival at B. Therefore, x + θ0 = T2 − T1 ≡ a. Since x must be
positive in our universe, x = a − θ0 ≥ 0, which requires θ0 ≤ a. A similar argument requires that
b ≤ θ0, so surely b ≤ θ0 ≤ a. This inequality can also be expressed

b = 
a + b

2
 − 

a − b
2

 ≤ θ0 ≤ 
a + b

2
 + 

a − b
2

 = a ,

which is equivalent to

θ − 
δ
2

 ≤ θ0 ≤ θ + 
δ
2

 .

In the previous section bounds on delay and offset errors were determined. Thus, the inequality can
be written

θ − εθ − 
δ + εδ

2
 ≤ θ0 ≤ θ + εθ + 

δ + εδ
2

 ,

where εθ is the maximum offset error and εδ is the maximum delay error derived previously. The
quantity

ε = εθ + 
εδ
2

 = ρ + dA(T4 − T1) + dB(T3 − T2) ,

called the peer dispersion, defines the maximum error in the inequality. Thus, the correctness interval
I can be defined as the interval 

I = [θ − 
δ
2
 − ε, θ + 

δ
2

 + ε] ,
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in which the clock offset C = θ is the midpoint. By construction, the true offset θ0 must lie
somewhere in this interval.

H.4. Inherited Errors

As described in the NTP specification, the NTP time server maintains the local clock Θ, together
with the root roundtrip delay ∆ and root dispersion Ε relative to the primary reference source at the
root of the synchronization subnet. The values of these variables are either included in each update
message or can be derived as described in the NTP specification. In addition, the protocol exchange
and clock-filter algorithm provide the clock offset θ and roundtrip delay δ of the local clock relative
to the peer clock, as well as various error accumulations as described below. The following
discussion establishes how errors inherent in the time-transfer process accumulate within the subnet
and contribute to the overall error budget at each server.

An NTP measurement update includes three parts: clock offset θ, roundtrip delay δ and maximum
error or dispersion ε  of the local clock relative to a peer clock. In case of a primary clock update,
these values are usually all zero, although ε can be tailored to reflect the specified maximum error
of the primary reference source itself. In other cases θ and δ are calculated directly from the four
most recent timestamps, as described in the NTP specification. The dispersion ε includes the
following contributions:

1. Each time the local clock is read a reading error is incurred due to the finite granularity or
precision of the implementation. This is called the measurement dispersion ρ.

2. Once an offset is determined, an error due to frequency offset or skew accumulates with time.
This is called the skew dispersion ϕτ,  where ϕ represents the skew-rate constant

(
NTP.MAXSKEW
NTP.MAXAGE

 in the NTP specification) and τ is the interval since the dispersion was last

updated.

3 When a series of offsets are determined at regular intervals and accumulated in a window of
samples, as in the NTP clock-filter algorithm, the (estimated) additional error due to offset
sample variance is called the filter dispersion εσ.

1⁄2[(T2 − T1) + (T3 − T4)]

(T4 − T1) − (T3 − T2)

rootdelay ∆′

ρ + ϕ(T4 − T1)

rootdispersion
Ε′ + ρ′ + ϕ′τ′  

Peer Variables
peer.-

System Variables
sys.-

Σ

Σ

Filter

clock offset = Θθi

rootdelay ∆ = δ + ∆′δi

offset = θ

ε + ϕτi

delay = δ

Packet Variables
pkt.-

dispersion =
ε + ϕτ + εσ

rootdispersion  Ε =
ε + ϕτ + εσ + εξ +
Ε′ + ρ′ + ϕ′τ′ + |Θ|

Figure 13. Error Accumulations
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4. When a number of peers are considered for synchronization and two or more are determined to
be correctly synchronized to a primary reference source, as in the NTP clock-selection algorithm,
the (estimated) additional error due to offset sample variance is called the selection dispersion
εξ.

Figure 13 shows how these errors accumulate in the ordinary course of NTP processing. Received
messages from a single peer are represented by the packet variables. From the four most recent
timestamps T1, T2, T3 and T4 the clock offset and roundtrip delay sample for the local clock relative
to the peer clock are calculated directly. Included in the message are the root roundtrip delay ∆′ and
root dispersion Ε′ of the peer itself; however, before sending, the peer adds the measurement
dispersion ρ′ and skew dispersion ϕ′τ′, where the primed quantities are determined relative to the
peer and τ′ is the interval since the peer clock was last updated.

The NTP clock-filter procedure saves the most recent samples θi and δi in the clock filter as described
in the NTP specification. All samples include the dispersion εi = ρ + ϕ(T4 − T1), which is set upon
arrival. Each time a new sample arrives all samples in the filter are updated with the skew dispersion
ϕτi, where τi is the interval since the last sample arrived, as recorded in the variable peer.update.
The clock-filter algorithm determines the selected clock offset θ (peer.offset), together with the
associated roundtrip delay δ (peer.delay) and filter dispersion εσ, which is added to the associated
sample dispersion to form the peer dispersion ε (peer.dispersion). Thus, the maximum error or total
dispersion of a clock offset determined from a sequence of measurements of a single selected peer
at the time of arrival of the latest sample is

ε = ρ + ϕτ + εσ .

The NTP clock-selection procedure selects a single peer to become the synchronization source as
described in the NTP specification. The operation of the algorithm determines the final clock offset
Θ (local clock), roundtrip delay ∆ (sys.rootdelay) and dispersion Ε (sys.rootdispersion) relative to
the root of the synchronization subnet as shown in Figure 13. Note the inclusion of the selected peer
dispersion and skew accumulation since the dispersion was last updated, as well as the select
dispersion εξ computed by the clock-select algorithm itself. Also, note that, in order to preserve
overall synchronization subnet stability, the final clock offset Θ is in fact determined from the offset
of the local clock relative to the peer clock, rather than the root of the subnet. Finally, note that the
packet variables ∆′ and Ε′ are in fact determined from the latest message received, not at the precise
time the offset selected by the clock-filter algorithm was determined. Minor errors arising due to
these simplifications will be ignored. Thus, the total dispersion accumulation relative to the root of
the synchronization subnet is

Ε = ρ + ϕτ + εσ + εξ + Ε′ + ρ′ + ϕ′τ′ + |Θ| ,

where τ is the time since the peer variables were last updated and |Θ| is the initial absolute error in
setting the local clock.

The three values of clock offset, roundtrip delay and dispersion are all additive; that is, if Θi, ∆i  and
Εi represent the values at peer i relative to the root of the synchronization subnet and θij, δij and
εij  represent the incremental values measured at host j relative to peer i, the values

Θj ≡ Θi + θij  ,   ∆j ≡ ∆i + δij ,   Εj ≡ Εi + ρi + ϕiτ + εij
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represent the clock offset, roundtrip delay and dispersion at peer j. Note the contribution ρi + ϕiτ
due to the precision and skew of the local clock at i since its last update. Note also that, while the
clock offset of the local clock relative to the selected peer can be determined directly, the offset
relative to the root of the synchronization subnet is not directly determinable, except on a
probabilistic basis and within the bounds established in this and the previous section.

The NTP synchronization subnet topology is that of a tree rooted at the primary server(s). Thus,
there is an unbroken path from every time server to the primary reference source. Accuracy and
stability are proportional to synchronization distance Λ, defined as

Λ ≡ Ε + 
∆
2

 . 

The selection algorithm favors the minimum-distance paths and thus maximizes accuracy and
stability. Since Θ0, ∆0 and Ε0 are all zero, the sum of the clock offsets, roundtrip delays and
dispersions of each server along the minimum-distance path from the root of the synchronization
subnet to a given server i are the clock offset Θi, roundtrip delay ∆i and dispersion Εi inherited by
and characteristic of that server.

H.5. Correctness Principles

In order to minimize the occurrence of errors due to incorrect clocks and maximize the reliability
of the service, NTP relies on multiple peers and disjoint peer paths whenever possible. In the
previous development it was shown that, if the primary reference source at the root of the
synchronization subnet is in fact a correct clock, then the true offset θ0 relative to that clock must
be contained in the interval

[Θ − Λ, Θ + Λ] ≡ [Θ − Ε − 
∆
2

, Θ + Ε + 
∆
2

] .

When a number of clocks are involved, it is not clear beforehand which are correct and which are
not; however, as cited previously, there are a number of techniques based on clustering and filtering
principles which yield a high probability of detecting and discarding incorrect clocks. Marzullo and
Owicki [MAR85] demonstrated an algorithm designed to find an appropriate interval containing
the correct time given the confidence intervals of m clocks, of which no more than f are considered
incorrect. The algorithm finds the smallest single intersection containing all points in at least
m − f of the given confidence intervals.

Correct DTS

Correct NTP

D
↑

A
↑

B
↑

C
↑

Figure 14. Confidence Intervals and Intersections
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Figure 14 illustrates the operation of this algorithm with a scenario involving four clocks A, B, C
and D, with the calculated time (shown by the ↑ symbol) and confidence interval shown for each.
These intervals are computed as described in previous sections of this appendix. For instance, any
point in the A interval may possibly represent the actual time associated with that clock. If all clocks
are correct, there must exist a nonempty intersection including all four intervals; but, clearly this is
not the case in this scenario. However, if it is assumed that one of the clocks is incorrect (e.g., D),
it might be possible to find a nonempty intersection including all but one of the intervals. If not, it
might be possible to find a nonempty intersection including all but two of the intervals and so on.

The algorithm proposed by DEC for use in the Digital Time Service [DEC89] is based on these
principles. For the scenario illustrated in Figure 14, it computes the interval for m = 4 clocks, three
of which turn out to be correct and one not. The low endpoint of the intersection is found as follows.
A variable f is initialized with the number of presumed incorrect clocks, in this case zero, and a
counter i is initialized at zero. Starting from the lowest endpoint, the algorithm increments i at each
low endpoint, decrements i at each high endpoint, and stops when i ≥ m − f. The counter records
the number of intersections and thus the number of presumed correct clocks. In the example the
counter never reaches four, so f is increased by one and the procedure is repeated. This time the
counter reaches three and stops at the low endpoint of the intersection marked DTS. The upper
endpoint of this intersection is found using a similar procedure.

This algorithm will always find the smallest single intersection containing points in at least one of
the original m − f confidence intervals as long as the number of incorrect clocks is less than half the

total f < 
m
2

. However, some points in the intersection may not be contained in all m − f of the original

intervals; moreover, some or all of the calculated times (such as for C in Figure 14) may lie outside
the intersection. In the NTP clock-selection procedure the above algorithm is modified so as to
include at least m − f of the calculated times. In the modified algorithm a counter c is initialized at
zero. When starting from either endpoint, c  is incremented at each calculated time; however, neither
f nor c are reset between finding the low and high endpoints of the intersection. If after both endpoints
have been found c > f, f is increased by one and the entire procedure is repeated. The revised
algorithm finds the smallest intersection of m − f intervals containing at least m − f calculated times.
As shown in Figure 14, the modified algorithm produces the intersection marked NTP and including
the calculated time for C.

In the NTP clock-selection procedure the peers represented by the clocks in the final intersection,
called the survivors, are placed on a candidate list. In the remaining steps of the procedure one or
more survivors may be discarded from the list as outlyers. Finally, the clock-combining algorithm
described in Appendix F provides a weighted average of the remaining survivors based on
synchronization distance. The resulting estimates represent a synthetic peer with offset between the
maximum and minimum offsets of the remaining survivors. This defines the clock offset Θ, total
roundtrip total delay ∆ and total dispersion Ε which the local clock inherits. In principle, these values
could be included in the time interface provided by the operating system to the user, so that the user
could evaluate the quality of indications directly.
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I.  Appendix I. Selected C-Language Program Listings

Following are C-language program listings of selected algorithms described in the NTP specifica-
tion. While these have been tested as part of a software simulator using data collected in regular
operation, they do not necessarily represent a standard implementation, since many other imple-
mentations could in principle conform to the NTP specification.

I.1. Common Definitions and Variables

The following definitions are common to all procedures and peers.

#define NMAX 40 /* max clocks */
#define FMAX 8 /* max filter size */
#define HZ 1000. /* clock rate */
factor */
#define FILTER .5 /* filter weight */
#define SELECT .75 /* select weight */
#define MAXSTRAT 15. /* max stratum */
#define MAXSKEW 1. /* max skew error per MAXAGE */
#define MAXAGE 86400. /* max clock age */
#define MAXDISP 16.             /* max dispersion */
#define MINCLOCK 3 /* min survivor clocks */
#define MAXCLOCK 10 /* min candidate clocks */

The folowing are peer state variables (one set for each peer).

float filtp[NMAX][FMAX]; /* offset samples */
float fildp[NMAX][FMAX]; /* delay samples */
float filep[NMAX][FMAX]; /* dispersion samples */
float tp[NMAX]; /* offset */
float dp[NMAX]; /* delay */
float ep[NMAX]; /* dispersion */
float rp[NMAX]; /* last offset */
double utc[NMAX]; /* update tstamp */
int st[NMAX]; /* stratum */

The following are system state variables and constants.

float rho = 1./HZ; /* max reading error */
float phi = MAXSKEW/MAXAGE; /* max skew rate  */
float bot, top; /* confidence interval limits */
float theta; /* clock offset */
float delta; /* roundtrip delay */
float epsil; /* dispersion */
double tstamp; /* current time */
int source; /* clock source */
int n1, n2; /* min/max clock ids */

The folowing are temporary lists shared by all peers and procedures.
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float list[3*NMAX]; /* temporary list*/
int index[3*NMAX]; /* index list */

I.2. Clock–Filter Algorithm

/*
   clock filter algorithm

   n = peer id, offset = sample offset, delay = sample delay, disp = sample dispersion;
   computes tp[n] = peer offset, dp[n] = peer delay, ep[n] = peer dispersion
 */

void filter(int n, double offset, float delay, float disp) {

int i, j, k, m; /* int temps */
float x; /* float temps */

for (i = FMAX–1; i > 0; i– –) { /* update/shift filter */
filtp[n][i] = filtp[n][i–1]; fildp[n][i] = fildp[n][i–1];
filep[n][i] = filep[n][i–1]+phi*(tstamp–utc[n]);
}

utc[n] = tstamp; filtp[n][0] = offset–tp[0]; fildp[n][0] = delay; filep[n][0] = disp;
m = 0; /* construct/sort temp list */
for (i = 0; i < FMAX; i++) {

if (filep[n][i] >= MAXDISP) continue;
list[m] = filep[n][i]+fildp[n][i]/2.; index[m] = i;
for (j = 0; j < m; j++) {

if (list[j] > list[m]) {
x = list[j]; k = index[j]; list[j] = list[m]; index[j] = index[m];
list[m] = x; index[m] = k;
}

}
m = m+1;
}

if (m <= 0) ep[n] = MAXDISP; /* compute filter dispersion */
else {

ep[n] = 0;
for (i = FMAX–1; i >= 0; i– –) {

if (i < m) x = fabs(filtp[n][index[0]]–filtp[n][index[i]]);
else x = MAXDISP;
ep[n] = FILTER*(ep[n]+x);
}

i = index[0]; ep[n] = ep[n]+filep[n][i]; tp[n] = filtp[n][i]; dp[n] = fildp[n][i];
}

return;
}
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I.3. Interval Intersection Algorithm

/*
   compute interval intersection

   computes bot = lowpoint, top = highpoint (bot > top if no intersection)
*/

void dts() {

int f; /* intersection ceiling */
int end; /* endpoint counter */
int clk; /* falseticker counter */
int i, j, k, m, n; /* int temps */
float x, y; /* float temps */

m = 0; i = 0;
for (n = n1; n <= n2; n++) { /* construct endpoint list */

if (ep[n] >= MAXDISP) continue;
m = m+1;
list[i] = tp[n]–dist(n); index[i] = –1; /* lowpoint */
for (j = 0; j < i; j++) {

if ((list[j] > list[i]) || ((list[j] == list[i]) && (index[j] > index[i]))) {
x = list[j]; k = index[j]; list[j] = list[i]; index[j] = index[i];
list[i] = x; index[i] = k;
}

}
i = i+1;

list[i] = tp[n]; index[i] = 0; /* midpoint */
for (j = 0; j < i; j++) {

if ((list[j] > list[i]) || ((list[j] == list[i]) && (index[j] > index[i]))) {
x = list[j]; k = index[j]; list[j] = list[i]; index[j] = index[i];
list[i] = x; index[i] = k;
}

}
i = i+1;

list[i] = tp[n]+dist(n); index[i] = 1; /* highpoint */
for (j = 0; j < i; j++) {

if ((list[j] > list[i]) || ((list[j] == list[i]) && (index[j] > index[i]))) {
x = list[j]; k = index[j]; list[j] = list[i]; index[j] = index[i];
list[i] = x; index[i] = k;
}

}
i = i+1;
}

if (m <= 0) return; /* find intersection */
for (f = 0; f < m/2; f++) {
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clk = 0; end = 0; /* lowpoint */
for (j = 0; j < i; j++) {

end = end–index[j]; bot = list[j];
if (end >= (m–f)) break;
if (index[j] == 0) clk = clk+1;
}

end = 0; /* highpoint */
for (j = i–1; j >= 0; j– –) {

end = end+index[j]; top = list[j];
if (end >= (m–f)) break;
if (index[j] == 0) clk = clk+1;
}

if (clk <= f) break;
}

return;
}

I.4. Clock–Selection Algorithm

/*
   select best subset of clocks in candidate list

   bot = lowpoint, top = highpoint; constructs index = candidate index list,
   m = number of candidates, source = clock source,
   theta = clock offset, delta = roundtrip delay, epsil = dispersion
*/

void select() {

float xi; /* max select dispersion */
float eps; /* min peer dispersion */
int i, j, k, n; /* int temps */
float x, y, z; /* float temps */

m = 0;
for (n = n1; n <= n2; n++) { /* make/sort candidate list */

if ((st[n] > 0) && (st[n] < MAXSTRAT) && (tp[n] >= bot) && (tp[n] <= top)) {
list[m] = MAXDISP*st[n]+dist(n); index[m] = n;
for (j = 0; j < m; j++) {

if (list[j] > list[m]) {
x = list[j]; k = index[j]; list[j] = list[m]; index[j] = index[m];
list[m] = x; index[m] = k;
}

}
m = m+1;
}

}
if (m <= 0) {

source = 0; return;
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}
if (m > MAXCLOCK) m = MAXCLOCK;

while (1) { /* cast out falsetickers */
xi = 0.; eps = MAXDISP;
for (j = 0; j < m; j++) {

x = 0.;
for (k = m–1; k >= 0; k– –)

x = SELECT*(x+fabs(tp[index[j]]–tp[index[k]]));
if (x > xi) {

xi = x; i = j; /* max(xi) */
}

x = ep[index[j]]+phi*(tstamp–utc[index[j]]);
if (x < eps) eps = x; /* min(eps) */
}

if ((xi <= eps) || (m <= MINCLOCK)) break;
if (index[i] == source) source = 0;
for (j = i; j < m–1; j++) index[j] = index[j+1];
m = m–1;
}

i = index[0]; /* declare winner */
if (source != i)

if (source == 0) source = i;
else if (st[i] < st[source]) source = i;

theta = combine(); delta = dp[i]; epsil = ep[i]+phi*(tstamp–utc[i])+xi+fabs(tp[i]);
return;
}

I.5. Clock–Combining Procedure

/*
   compute weighted ensemble average

   index = candidate index list, m = number of candidates; returns combined clock offset
*/

float combine() {

int i; /* int temps */
float x, y, z; /* float temps */

z = 0. ; y = 0.;
for (i = 0; i < m; i++) { /* compute weighted offset */

j = index[i]; x = dist(j); z = z+tp[j]/x; y = y+1./x;
}

return z/y; /* normalize */
}
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I.6. Subroutine to Compute Synchronization Distance

/*
   compute synchronization distance

   n = peer id; returns synchronization distance
 */

float dist(int n) {

return ep[n]+phi*(tstamp–utc[n])+dp[n]/2.;
}
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Security considerations
see Section 3.6 and Appendix C
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