
Appendix B. Program Listing
/*

 * *
 * Program to control LORAN-C radio *
 * *
 * This program controls a special-purpose radio designed to receive *
 * transmissions from the US Coast Guard LORAN-C navigation system. *
 * These stations operate on an assigned radio frequency of 100 kHz *
 * and can be received over the continental US, adjacent coastal areas *
 * and significant areas elsewhere in the world. *
 * *
 * The radio, which is contained in a separate, shielded box, receives *
 * the signals, which consist of an eight-pulse biphase-modulated *
 * pulse group transmitted at a 1-kHz rate. Each of these pulse groups *
 * is repeated at an interval characteristic of the particular LORAN-C *
 * chain, which consists of a master station and up to three slave *
 * stations. The radio includes a synchronous detector driven by a *
 * quadrature-phase clock, two integrators with adjustable gain and *
 * an signal-level detector used to derive the agc voltage. *
 * *
 * The radio is controlled by this program using a special-purpose *
 * interface, which converts the receiver signals using an *
 * analog/digital converter and multiplexor, and generates the digital *
 * timing and analog control signals using an AMD 9513A System Timing *
 * Controller (STC) chip, two digital/analog converters and *
 * miscellaneous logic components. The radio provides three analog *
 * signals, one for the in-phase integrator, another for the *
 * quadrature-phase integrator and a third for the agc. This program *
 * computes the master oscillator frequency adjustment and receiver *
 * agc voltage. *
 * *
 * The reciever includes a precision, oven-controlled crystal *
 * oscillator used to derive all timing signals used by the receiver *
 * and this program. The 5-MHz output of this oscillator is adjusted *
 * over a small range by this program to coincide with the LORAN-C *
 * signal as broadcast to within a few parts in 10e10 and is suitable *
 * for use as a laboratory frequency standard. The oscillator itself *
 * should have good intrinsic stability and setability to within less *
 * than 2.5 Hz at 5 MHz (0.5 ppm), since it must maintain the master *
 * clock to within 100 us over the pulse-code scan interval of several *
 * minutes. *
 * *
 * The PC running this program generates the control signals necessary *
 * to run the radio and produces a 1-pps signal synchronized to *
 * UTC(LORAN) to within a fraction of a microsecond. When manually *
 * adjusted using time-of-coincidence (TOC) data published by US Naval *
 * Observatory, this signal is suitable for use as a precision source *
 * of standard time. The system can generate all sorts of external *
 * signals as well, as programmed in the 9513A. *
 * *
 * David L. Mills (mills@udel.edu) 27 March 1992 *
 * *

 *

33

 * Current LORAN-C chains by gri (master listed first)
 *
 * 9990 North Pacific St. Paul Island, Attu, Port Clarence,
 * Narrow Cape
 * 9980 Icelandic Sea
 * 9970 North West Pacific Iwo Jima, Marcus Island, Hokkaido, Gesashi,
 * Yap Island
 * 9960 North East US Seneca, Caribou, Nantucket, Carolina Beach,
 * Dana
 * 9940 West Central US Fallon, George, Middletown, Searchlight
 * 9610 South Central US
 * 8970 Great Lakes US Dana, Malone, Seneca, Baudette
 * 8290 North Central US
 * 7990 Mediterranian Sea Sellia Marina, Lampedusa, Kargabarun,
 * Estartit
 * 7980 South East US Malone, Grangeville, Raymondville, Jupiter,
 * Carolina Beach
 * 7970 Norwegian Sea Ejde, Sylt, B0, Sandur, Jan Mayen
 * 7960 Gulf of Alaska Tok, Narrow Cape, Shoal Cove
 * 7930 Labrador Sea Angissoq, Sandur, Ejde, Cape Race
 * 5990 West Central Canada Williams Lake, Shoal Cove, Port Hardy
 * 5930 East Central Canada Caribou, Nantucket, Cape Race
 * 4990 Central Pacific Johnson Island, Upolu Point, Kure Island
 */

#include <stdio.h>
#include <ctype.h>
#include <bios.h>
#include <math.h>
#include <conio.h>
#include <string.h>

/*
 * Sizes of things. The pulse-group filter is a shift register with one
 * stage for each 100-us bin in a 1000-us sample window plus two stages
 * for a noise gate. The envelope filters consist of one stage for each
 * 10-us cycle in the 300-us envelope pulse gate, for a total of 30
 * samples.
 */
#define NRMS 10 /* size of pulse-group filter */
#define NENV 30 /* size of envelope filter */

/*
 * Program characteristics. The field and display guard times are the
 * maximum latency for the program to process samples at the end of a
 * gri and for the output routines to print a line, respectively. If the
 * time to the next gri is less than either of these, the next frame is
 * skipped. The watchdog timeout is the maximum number of frames before
 * the program abandons cycle search and reverts to pulse-group seach.
 * The agc averaging factor sets the time constant of integration for
 * the receiver signal- level indicator. The remaining parameters
 * establish the minimum and maximum median filter size and envelope and
 * phase weights.
 */
#define FGUARD 1000 /* field guard time (100 us) */

34

#define DGUARD 8000 /* display guard time (100 us) */
#define WATCHDOG 2000 /* watchdog timeout (frame) */
#define AGCFAC 16 /* agc averaging factor */
#define MMIN 3 /* min median filter size */
#define MMAX 10 /* max median filter size */
#define EMIN 5 /* min envelope weight */
#define EMAX 50 /* max envelope weight */
#define EFAC 1.1 /* envelope adjustment factor */
#define PMIN 5 /* min phase weight */
#define PMAX 200 /* max phase weight */
#define PFAC 1.2 /* phase adjustment factor */

/*
 * Receiver characteristics. The receiver delay is characteristic of the
 * receiver bandpass. The pulse-group offset is characteristic of the
 * pulse-group filter and noise gate.
 */
#define RCVDELAY 50 /* receiver delay (200 ns) */
#define OFFSET 21 /* pulse-group offset (10 us) */

/*
 * Receiver gain and noise gates. The vco parameter is adjusted
 * for zero nominal frequency offset. The agc parameter is adjusted for
 * nominal receiver output on the peak loran pulse of 800 mv p-p. The
 * receiver gain parameter is adjusted so that the agc threshold (knee)
 * occurs at a peak signal amplitude of 100, as determined by the status
 * display. The derived envelope factor is adjusted so the zero crossing
 * of the derived envelope signal occurs at the third cycle. The noise
 * gate parameters establish the error/false-alarm rates.
 */
#define VCO 194 /* initial vco dac */
#define AGC 162 /* initial agc dac */
#define RGAIN 2.5 /* receiver gain */
#define DERVEL 2.2908 /* derived envelope factor */
#define PGATE 3 /* pulse-group noise gate */
#define SGATE 2 /* strobe noise gate */

/*
 * The receiver agc is controlled to produce a q-channel amplitude of
 * 100, which represents a demodulator transfer function at the third
 * carrier cycle of 50 V/rad. The vco has a sensitivity of 1 Hz/V
 * reduced to 0.1 Hz/V by a pad between the dac and the vco, which
 * represents a transfer function of 0.628 rad/V-s. The dac produces 6 V
 * p-p for an input of 256V p-p, for a transfer function of .0234. The
 * ratio of the 100-kHz demodulator clock to the vco frequency (5 MHz)
 * is 1/50. The overall pll gain is the product of these factors .0147,
 * rounded up to .015 for neatness.
 */

#define VGAIN .015 /* overall loop gain */

/*
 * Timing generator definitions
 */
#define PORT 0x0300 /* controller port address */

35

#define TGC PORT+0 /* stc control port (r/w) */
#define TGD PORT+1 /* stc data port (r/w) */
/*
 * Analog/digital converter definitions
 */
#define ADC PORT+2 /* adc buffer (r)/address (w) */
#define ADCGO PORT+3 /* adc status (r)/adc start (w) */

#define START 0x01 /* converter start bit (w) */
#define BUSY 0x01 /* converter busy bit (r) */
#define DONE 0x80 /* conversion done bit (r) */

/*
 * Digital/analog converter definitions
 * Note: output voltage is inverted from buffer
 */
#define DACA PORT+4 /* vco (dac a) buffer (w) */
#define DACB PORT+5 /* agc (dac b) buffer (w) */
/*
 * Code generator definitions
 * Note: bits are shifted out from the lsb first
 */
#define CODE PORT+6 /* pulse-code buffer (w) */

#define MPCA 0xCA /* LORAN-C master pulse code group a */
#define MPCB 0x9F /* LORAN-C master pulse code group b */
#define SPCA 0xF9 /* LORAN-C slave pulse code group a */
#define SPCB 0xAC /* LORAN-C slave pulse code group b */

/*
 * Mode register definitions
 */
#define PAR PORT+7 /* parameter buffer (w) */

#define INTEG 0x03 /* integrator mask */
/*
 * time constant values
 *
 * 0 1.000 ms
 * 1 0.264 ms
 * 2 0.036 ms
 * 3 short caps
 */
#define GATE 0x0C /* gate source mask */
/*
 * gate source values
 *
 * 4 always open
 * 8 group repeition interval (GRI)
 * c puldse code interval (PCI)
 * f strobe (STB)
 */
#define IEN 0x20 /* enable interrupt bit */
#define EN5 0x40 /* enable counter 5 bit */
#define ENG 0x80 /* enable gri bit */

/*
 * Timing generator (STC) commands
 */
/* argument sssss = counter numbers 5-1 */

36

#define LOADDP 0x00 /* load data pointer */
/* argument ee = element (all groups except ggg = 000 or 111) */
#define MODEREG 0x00 /* mode register */
#define LOADREG 0x08 /* load register */
#define HOLDREG 0x10 /* hold register */
#define HOLDINC 0x18 /* hold register (hold cycle increm) */
/* argument ee = element (group ggg = 111) */
#define ALARM1 0x07 /* alarm register 1 */
#define ALARM2 0x0F /* alarm register 2 */
#define MASTER 0x17 /* master mode register */
#define STATUS 0x1F /* status register */

#define ARM 0x20 /* arm counters */
#define LOAD 0x40 /* load counters */
#define LOADARM 0x60 /* load and arm counters */
#define DISSAVE 0x80 /* disarm and save counters */
#define SAVE 0xA0 /* save counters */
#define DISARM 0xC0 /* disarm counters */
/* argument nnn = counter number */
#define SETTOG 0xE8 /* set toggle output HIGH for counter */
#define CLRTOG 0xE0 /* set toggle output LOW for counter */
#define STEP 0xF0 /* step counter */
/* argument eeggg, where ee = element, ggg - counter group */
/* no arguments */
#define ENABDPS 0xE0 /* enable data pointer sequencing */
#define ENABFOUT 0xE6 /* enable fout */
#define ENAB8 0xE7 /* enable 8-bit data bus */
#define DSABDPS 0xE8 /* disable data pointer sequencing */
#define ENAB16 0xEF /* enable 16-bit data bus */
#define DSABFOUT 0xEE /* disable fout */
#define ENABPFW 0xF8 /* enable prefetch for write */
#define DSABPFW 0xF9 /* disable prefetch for write */
#define RESET 0xFF /* master reset */

/*
 * Function declarations
 */
void status(double, double, char*);

/*
 * STC setup. Note gri = 99600, pci = 300 and stb = 10 (us).
 *
 * Counter 1 generates a 200-kHz signal from the 5-MHz master VCO. This
 * signal is a slightly assymetrical square wave (duty factor 12/13). An
 * external flipflop divides this signal by two to get the 100-kHz gri
 * clock which drives counter 2. All other counters are driven from the
 * 5-MHz source. The 200-kHz and 100-kHz signals are used by the
 * synchronous demodulator in the receiver.
 *
 * Counter 2 generates the gri (pulse-code) gate, which repeats at the
 * interval assigned to the LORAN-C chain; e.g., 9960 for the Northeast
 * U.S. chain. The signal consists of a high 8-ms interval preceeded by
 * a programmable low interval normally equal to the gri interval less 8
 * ms. Counter 3 generates the pulse-code (pci) gate, which enables the
 * receiver only when a pulse group is expected. The signal consists of
 * eight 300-us high intervals beginning at the high interval of counter

37

 * 2. Counter 4 generates the stb (cycle) gate used during envelope
 * scan. The signal consists of a high 10-us interval preceeded by a
 * programmable interval in the range up to about 300 us.
 *
 * Counter 5 operates as a gated divider to drive the frequency scalar
 * and output divider, which produces the output signals for external
 * equipment. The gating signal is generated by counter 4, which can be
 * enabled for this purpose under probram control. When so enabled,
 * counter 5 is stopped for the interval programmed in counter 4,
 * enabling precise alignment of the frequency scalar and output divider
 * to UTC. The output signal can be at 1 pps and any decimal multiple up
 * to 100 kHz plus 5 MHz or, if UTC alignment is not necessary, any
 * binary or decimal submultiple of 5 MHz. Note that all counters
 * operate in binary mode, except the frequency scalar and output
 * divider, which normally operate in bcd mode.
 */
int init[] = {

0x0162, 12, 13, /* counter 1 (p0) */
0x0262, 9160, 800, /* counter 2 (gri) */
0x8162, 1500, 3500, /* counter 3 (pcx) */
0xc162, 0, 50, /* counter 4 (stb) */
0x0162, 25, 25 /* counter 5 (out) */
};

/*
 * Standard envelope cycle amplitudes. These are matched with the
 * received envelope amplitudes to compute the rms error, assuming the
 * reference cycle (3) is at the reference phase in the envelope window.
 * Following are the cycle amplitude values (peak-normalized to 100) in
 * the standard LORAN transmission specification.
 *
 * cycle 1 2 3* 4 5 6 7 */
double envcyc[7] = {4.7, 25.3, 50.8, 72.9, 88.6, 97.3,100.0};

/*
 * Program variables (units)
 */
int ptrenv = 0; /* index of display cycle */
char mode = ’1’; /* operating mode */
char pulse = ’m’; /* master (m) or slave (s) codes */
int par = 0x0a; /* mode register */
char kbd = ’ ’; /* latest keystroke */

/*
 * System timing and rrelated data (units). These values provide the
 * precise offset of the reference phase relative to the epoch when
 * the STC chip was last reset by this program. All timing calculations
 * are performed relative to this epoch. The freq and phase variables
 * are computed in various places in the program, but take effect only
 * at the end of the processing cycle, so that all timing calculations
 * can be performed with respect to the epoch the system is actually at.
 */
int frame = 0; /* offset to reference frame (2*gri) */
int offset = 0; /* offset to reference gri (10 us) */
int strobe = 0; /* offset to reference cycle (10 us) */
int gri = 9960; /* group repetition interval (10 us) */

38

int pcx = 1500; /* pulse-code interval (200 ns) */
int freq = 0; /* frequency offset (10 us/frame) */
int phase = 0; /* phase offset (10 us) */
int step = 1; /* phase step (10 us) */
int stb[MMAX]; /* strobe median filter */
int sgate = SGATE; /* strobe noise (max-min) */

/*
 * Various controls normally preset, but can be adjusted by keyoard
 * commands. After all, this is a prototype device.
 */
double vco = VCO; /* vco dac signal */
double vcodac = VCO; /* vco dac bias (dac a) */
double agc = AGC; /* agc dac signal */
double agcdac = AGC; /* agc dac bias (dac b) */

/*
 * Raw and processed data input from receiver. The raw data are received
 * directly from the adc and summed for both the a and b gri intervals.
 * The offset data are computed during the receiver calibration modes
 * and used to remove bias from the raw data to produce the net signal
 * valid at the end of the frame. As the envelope pointer cycles through
 * all 30 100-us cycles of the pulse gate, the i and q signal envelopes
 * are averaged separately for use in the cycle-identification and
 * phase-tracking processes. The median filters are used to suppress
 * impulse-noise and pulse-dropout. The rms error signal produced from
 * the i and q signals is used during the pulse-code identification
 * process.
 */
double isig = 0; /* i-signal (a+b) */
double qsig = 0; /* q-signal (a+b) */
double pmed[NENV][MMAX]; /* phase median filter */
double emed[NENV][MMAX]; /* envelope median filter */
double mgate = 0; /* envelope median filter span */

double pcyc[NENV]; /* cycle phase */
double pfac = PMIN; /* cycle phase weight */
double ecyc[NENV]; /* cycle amplitude */
double efac = EMIN; /* cycle amplitude weight */
double erms[NENV]; /* cycle rms error */
double edrv[NENV]; /* cycle derived envelope */

double iofs = 307; /* i-integrator offset */
double qofs = 308; /* q-integrator offset */
double agcraw = 0; /* receiver agc output (adc chan 2) */
double agcavg = 0; /* receiver agc smoothed signal */
double agcofs = 317; /* receiver agc offset (zero signal) */
double agcmax = 355; /* receiver agc max signal (overload) */
double rms[NRMS]; /* pulse-group signal shift register */
double gain = RGAIN; /* program gain */
double dervel = DERVEL; /* derived envelope factor */
char report[257] = "\0"; /* report string for display */

/*
 * Event counters. These tally the synchronization events of interest

39

 * for debugging and monitoring.
 */
int pgcnt = 0; /* pulse-group search events */
int encnt = 0; /* envelope search events */
int cscnt = 0; /* cycle-slip events */
int sscnt = 0; /* strobe-slip events */
int pncnt = 0; /* pulse-group noise events */

/*
 * Signal/noise ratios. These reveal signal quality and health of the
 * tracking processes.
 */
double psnr = 0; /* pulse-group max-envelope/rms */
double esnr = 0; /* envelope rms-max/rms-min */

/*
 * Main program
 *
 * Programming note: There is usually enough time between gri intervals
 * for one print statement, but not two, at least on a 286.
 */
main(argc, argv) int argc; char *argv[]; {

int mindex = 0; /* index of min cycle in envelope */
int maxdex = 0; /* index of max cycle in envelope */
int cycle = 0; /* cycle counter */
int count = 0; /* utility counter */
int icnt = 0; /* integration cycle counter */
int mcnt = 0; /* median counter */
int ecnt = 0; /* envelope counter */
int env = 0; /* envelope scan pointer */
int envbot = 0; /* first cycle in envelope scan */
int envtop = NENV-1; /* last cycle in envelope scan */
int i, j, temp; /* utility temps */
char codesw = 0; /* gri a/b switch */
char pllsw = 0; /* enable pll switch */
double dtemp, etemp, ftemp, gtemp; /* utility doubles */
double fmax, fmin; /* utility max/min values */
char msg[80] = "\0"; /* status message */
int tmp[MMAX]; /* int temporary list */
double ftmp[MMAX]; /* double temporary list */

/*
 * Decode command-line arguments
 *
 * usage: <program name> <gri> <codes> <agc> <vco>
 * <gri> assigned LORAN-C group repitition interval (default 9960)
 * <codes> m for master, s for slaves (first one found) (default m)
 * <agc> initial agc dac (0-255) (default AGC parameter)
 * <vco> initial vco dac (0-255) (default VCO parameter)
 */

if (argc > 1)
sscanf(argv[1], "%i", &gri);

if (argc > 2)
pulse = *argv[2];

if (argc > 3)

40

sscanf(argv[3], "%lf", &agcdac);
if (argc > 4)

sscanf(argv[4], "%lf", &vcodac);
/*
 * Initialization
 *
 * This section runs only once. It resets the timing generator,
 * loads its registers with default values and clears arrays. The
 * program then simulates a "1" keystroke and sets the receiver gain
 * at minimum to begin receiver calibration.
 */

outp(TGC, RESET); outp(TGC, LOAD+0x1f); /* reset STC chip */
outp(TGC, LOADDP+MASTER); outp(TGD, 0xf0); outp(TGD, 0x8a);
outp(TGC, LOADDP+1);
for (i = 0; i < 5*3; i++) {

outp(TGD, init[i]); outp(TGD, init[i]>>8);
}

outp(TGC, LOADARM+0x1f); /* let the good times (mode 1) roll */
sprintf(report, "Calibrating receiver");

/*
 * Main loop
 *
 * This is the main receiver loop and runs until escaped by a ^C
 * signal. The main loop runs twice per frame or once each gri
 * (pulse groups a and b) and performs the main receiver update
 * between the end of pulse group b and the beginning of pulse group
 * a. While most program functions are completed in one frame, some
 * may persist indefinately until canceled by another keystroke or
 * automatically by the program.
 */
while (1) {

/*
 * Scan for keyboard functions
 *
 * This section tests for keyboard commands and decodes
 * keystrokes.
 */
if (kbhit() != 0) {

kbd = getch();
switch (kbd) {

/*
 * The following commands control the phase of the
 * receiver frame relative to the received signal. These
 * are normally needed only for manual signal
 * acquisition.
 */
case ’+’: /* shift frequency offset +step/gri */

freq += step; break;

case ’-’: /* shift frequency offset -step/gri */
freq -= step; break;

41

case ’0’: /* shift frequency to zero offset */
freq = 0; break;

case ’]’: /* shift phase +10 us*step */
phase = step; break;

case ’[’: /* shift phase -10 us*step */
phase = -step; break;

/*
 * The following commands adjust various receiver vco
 * and agc bias values. The exact values are determined
 * at initial receiver alignment and compiled in the
 * source code and normally need not be changed in
 * regular operation.
 */
case ’}’: /* adjust program gain up */

dervel *= 1.1; break;

case ’{’: /* adjust program gain down */
dervel /= 1.1; break;

case ’)’: /* adjust receiver gain up */
agcdac++; agc++; break;

case ’(’: /* adjust receiver gain down */
agcdac--; agc--; break;

case ’>’: /* adjust vco bias up */
vcodac++; break;

case ’<’: /* adjust vco bias down */
vcodac--; break;

/*
 * The following commands select which pulse codes are
 * used and determine which set (a or b) to use. These
 * are normally needed only for manual signal
 * acquisition.
 */
case ’m’: /* use master pulse codes */

pulse = ’m’; break;

case ’s’: /* use slave pulse codes */
pulse = ’s’; break;

case ’x’: /* flip pulse code a/b */
codesw = !codesw; break;

/*
 * The following commands select the receiver gate and
 * integrator gain. These are normally needed only for
 * manual signal acquisition.
 */
case ’u’: /* switch to ungated mode */

42

par = 0x02; step = 10; pllsw = 0; break;

case ’g’: /* switch to gri mode */
par = 0x06; step = 10; pllsw = 0; break;

case ’p’: /* switch to pci mode */
par = 0x0a; step = 10; pllsw = 0; break;

case ’e’: /* switch to stb mode */
par = 0x0c; step = 1; pllsw = 0; break;

case ’l’: /* open loop (for alignment) */
pllsw = 1; break;

/*
 * The following commands establish the receiver mode.
 * Normally, the acquisition process sequences modes
 * automatically through four modes in the order below.
 * These commands can be used to restart the process at
 * any point.
 */
case ’1’: /* calibrate min gain */

mode = kbd; par = 0x0a; break;

case ’2’: /* calibrate max gain */
mode = kbd; par = 0x0a; break;

case ’3’: /* calibrate normal gain */
mode = kbd; par = 0x0a; break;

case ’4’: /* search for pulse-group phase */
mode = kbd; par = 0x0a; break;

case ’5’: /* search for envelope phase */
mode = kbd; par = 0x0c; break;

/*
 * Display receiver status (debug). Note that the
 * display may take longer than a gri, so that the
 * receiver can loose synchronization. Usually,
 * synchronization can be resynchronized simply by
 * flipping the code phase ("x" command).
 */
case ’q’:

outp(TGC, LOADDP+MASTER);
printf("status %02x master mode %02x %02x",

inp(TGC), inp(TGD), inp(TGD));
outp(TGC, LOADDP+1);
printf("counters\n");
for (i = 1; i < 6; i++) {

printf("%2i", i);
for (j=1; j<7; j++) printf(" %02x",

inp(TGD));
printf("\n");
}

printf("agcdac %4.1lf vcodac %4.1lf\n",

43

agcdac, vcodac);
break;

}
}

/*
 * Wait for next gri and accumulate i, q, agc
 *
 * This section first enables automatic adc start at the end of
 * the next gri. It then reads the i integrator (adc channel 0),
 * q integrator (adc channel 1) and agc (adc channel 2). These
 * values are summed for the a and b pulse groups and processed
 * at the end of the b pulse group.
 */
outp(PAR, ENG | par); outp(ADC, 0); /* i */
while ((inp(ADCGO)&DONE) == 0);
isig += inp(ADC);
outp(PAR, par);
outp(ADC, 1); outp(ADCGO, START); /* q */
while ((inp(ADCGO)&DONE) == 0);
qsig += inp(ADC);
outp(ADC, 2); outp(ADCGO, START); /* agc */
while ((inp(ADCGO)&DONE) == 0);
agcraw += inp(ADC);

/*
 * Process i-phase, q-phase and agc
 *
 * Note that a LORAN frame consists of two gri intervals a and
 * b, each with individual pulse codes. The receiver integrates
 * each gri using the assigned pulse codes. There are two sets
 * of pulse codes, one for the master station and the other for
 * slave stations, of which there may be as many as four. Each
 * LORAN chain is assigned a unique gri interval in the range
 * 40-100 ms.
 */
if (codesw == 0) {

count++;

/*
 * gri a processing
 *
 * This section processes the i, q and agc samples from the
 * previous frame and computes the receiver vco and agc dac
 * values. It begins by computing the average in-phase,
 * quadrature-phase and agc signals. Note the offset and
 * sign corrections, since the adc operates in unsigned,
 * inverted mode.
 */
isig = -(isig-iofs)*gain; qsig = -(qsig-qofs)*gain;
agcavg += (agcraw-agcofs)/AGCFAC;
if (agcavg < 0) agcavg = 0;

/*
 * In calibrate mode "1" the receiver gain is set to

44

 * minimum. The program waits for the averages to settle
 * and then calculates the integrator offsets and agc
 * minimum value, which takes a few seconds. When done, the
 * program simulates a ’2’ keystroke to complete receiver
 * calibration.
 *
 * In this mode the vco dac is clamped and the agc dac is
 * set to minimum (0).
 */
if (mode == ’1’) {

vco = vcodac; agc = 0; env = 0;
iofs -= isig/AGCFAC; qofs -= qsig/AGCFAC;
dtemp = agcraw-agcofs; agcofs += dtemp/AGCFAC;
if (isig*isig+qsig*qsig+dtemp*dtemp < 3 &&

count > AGCFAC*2) {
mode = ’2’; /* continue in mode ’2’ */
count = 0;
sprintf(report, "iofs %4.1lf qofs %4.1lf agcofs %4.1lf gain %4. 2

iofs, qofs, agcofs, gain);
}

}

/*
 * In calibrate mode 2 the receiver gain is set to maximum.
 * The program waits for the averages to settle and then
 * calculates the agc maximum value, which takes a few
 * seconds. When done, the program simulates a ’3’ keystroke
 * to establish the normal receiver gain configuration.
 *
 * In this mode the vco dac is clamped and the agc dac is
 * set to maximum (255).
 */
else if (mode == ’2’) {

vco = vcodac; agc = 255;
dtemp = agcraw-agcmax; agcmax += dtemp/AGCFAC;
if (dtemp*dtemp < 1 && count > AGCFAC*2) {

mode = ’3’; /* continue in mode 3 */
count = 0; agcavg = 0;
}

}

/*
 * In calibrate mode 3 the receiver gain is determined by
 * the receiver agc, which is a peak-indicating type
 * sensitive to the peak pulse power in the 90-110 kHz
 * spectrum. This step, which takes a few seconds, is
 * necessary only to insure the receiver operates at the
 * best signal/noise ratio and without overload during the
 * scanning process. When done, the program simulates a ’4’
 * keystroke to begin the pulse-group scan.
 *
 * In this mode the vco dac is clamped and the agc dac is
 * computed from the receiver agc smoothed output.
 *
 * *** This part not finished yet ***

45

 */
else if (mode == ’3’) {

vco = vcodac; agc = agcdac;
if (count > AGCFAC*2) {

mode = ’4’; /* continue in mode 4 */
count = 0; fmax = 0; fmin = 0; pgcnt++;
sprintf(report, "agcmax %4.1lf agcavg %4.1lf\nSearching for signa

agcmax, agcavg);
}

}

/*
 * In acquisition mode 4 the radio scans at 100 us per frame
 * over the entire frame (2*gri), which takes up to about
 * seven minutes. The program accumulates the 12 most recent
 * received rms signal samples in a pulse-gate filter. The
 * first two samples are used as a noise gate. In the three
 * most recent samples, including two in the filter and the
 * most recent, either the first or last must be at least
 * 1/3 the second, or the second is most likely a noise
 * pulse, which could be due to a pulse code from another
 * chain just happening to appear in the pulse-code window.
 * In addition, the program computes a weighted sum which
 * favors the two samples near the middle of the last ten
 * stages in the filter. The program saves the value and
 * index of the highest sample received. Note that sample
 * selection from the pulse-group filter is valid only after
 * 12 samples have been received. Therefore, the program
 * waits for 12 samples before updating a bin and wraps
 * around for 12 bins beyond the end of the frame. In order
 * to improve the estimated position, the program
 * interpolates between the intervals just before and just
 * after the selected interval. When the scan is complete,
 * the program simulates a ’5’ keystroke to begin the
 * envelope scan.
 *
 * In this mode the vco dac is clamped and the agc dac
 * remains at the value computed in the previous mode.
 */
else if (mode == ’4’) {

vco = vcodac; agc = agcdac;
if (count > 2*gri/10+NRMS) {

fmin = sqrt(fmin/count);
if (fmax <= 4*fmin) {

status(fmax, fmin, " low signal");
count = 0; fmax = 0; fmin = 0; pgcnt++;
}

else {
status(fmax, fmin, " cycle search");
if (fmin > 0)

psnr = fmax/fmin;
count = 0; pllsw = 0;
phase = mindex-offset-OFFSET; freq = 0;
mode = ’5’; /* continue in mode 5 */
envbot = 0; envtop = NENV-1;

46

env = 0; ptrenv = 0; par = 0x0c;
for (i = 0; i < MMAX; i++)

stb[i] = 0;
efac = EMIN; pfac = PMIN;
esnr = 0; mcnt = 0; ecnt = 0;
strobe = 0; fmin = 999; fmax = 0;
icnt = 0; encnt++;
}

}
else {

freq = 10;
dtemp = isig*isig+qsig*qsig;
fmin += dtemp;
dtemp = sqrt(dtemp);
if (rms[0] > dtemp*PGATE ||

rms[0] > rms[1]*PGATE) {
rms[0] = (dtemp+rms[1])/2; pncnt++;
}

for (i = 0; i < NRMS-1; i++) {
rms[i+1] = rms[i];
}

rms[0] = dtemp;
dtemp = rms[4]+rms[5]+rms[6];
dtemp -= (rms[1]+rms[2]+rms[3]+

rms[7]+rms[8]+rms[9])/6;
if (count > NRMS) {

if (dtemp > fmax) {
fmax = dtemp;
dtemp = (rms[6]-rms[4])/

(rms[6]+rms[4]);
mindex = offset+(int)dtemp*10;
}

}
if (((count+1)%100) == 0)

status(fmax, sqrt(fmin/count), "\0");
}

}

/*
 * In tracking mode 5, which is the default, the program
 * scans at 10 us per frame over the 300-us receiver
 * pulse-gate interval. The program integrates the q-
 * channel and i-channel envelopes separately in one-cycle
 * (10 us) bins and determines the reference cycle as the
 * minimum rms error relative to a prestored model envelope.
 * If sufficient integrated signal amplitude is not found
 * within a minute or so, the search is abandoned and the
 * program reverts to the pulse-group search.
 *
 * In this mode the vco dac follows the i channel and the
 * agc follows the q channel, both averaged in complicated
 * ways.
 */
else {

47

/*
 * This is the envelope scan. The q signal represents
 * the amplitude and the i signal the phase-correction.
 * The program actually uses only the envelope
 * amplitude.

 */
ftemp = sqrt(isig*isig+qsig*qsig);
gtemp = isig;

/*
 * Median filters for both the amplitude and phase
 * signals for each cycle of the pulse are used to help
 * cope with cross-rate interference and dual-rate
 * transmitter blanking. The variables pmed and amed are
 * shift registers containing the most recent samples.
 * The variables ftemp and gtemp are the median
 * amplitude and phase channels, respectively, while the
 * variable mspan is the span of the envelope channel
 * for later use as a noise gate.
 */
if (mcnt < MMIN)

mcnt++;
for (i = 0; i < mcnt-1; i++) {

pmed[env][i+1] = pmed[env][i];
emed[env][i+1] = emed[env][i];
}

pmed[env][0] = ftemp;
emed[env][0] = gtemp;
for (i = 0; i < mcnt; i++){

ftmp[i] = pmed[env][i];
for (j = 0; j < i; j++) {

if (ftmp[i] < ftmp[j]) {
gtemp = ftmp[i]; ftmp[i] = ftmp[j];
ftmp[j] = gtemp;
}

}
}

ftemp = ftmp[mcnt/2];
mgate = ftmp[mcnt-1]-ftmp[0];
for (i = 0; i < mcnt; i++){

ftmp[i] = emed[env][i];
for (j = 0; j < i; j++) {

if (ftmp[i] < ftmp[j]) {
gtemp = ftmp[i]; ftmp[i] = ftmp[j];
ftmp[j] = gtemp;
}

}
}

gtemp = ftmp[mcnt/2];
ecyc[env] += (ftemp-ecyc[env])/efac;
pcyc[env] += (gtemp-pcyc[env])/pfac;

/*
 * Experiment: compute derived envelope.
 */

48

if (env == envtop)
ftemp = ecyc[env];

else
ftemp = ecyc[env+1];

edrv[env] = ecyc[env]-dervel*(ftemp-ecyc[env]);
if (edrv[env] < 0)

edrv[env] = -edrv[env];

/*
 * Compute rms envelope error and find cycles of max
 * amplitude and min error.
 */
if (ecyc[env] > fmax) {

fmax = ecyc[env]; maxdex = env;
}

if (env+6 > NENV-1)
ftemp = ecyc[NENV-1];

else
ftemp = ecyc[env+6];

if (ftemp != 0)
ftemp = 100/ftemp;

etemp = 0;
for (i = 0; i < 7; i++) {

j = env+i;
if (j > envtop)

dtemp = ecyc[envtop]*ftemp;
else

dtemp = ecyc[j]*ftemp;
dtemp -= envcyc[i]; etemp += dtemp*dtemp;
}

erms[env] = sqrt(etemp/7);
if (erms[env] < fmin) {

fmin = erms[env]; mindex = env;
}

/* if (edrv[env] < fmin &&
env < maxdex-1 && env > maxdex-7) {
fmin = edrv[env]; mindex = env-2;
}

*/

/*
 * This section is entered at the end of the envelope
 * scan. It establishes the cycle position and
 * calculates the signal/noise ratio and phase-
 * correction signal and receiver gain control. The
 * cycle position is determined from the envelope cycle
 * of minimum rms error using a median filter. The
 * phase-correction signal is extracted from the third
 * carrier cycle, while the signal/noise ratio is
 * computed as the ratio of the amplitude of the seventh
 * carrier cycle divided by the rms error of the first
 * cycle. The span of the values in the strobe filter is
 * calculated for later use as a noise gate. In order to
 * maintain critical damping (damping factor of 0.707),

49

 * the pll gain must be controlled so that the product
 * of the loop time constant and loop gain is equal to
 * 1/2.
 */
if (env == envbot) {

fmin = 999; fmax = 0;
for (i = 0; i < mcnt-1; i++)

stb[i+1] = stb[i];
if (maxdex < 8)

stb[0] = 0;
else if (mindex < maxdex-8 || mindex > maxdex-4)

stb[0] = maxdex-6;
else

stb[0] = mindex;
for (i = 0; i < mcnt; i++){

tmp[i] = stb[i];
for (j = 0; j < i; j++) {

if (tmp[i] < tmp[j]) {
temp = tmp[i]; tmp[i] = tmp[j];
tmp[j] = temp;
}

}
}

cycle = tmp[mcnt/2];
ftemp = 1/(2*VGAIN*pfac);
if (ftemp > 1)

ftemp = 1;
ftemp *= pcyc[cycle+2];
if (pllsw != 0) ftemp = 0;
vco = vcodac+ftemp;
if (cycle < 1 || cycle > 17)

sgate = SGATE;
else

sgate = tmp[mcnt-1]-tmp[0];
dtemp = ecyc[cycle+6]; etemp = erms[cycle];
if (etemp > 0)

esnr = dtemp/etemp;
else

esnr = 0;
strcpy(msg, "\0");

/*
 * This section is entered at the end of each
 * integration cycle. It checks the signal quality,
 * cycle position within the 300-us envelope gate
 * and strobe position within the 90-us cycle-
 * identification window. The receiver gain is
 * determined from the amplitude of the seventh
 * cycle in the window. If reliable cycle
 * identification has not been achieved in a
 * reasonable time, the program punts back to the
 * pulse-group scan. The integration time constant
 * is increased only if all samples in the strobe
 * median filter are identical.
 */

50

icnt++;
if (icnt >= mcnt) {

icnt = 0;
if (mcnt < (int)(8*pfac) && mcnt < MMAX)

mcnt++;
if (sgate >= SGATE) {

if (count < WATCHDOG) {
strcpy(msg, " strobe noise");
if (strobe != 0) {

mode = ’5’; /* continue in mode 5 */
envbot = 0; envtop = NENV-1;
env = 0; ptrenv = 0; par = 0x0c;
for (i = 0; i < MMAX; i++)

stb[i] = 0;
efac = EMIN; pfac = PMIN;
esnr = 0; mcnt = 0; ecnt = 0;
strobe = 0; fmin = 999; fmax = 0;
encnt++;
}

}
else {

strcpy (msg,
" resume pulse-group search");

mode = ’4’; /* continue in mode 4 */
count = 0; fmax = 0; fmin = 0; pgcnt++;
par = 0x0a;
}

}
else {

if (cycle < 3 || cycle >= 15) {
strcpy(msg, " cycle slip");
phase = -(9-cycle); cscnt++;
mode = ’5’; /* continue in mode 5 */
envbot = 0; envtop = NENV-1;
env = 0; ptrenv = 0; par = 0x0c;
for (i = 0; i < MMAX; i++)

stb[i] = 0;
efac = EMIN; pfac = PMIN;
esnr = 0; mcnt = 0; ecnt = 0;
strobe = 0; fmin = 999; fmax = 0;
cscnt++;

}
else if (cycle+2 != strobe) {

strcpy(msg, " strobe slip");
mode = ’6’; sscnt++;
strobe = cycle+2;
}

}
}

ecnt++;
if (ecnt >= (int)efac) {

ecnt = 0;
if (strobe != 0) {

if (dtemp > 100)
agc--;

51

else
agc++;

}
if (sgate == 0) {

if (efac < EMAX)
efac *= EFAC;

if (pfac < PMAX)
pfac *= PFAC;

}
}

/*
 * This section determines what to display about the
 * status of the receiver and tracking information.
 * The envelope amplitude phase-correction and rms
 * error signals can be desplayed for every cycle
 * scanned. In coarse-search mode before the strobe
 * position has been determined only the
 * signal/noise ratio and strobe span are displayed;
 * while, in fine-tracking mode only the three
 * cycles before and five cycles after the strobe
 * are displayed. This includes one cycle before the
 * cycle-posigion window and one after. This reduces
 * the integrator bumps in case of a strobe slip,
 * which normally is not more than +-1 cycle.
 */
if (strobe == 0) {

strcat(msg, " ?");
dtemp = esnr; etemp = sgate;
ptrenv = cycle+2;
}

else {
count = 0;
dtemp = ecyc[ptrenv]; etemp = erms[ptrenv];
if (ptrenv == strobe)

strcat(msg, " x");
if (kbd == ’v’)

etemp = pcyc[ptrenv];
if (ptrenv == envtop-1) {

strcat(msg, " agc");
etemp = agc;
}

else if (ptrenv == envtop) {
strcat(msg, " vco");
etemp = vco;
}

}
status(dtemp, etemp, msg);
if (strobe != 0) {

envbot = strobe-3; envtop = strobe+5;
}

else {
envbot = 0; envtop = NENV-1;
}

ptrenv++;

52

if (ptrenv > envtop) ptrenv = envbot;
if (ptrenv < envbot) ptrenv = envtop;
}

}

/*
 * Compute the interval to the next gri. Normally, this is
 * fixed at the gri interval specified less 800 (8 ms), but
 * can be adjusted in 10-us steps to align the timing
 * generator to the transmitted LORAN-C signal. The
 * adjustments can be in the form of a frequency offset, in
 * 10 us/frame increments, or a one-time phase adjustment,
 * in 10-us increments. Note that the interval to the next
 * gri has already been loaded in the counters at this
 * point. The value loaded here actually applies to the gri
 * after that. Since this is the end of a b interval and the
 * next a interval has already been established, frequency
 * and phase adjustments will take effect at the beginning
 * of the next b interval after that, so correct timing
 * between the a and b pulse groups for a single frame are
 * preserved. Also, if a phase adjustment occurs,purge the
 * envelope averages.
 */
offset += freq+phase; /* adjust epoch */
while (offset >= 2*gri) {

offset -= 2*gri; frame++;
}

while (offset < 0) {
offset += 2*gri; frame--;
}

temp = gri+freq+phase; /* gri counter */
while (temp >= 2*gri)

temp -= 2*gri;
while (temp < FGUARD || (temp < DGUARD &&

report[0] != ’\0’))
temp += 2*gri;

temp -= 800; outp(TGC, LOADDP+0x0a);
outp(TGD, temp); outp(TGD, temp>>8); phase = 0;

/*
 * Load the vco and agc dacs and initialize the pulse code
 * and internal integrators for the next frame. Also step
 * the envelope strobe one cycle (10 us) for the next frame.
 */
dtemp = vco; /* vco dac */
if (dtemp > 255)

dtemp = 255;
if (dtemp < 0)

dtemp = 0;
outp(DACA, (int)dtemp);
dtemp = agc; /* agc dac */
if (dtemp > 255)

dtemp = 255;
if (dtemp < 0)

dtemp = 0;

53

outp(DACB, (int)dtemp);
temp = 5000-pcx; /* envelope scan window */
outp(TGC, LOADDP+0x0b);
outp(TGD, pcx); outp(TGD, pcx>>8);
outp(TGD, temp); outp(TGD, temp>>8);
outp(TGC, LOADDP+0x0c);
env--; /* envelope scan strobe */
if (env < envbot)

env = envtop;
if (env > envtop)

env = envbot;
temp = env*50+RCVDELAY;
outp(TGD, temp); outp(TGD, temp>>8);
if (pulse == ’s’)

outp(CODE, SPCA); /* pulse code */
else

outp(CODE, MPCA);
isig = 0; qsig = 0; agcraw = 0;
}

else {

/*
 * gri b processing
 *
 * This section sets up for the b pulse group. It resets the
 * gri (counter 2) load register to delay exactly one gri
 * less 800 (8 ms), which will be used for the subsequent a
 * interval following the next b interval. It also sets the
 * b code for the next b interval. The program also displays
 * the report string if left by the preceeding a interval.
 */
temp = gri-800; /* gri counter */
outp(TGC, LOADDP+0x0a);
outp(TGD, temp); outp(TGD, temp>>8);
if (pulse == ’s’)

outp(CODE, SPCB);
else

outp(CODE, MPCB);
if (report[0] != ’\0’) {

puts(report); report[0] = ’\0’;
}

}
codesw = !codesw;
}

}

/*
 * subroutine to encode and display status line
 * displays line of the form
 *
 * kggggm n ttt ff ooooo cc uu.u vv.v message
 *
 * kbd assigned gri
 * k last keystroke
 * gggg assigned gri

54

 * m master (m) or slave (s) indicator
 * n operating mode number
 * ttt time constant
 * ff frame offset relative to turnon
 * ooooo cycle offset within the frame (10 us steps) to gri
 * cc cycle offset within the gri (10 us steps)
 * uu.u signal value at this position
 * vv.v error value at this position
 * message information message
 */
void status(val1, val2, string) double val1, val2; char *string; {

if (kbd == ’r’) {
sprintf(report, "pg%3i en%3i cs%3i ss%3i pn%5i vc%5.1lf es%5.1lf gn%5.2lf",

pgcnt, encnt, cscnt, sscnt, pncnt, psnr, esnr,
gain);

kbd = ’ ’;
}

else
sprintf(report, "%c%5i%c %c%6.1f%3i%6i%3i%6.1lf%6.1lf%6.1lf%s",

kbd, gri, pulse, mode, pfac, frame, offset+strobe, ptrenv,
val1, edrv[ptrenv], val2, string);

}

/* end program */

55

