THE UNIVERSITY OF MICHIGAN

Memorandum 13

SYSTEM/360 INTERFACE ENGINEERING REPORT

David Mills

CONCOMP: Research in Conversational Use of Computers
ORA Project 07449
F.H. Westervelt, Director

supported by:

DEPARTMENT OF DEFENSE ADVANCED RESEARCH PROJECTS AGENCY WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050 ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

November 1967

PREFACE

The System/360 interface provides a connection between the PDP-8 and the multiplexor channel of System/360 models 30, 40, and 50, as well as the 2870 Multiplexor Channel attached to other models. Either byte-interleaved or burst-mode operation can be sustained at transmission rates up to 70 kilobytes-per-second. Interface control operations are supervised via the PDP-8 accumulator and interrupt facilities, while data transfer operations are directed via the three-cycle data break facility. The interface is attached directly to the channel-control unit interface cables which interconnect the IBM equipment and occupies one control unit position on the channel. The equipment satisfies all original equipment manufacturer's (OEM) specifications as described in the following IBM publications:

- 1. System/360 I/O Interface: Channel to Control Unit Original Equipment Manufacturer's Information, IBM Corporation, Form A22-6843-3.

The accompanying photographs on the next two pages show the Data Concentrator, including the System/360 interface together with its test panel. The interface itself is assembled in the bays immediately above the test panel.

The Data Concentrator. The Interface is in the Bay immediately above the Test Panel. Figure i.

Figure ii. The Test Panel of the Interface.

ACKNOWLEDGMENTS

In the design of the equipment described herein, Mr. Dan Pence transcribed the logical functions to DEC Flip-Chip technology and constructed the working documentation, consisting of logic diagrams and computer-generated punched-card wiring lists. Working from these wiring lists, the Gardner-Denver Company of Grand Haven, Michigan, constructed the Flip-Chip mounting panels using automatic wire-wrap machinery. Mr. Ken Burkhalter designed the IBM-DEC interface circuit boards and power control equipment described in Appendix D. Panel, described in Appendix F, was constructed using photographic techniques by the Prin-Tek Company of Detroit, Michigan. All the special printed-circuit components were supplied by the Photo Tek Company of Ann Arbor. Mr. David Flower and Mr. Warren Kennison assembled the equipment in a most craftsmanlike fashion.

The IBM company provided documentation which was invaluable in the design of this equipment. In particular, Mr. Les Bailey and Mr. Dan Murphy, both of IBM, have contributed much useful advice.

TABLE OF CONTENTS

																Page
PREF	ACE.							• • • •	• . •		• •	• • •				iii
ACKNO	OWLE	DGMEN	TS	• • • •		• • •			•							vii
LIST	OF I	FIGUR	ES													xiii
I	INT	RODUC	TION.	• • • •		c • o	• • •								•	1
ΙΙ	CHAI	NNEL	INTER	RFACE	LI	NES										2
		BUS Out Inb Sel	OUT. IN bound ound ectic	Tags	s	ols	· · ·	• • • •	• • •	• • • •	• • •	· · · · · · · · · · · · · · · · · · ·	• • •	• •		2 2 4 4 4 5
III	CONT	rol :	SEQUE	NCES			• • •			. 						5
	3.1 3.2 3.3 3.4 3.5	Ser Spe Pol	tial vice cial ling ipmen	Cycl Sequ Oper	e enc ati	es.	• • • •		• • •	• • •	• • •					6 9 12 14 18
ΙV		GRAMM ERFACI														19
	4.1 4.2 4.3	Ser	mand vice tem/3	Inte	rfa	ce () per	ati	ions	s						2 2 2 6 3 6
		Hal ^r Tes	rt I/ t I/O t I/O gramm) !		· · ·	• • • •				• • •	• • •	• • •	• •		37 37 38 39
V	ARCI	HITEC	ΓURE	OF S	YST	EM/	360	INT	ΓΕΝΙ	FAC	Ε					39
APPEN	NDIX	Α		• • • •		• • •	• • •				• • •					62
APPEN	NDIX	B					• • •			• • •	• • •					73
APPEN	NDIX	C	• • • • •	• • • •	• • •	• • •	• • •									83
	ANAI	LYSIS	OF S	ELEC	T L	ATCI	1 C]	RCU	JITI	RY.						. 85
APPEN	NDIX	D			e • •	• • •							• • •			. 88
	ADD	TION	AL CO	NSTR	UCT	ION	DET	CAII	LS.							. 90
		D 1 D 2 D 3	Powe	em C r Co DEC	ntr	ol l	Jnit									. 92

TABLE OF CONTENTS (cont'd)

		Page
APPENDIX	E	99
APPENDIX	F	145
	The Test Panel	

LIST OF FIGURES

<u>Figure</u>		Page
i	The Data Concentrator	iv
ii	The Test Panel of the Interface	ν
1	Channel-Control Unit Interface Lines	3
2	Initial Selection	7
3	Service Cycle (Burst Mode)	10
4	Interface Disconnect	13
5	Control Unit Busy	16
6	Register Bit Assignments	21
7	Initial Selection-HIO	23
8 a	Service Cycle—Stop	27
8 b	Service Cycle-End	28
9	Principal Interface Components	40
10a	AR1, BR1, AR2 Registers	43
10b	BR2 and CTL Registers	44
11	PDP-8 Data Paths	45
12	Bus Gating	46
13	Select Interception	48
14	Channel Seizure	49
15	Command Storage/Proceed	51
16	Status	52
17	Parity Check	53
18	BR2 Gating	55
19	Command End	56
20	Service End	58
21	Cycle Reset	59
22	Control Operation Decoder and Channel Request Flip-Flop	60
A 1	Channel Seizure	64
A 2	Command Byte Storage	65
A 3	Command Status Presentation	66
A 4	Special Status Presentationxiii	67

LIST OF FIGURES (cont'd)

Figure		Page
A 5	Service Cycle	68
A 6	Service Cycle End	69
A 7	PDP-8 Data Break Cycle	70
B 1	Initial Selection	73
B 2	Service Cycle	73
В3	Control Unit Busy	75
B 4	Interface Disconnect	75
B 5	Channel Seizure	77
В 6	Gate Transfer	77
В7	Major State-Service Cycle	79
B 8	Data-Break Service Cycle	79
B 9	Test I/O Loop	81
B10	SEL OUT/SEL IN Delays	81
C 1	Select Latch	86
C 2	Select Latch State Table	87
D 1	Physical Configuration	91
D 2	Power Control Unit	93
D 3	DEC to IBM Bus Driver Module	95
D 4	IBM to DEC Bus Receiver Module	97
D 5	SEL OUT Bypass Module	98
E 1	AR1	101
E 2	BR1	102
E 3	AR1/BR1 Pulsing	103
E 4	AR2	104
E 5	BR2	105
E 6	AR2/BR2 Pulsing	106
E 7	BR2 Gating	107
E 8	Control Register	108
E 9	Clearing the Control Register	109
E10	Control Operation Decoder	110
E11	IOT Detection	111

LIST OF FIGURES (cont'd)

Figure		Page
E12	Transfer Direction	112
E 1 3	Address Register Compare	113
E14	Address Detect	114
E15	Channel Request	115
E16	Select Interception	116
E17	Channel Seizure	117
E18	Command Storage	118
E19	Status	119
E 2 0	Command Cycle End	120
E 2 1	Data Break	121
E 2 2	Data Break	122
E 2 3	Service Cycle Reset	123
E 2 4	Command Cycle Reset. System Reset	124
E 2 5	BUS OUT Parity	125
E 2 6	BUS IN Parity	126
E 2 7	BUS OUT Parity Check. BUS IN Parity Check	127
E 28	BUS-TAGS OUT Gating	128
E 2 9	Select Out Gating	129
E 3 0	BUS-TAGS in Gating	130
E 3 1	On-Line/Off-Line Circuitry	131
E 3 2	Test Panel Push Button Gating	132
E 3 3	Connectors Positions	133
E 3 4	PDP-8 Cable Connectors (Page 1 of 3)	134
E 3 4	PDP-8 Cable Connectors (Page 2 of 3)	135
E 3 4	PDP-8 Cable Connectors (Page 3 of 3)	136
E 3 5	IBM Cable Connectors (Page 1 of 2)	137
E 3 5	IBM Cable Connectors (Page 2 of 2)	138
E 3 6	Test Panel Connectors (Page 1 of 3)	139
E 3 6	Test Panel Connectors (Page 2 of 3)	140
E 3 6	Test Panel Connectors (Page 3 of 3)xvii	141

LIST OF FIGURES (cont'd)

Figure			Page
F 1	Test Panel	Layout	148

SYSTEM/360 INTERFACE ENGINEERING REPORT

I. INTRODUCTION

The System/360 interface appears to the resident System/360 control program as similar to the 2702 Transmission Control. This approach is felt more fruitful in the face of heavy commitments to software support provided by the manufacturer. Its pertinent features are as follows:

- a. The interface recognizes a class of device addresses that are assigned according to the conventions established by IBM.
- b. Recognition of command codes and generation of status responses are in most cases under the control of the resident PDP-8 control program.
- c. Several buffer registers isolate the two machines so that the exchange of control and data information does not affect the timing of other control units that may be attached to the channel.
- d. Data transmission between the two machines proceeds in a byte-interleaved or burst-mode fashion at an aggregate data rate which may be programmed by the PDP-8 and indirectly by the System/360.

The System/360 interface consists of two principal components: the command interface, which services initial commands issued by the System/360 control program through the multiplexor channel, and the service interface, which transmits data and status information between the two machines. Both of these interfaces operate independently and in an overlapped fashion except at the channel interface circuitry itself, which is necessarily sequential in operation. At the channel interface the entire PDP-8 system appears to the System/360 as a control unit and accesses the interface transmission lines in the fashion prescribed for these devices.

II. CHANNEL INTERFACE LINES

The System/360 interface is connected to the multiplexor channel via a set of 34 lines which are common to all other control units serviced by the channel. All of these lines except one are simply looped through the interface and attached to the various bus drivers or receivers as required. Thus in off-line or power-down situations it is not necessary to physically reroute or switch these lines, but merely to gate off the bus drivers and receivers. The one exception (the SEL OUT line) is physically broken at the interface. The interface-inbound SEL OUT line is routed to a terminator and bus receiver, while the interface-outbound SEL OUT line is routed from a bus driver. During normal equipment operation, signals received on the inbound SEL OUT line are processed internally and then propagated to the next control unit via the outbound SEL OUT line. During off-line or power-down conditions the terminator, bus receiver, and driver are bypassed with a relay.

The interface lines and their nomenclature used throughout this document are summarized in Figure 1. Following is a brief description of the function of each of these lines. For greater detail, the reader is referred to the pertinent IBM publications.

BUS OUT. A set of nine lines, including a parity line, which propagates outbound information a byte at a time from the channel to all control units serviced by the channel. The information is conditioned by the outbound tag lines (ADR OUT, CMD OUT, SRV OUT) actuated by the channel and may represent a device address, a control unit command, or an outbound data byte.

<u>BUS IN</u>. A set of nine lines, including a parity line, which propagates inbound information a byte at a time from a selected control unit to the channel. The information

- 3 -

FIUGRE 1. CHANNEL-CONTROL UNIT INTERFACE LINES

is conditioned by the inbound tag lines (ADR IN, STA IN, SRV IN) actuated by the control unit and may represent a device address, a status byte, or an inbound data byte.

Outbound Tags. Three lines: ADR OUT, CMD OUT, and SRV OUT used to condition information on BUS OUT. If ADR OUT is up, the channel is attempting to gain initial selection of a control unit in order to transmit a command byte. When selection is achieved, CMD OUT indicates that a command byte is available on BUS OUT for interpretation by the control unit. SRV OUT is used as an interlock during data and status transmission cycles. These tags are also used in combination during certain control sequences not involving the use of BUS OUT.

Inbound Tags. Three lines: ADR IN, STA IN, and SRV IN used to condition information on BUS IN. If ADR IN is raised by the control unit, the information provided on BUS IN identifies the particular device requesting channel service. If STA IN is raised by the control unit, the information on BUS IN is the status byte pertaining to the device, and if SRV IN is raised, the control unit is requesting channel service for a data byte.

Selection Controls. Seven lines controlling the seizure and sequencing of transmission operations between the channel and the control unit. SEL OUT and SEL IN form a loop from the channel outbound through all control units in turn and finally inbound to the channel. A signal propagated on this line is intercepted by a control unit depending upon its position along this loop, which in effect establishes its priority for channel service. OPL OUT and OPL IN are conditioned by the channel and the control unit respectively and indicate the availability and connection

status of each of these devices. In particular, a control unit raises OPL IN when it has achieved selection on the interface, and is held up for the duration of the particular channel-control unit sequence involved. HLD OUT is used in conjunction with SEL OUT to minimize propagation delays through the select circuitry of the control units. SUP OUT is raised by the channel to inhibit control unit seizure of the interface under certain conditions. REQ IN is raised by each control unit requesting channel service and conditions the channel to poll the interface for seizure. Certain combinations of these selection control lines are used to indicate special conditions such as system and selective reset, and in conjunction with the outbound tag lines to indicate special conditions such as interface disconnect.

 $\underline{\text{Metering Controls}}$. Three lines used to condition usage meters on the various devices of a System/360 complex. The equipment described herein makes no use of these lines.

III. CONTROL SEQUENCES

A number of control sequences are possible between the channel and the interface and, of these, most have several variations. All sequences can be grouped in one of three classes, however:

- 1. those involving initial-command selection,
- 2. those involving data transmission, and
- 3. those involving presentation of ending status.

For any one device, these sequences proceed in the order named; that is, the device is selected and logically connected to the channel, then transmits its data, and finally transmits status regarding the condition of the I/O device at the conclusion of

the operation. However, certain conditions can occur which are asynchronous to the progression of an operation through the states corresponding to the three principal sequences. Such conditions include those that halt data transmission and those that test device status during the course of an operation. Some of these can be produced by the channel without intervention by the program. The operation of the interface using typical sequences is summarized below. Additional details of operation in exceptional cases are discussed in the pertinent IBM publications.

3.1 <u>Initial Selection Sequence</u>

Figure 2* shows the sequence of interface tag line signals during an initial selection procedure. This sequence is used for all channel commands and, in addition, for the Test I/O (TIO) sequence. The sequence begins when ADR OUT is raised by the channel while a device address is on BUS OUT. If the address has odd parity and lies within the block recognized by a control unit, that control unit prepares to seize the channel when SEL OUT rises on the interface. When this occurs, the control unit

- a. inhibits propagation of SEL OUT to the next lower-priority control unit on the interface,
- b. raises OPL IN to indicate to the channel that the control unit has in fact seized the interface, and
- $\ensuremath{\text{c.}}$ internally stores the device address presented on BUS OUT.

The channel then acknowledges OPL IN by dropping ADR OUT. The control unit then places the just-stored device address on BUS IN with odd parity and raises ADR IN. This returned address is checked by the channel for correct parity and for match

^{*} Wave forms shown in bottom of figures correspond to interface circuitry signals described in Section V. Timing information is given in the form of channel sequence photographs in Appendix B.

FIGURE 2. INITIAL SELECTION

against the address first transmitted on BUS OUT. If these tests fail, the channel performs a malfunction reset, which affects all I/O devices attached to the channel. Depending upon the particular machine model, this operation may result in a processor check or in a bit set in the Channel Status Word (CSW) stored as the result of the channel operation.

Following reception of a correct address on BUS IN, the channel next places the command byte (all zero bits for a TIO, nonzero for a valid channel command) on BUS OUT, and raises CMD OUT. The control unit stores the channel command internally and checks the byte for odd parity. Following this operation, the control unit drops ADR IN, which the channel acknowledges by dropping CMD OUT, an invitation for the control unit to present a status byte.

In most IBM control units, the allowable channel commands are well prescribed and represent only a few of the possible 255 codes. Accordingly, it is possible to detect immediately upon storage of the channel command byte whether the control unit can accept the particular command or not. Thus the control unit has the option of either accepting the command by presenting the channel with an all-zero status byte or rejecting the command with a status byte containing the unit check bit. In the equipment described here, the command may undergo analysis by the PDP-8 program, a process which may require a lengthy period compared to the channel selection sequence. Accordingly any channel command, other than TIO, is always accepted, even if it does not have odd parity. is up to the PDP-8 program to interpret the particular command code and to transmit possible rejection using an ending-status presentation containing the unit check bit.

Thus, following the acceptance of the channel command, the control unit places an all-zero status byte on BUS IN and raises STA IN, to which the channel responds with SRV OUT. The control unit now drops all inbound tag and bus lines and disconnects from the interface. If the channel forces burst mode at this time, SEL OUT will still be up at the control unit,

and a sequence of SRV IN-SRV OUT signals is expected by the channel to transmit the data associated with the operation. However, the multiplex channel will force burst mode only in connection with an Initial Program Load (IPL) operation. Therefore the equipment considered here is not normally expected to operate under channel-forced burst mode conditions.

3.2 Service Cycle

Figure 3 shows the sequence of interface tag line signals during a service cycle procedure. This sequence is used for all data and status byte transmission between the channel and the control unit. In the byte-interleaved mode, one such sequence is executed for each data byte separately. In the control-unit-forced burst mode, the initial part of the service cycle sequence is followed by alternate SRV IN-SRV OUT pairs.

The service cycle sequence differs from the initial selection sequence in that the transmission is initiated by the control unit rather than by the channel. A control unit requesting service raises the REQ IN tag line when the SUP OUT tag line is down at the control unit. (Certain sequences are expected to override the SUP OUT signal; see below.) When the channel next polls the control unit interface by raising SEL OUT, the highest priority control unit requesting service inhibits the propagation of SEL OUT, places its device address on BUS IN, and raises OPL IN and ADR IN. The channel checks the device address for odd parity, retrieves the addressed subchannel status in its active registers, and issues CMD OUT.

The control unit recognizes CMD OUT as permission to proceed with the operation, and it next drops ADR IN. When the channel drops CMD OUT the control unit raises either

a. STA IN and places a status byte on BUS IN,

FIGURE 3. SERVICE CYCLE (BURST MODE)

- b. SRV IN and places a data byte on BUS IN for transmission to the channel, or
- c. raises SRV IN and waits for a SRV OUT channel acknowledgment that a data byte has been placed on BUS OUT for transmission to the control unit.

If the device address does not have odd parity, the channel performs a malfunction reset. If a status byte does not have odd parity, an interface control check condition is generated. If, in the case of channel-inbound transmission, a data byte does not have odd parity, a channel data check condition is generated. Depending upon the particular machine model, these indications appear as a processor or memory check and as a bit set in the CSW stored as the result of the channel operation.

The channel acknowledges the receipt of a data or status byte, as appropriate, with SRV OUT. This response is also used by the control unit to verify the presence of a data byte on BUS OUT where appropriate. The channel may alternatively respond to SRV IN with CMD OUT, indicating that the data region in its main storage is exhausted, and may respond to STA IN with CMD OUT, indicating that the status byte is to be stacked in the control unit for later presentation to the channel.

In any case, the control unit responds to an outbound tag line at the end of the service cycle sequence by dropping all inbound tags and disconnecting from the interface. The channel is now free to continue polling for other control units on the interface or to issue new commands to the same or other control units. In particular, under some conditions, certain channel-generated commands may be directed to a busy control unit before device-end status has been serviced by the channel (see below).

3.3 Special Sequences

During the course of normal equipment operation and in certain abnormal situations, special control-unit interface sequences may be generated by the channel. These fall into two classes: those intended to stop device activity by request from the System/360 program, and those generated either by manual intervention or by the machine itself for the purpose of temporarily disconnecting the device from the system.

The first class of sequences includes the interface disconnect sequence generated by the channel in response to a Halt I/O (HIO) instruction executed by the System/360 program. Such a sequence can occur at any time, either within an initial selection or a service cycle sequence. The sequence is signaled after the device address has been checked by the channel and when ADR OUT is up at the control unit while SEL OUT is down. The sequence usually occurs before the command byte is stored on initial selection, but may occur after CMD OUT rises during a service cycle.

Figure 4 shows an interface disconnect sequence on initial selection. Following such a sequence, the control unit is expected to remove immediately all signals from the interface and to present ending status following its device operation. The ending status is to be transmitted only if the associated System/360 subchannel was working at the time of the sequence and may be cleared by a channel-generated TIO command prior to program intervention.

The second class of sequences includes the selective and system reset sequences generated by the channel in response either to manual intervention or equipment malfunction. The system reset sequence is indicated when both OPL OUT and SUP OUT are down at any control unit. This sequence occurs when power is first applied to the system, or when either the SYSTEM RESET, LOAD, or PSW RESTART pushbuttons are depressed on the System/360 operator's control panel. The selective

FIGURE 4. INTERFACE DISCONNECT

reset sequence is indicated when OPL OUT is down while SUP OUT is up at a control unit during an operation involving that control unit. This sequence occurs when the channel has detected a malfunction of the control unit or channel circuitry. Such a malfunction may involve invalid BUS IN parity, improper signal sequencing, or excessive sequence timings.

In the case of either the system or selective reset sequences, the control unit is expected to disconnect from the interface without presenting ending status for the operation. Since the control unit may be reselected immediately following a reset sequence, the control unit must appear busy to the channel while any internal time-dependent reset operations are completed.

3.4 Polling Operations

Since both the channel, its attached control units, and their attached devices operate asynchronously with respect to each other, conventions for device polling and acknowledgment are required. The polling-acknowledgment conventions appear at three levels:

- a. during the initial selection of a control unit,
- b. during the channel seizure procedure by a control unit, and
- c. during the selection and deletion procedures of a device attached to a control unit.

Additional conflicts for both channel and subchannel access by the System/360 program are resolved by the channel and in some systems by the channel controller.

The channel selects an attached control unit with the initial selection sequence. If the control unit is free to accept a command (without respect to the status of its attached devices), it responds with the sequence shown in Figure 1. If not, then the control unit responds with the

control unit busy sequence shown in Figure 5. This sequence begins in the same fashion as the initial selection sequence; that is, the channel places a device address on BUS OUT and raises ADR OUT. When SEL OUT rises at the control unit servicing the device, and if the control unit is busy servicing some other device, the control unit responds by placing a status byte on BUS IN and raising STA IN. The channel responds with SRV OUT unconditionally, following which the control unit disconnects from the interface. Note that this sequence does not require the control unit to store the device address presented on BUS OUT or to present stored status for the device, even if it is available somewhere in the control unit.

The status byte presented to the channel during the control unit busy sequence may take two forms. One form includes both the status modifier and busy bits, which by convention inform the System/360 program that the control unit is busy and will present a status byte containing the control unit end bit at some future time. The other form includes all three of these bits, which by convention inform the System/360 program that the control unit is temporarily busy and that the operation which was rejected by the control unit should be immediately retried. The second form of status byte is used when the control unit busy condition is expected to last somewhat less than a millisecond, the interrupt processing time of typical System/360 programs, and the first form is used in all other cases.

When the channel is not busy with some internal operation and is not in the process of issuing an initial selection sequence directed to some attached control unit, the channel normally reverts to the polling mode. In this mode the channel interprets REQ IN as a request to poll the interface with SEL OUT, an operation that presumably will result in some control unit raising OPL IN. In some models of the System/360 product line, the polling mode may be entered at interesting times, for instance while the channel is retrieving the Channel

FIGURE 5. CONTROL UNIT BUSY

Address Word (CAW) or a channel command from main storage. Since the System/360 CPU is interlocked between the time that an I/O instruction is decoded and the time that the channel or the addressed device responds, it is important that the control unit sequence following REQ IN be as short as possible. In extreme cases of control unit delay during a Start I/O (SIO) operation (either addressed to the control unit or not), a processor check may occur when the System/360 CPU microprogram attempts to update its interval timer.

Data byte transmission operations for any particular device take precedence over all other channel operations, and are guaranteed to proceed without interference to the subchannels connected to other devices serviced by the channel. Status byte transmission operations, on the other hand, are considerably more involved and may take one of two alternate forms depending upon whether the subchannel in question is busy or not.

An ending status presentation to a busy subchannel must contain the channel end bit, but may contain others as well. Such a status presentation will always be accepted by the channel with a SRV OUT response to a STA IN during the service cycle. Once this status has been stored in local subchannel storage, the channel requests a System/360 CPU interrupt which causes a channel status word (CSW) containing the subchannel status to be stored in main storage. An ending status presentation to a subchannel not in the busy state will be automatically stacked in the control unit with a CMD OUT response to a STA IN tag during the service cycle. Before stacking the status at the control unit, however, the channel stores the device address of the requesting control unit in a special register called the Interrupt Buffer (IB) (or Interrupt Queue). At this time the channel requests a System/360 CPU interrupt, and, when granted, causes a channel-generated pseudo-Test I/O command to be issued to the device whose address is stored in the IB. The control unit in question now furnishes this status as the result of an initial selection sequence rather than the service

cycle sequence originally requested. Not all IBM control units can tolerate this interesting procedure; and, in fact, well-known machine hang-ups revealed in IBM documentation in connection with the 2702 Transmission Control are due to the failure of that device to process the pseudo-Test I/O.

3.5 Equipment Failure Diagnostics

Most control unit component malfunctions can be diagnosed by the channel; and, in many cases, the System/360 control program can recover from the malfunction condition, record the failure, and continue system operation. In the case of the programmable control unit equipment considered here, certain invalid programming sequences can also produce such malfunction indications to the channel. Six malfunction conditions are recognized by channel circuitry as probably originating in an attached control unit. These may or may not be detected separately or as distinct from a processor check, depending upon the machine model:

- 1. Channel timeout. The System/360 CPU had not been released a pre-set interval (typically 150 microseconds) following issuance of an I/O instruction.
- 2. Address-in check. The channel detected a parity error on the address received from the control unit during a service cycle.
- 3. Status-in check. The channel detected a parity error on the status byte received from the control unit.
- 4. Incorrect selection. The address received from the control unit during an initial selection sequence does not match that transmitted by the channel.
- 5. No response. The control unit did not respond to re-selection on a chain-command operation.
- 6. Incorrect tag sequence. The control unit disconnected from the channel before the channel dropped the SEL OUT tag line.

Any of these malfunctions cause the channel to assume an interface control check condition, which may be indicated as a bit set in the CSW stored as the result of the operation and further detailed in the log-out area peculiar to the model. Condition 6 can occur on the multiplex channel only as the result of an Initial Program Load (IPL) operation and will always be produced when such an operation is directed to a control unit such as the 2702 Transmission Control or the interface equipment described herein.

IV. PROGRAMMING CONSIDERATIONS FOR IBM SYSTEM/360 INTERFACE

The System/360 interface is composed logically of two subinterfaces: the command interface and the service in-The command interface stores the channel command and device address developed during the multiplex channel initial selection sequence and presents the appropriate status byte to the channel to terminate the sequence. At the conclusion of the sequence, appropriate bits are set in a control register to indicate the particular type of sequence to the PDP-8 interrupt processor. The service interface supervises data break operations between the PDP-8 and the multiplexor channel. This interface is started by the PDP-8 program by loading a three-bit command code in the control register, following which three-cycle data break operations occur for data transmission between a block of PDP-8 memory and the channel. Both data and ending-status bytes are transmitted in this fashion. At the conclusion of the operation, either at channel-stop or word-count-equal-zero times, bits are set in the control register to indicate the termination condition to the PDP-8 interrupt processor.

Five registers in the interface are available to the PDP-8 program. Two of these, AR1 and BR1, are used in connection with the command interface, while another two, AR2 and BR2, are used in connection with the service interface.

The fifth register, CTL, is common to both interfaces, and serves as the controlling element for the various operations. The AR1, BR1, and AR2 registers can be read, cleared, and loaded (one's-transfer) from the AC of the PDP-8. The BR2 register is connected only to the data break facility. The CTL register can be read, inverted, and tested bit-by-bit with appropriate microinstructions (see below). Some of these registers need not be read or loaded during the common interface operations; the general read/load facility is included primarily for diagnostic utilities. Figure 6 illustrates the coding of the various register bit assignments and establishes the IOT microinstruction codes for their access.

The operation of the control register invert-undermask (CTL INV) and test-under-mask (CTL TST) microinstruction is as follows: Both of these instructions address the twelve control register bits in one-to-one correspondence with the bits of the AC. The operation of the CTL INV microinstruction results in a bit-wise inversion of each bit in the control register for which the corresponding bit in the AC is a one. The operation of the CTL TST microinstruction results in a single-instruction program skip if each control register bit which is in correspondence with a one bit in the AC is a one. If any control register bit in correspondence with a one bit in the AC is a zero, no program skip is generated. An unconditional skip is generated if the AC contains all zeros.

The RD, CLR, and WR modifiers may be applied to the registers designated AR1, BR1, and AR2. The sequence of the IOP pulses is such that the micro-operations are performed in the order listed. The RD, TST, and INV modifiers may be applied to the register designated CTL. The micro-operations are performed in that order. Appendix F illustrates segments of code that are applicable in common programming situations.

FIGURE 6. REGISTER BIT ASSIGNMENTS

4.1 <u>Command Interface Operations</u> (Figure 7)

Three of the four System/360 I/O instructions will result in a channel sequence in the command interface, and two of these will normally end by interrupting the PDP-8 program. An SIO instruction executed by the System/360 will result in one or more channel commands being fetched from System/360 core storage and transmitted to a control unit. If the device address specified in the SIO instruction lies within the block recognized by the command interface and if the interface is not busy (i.e., holding a previously issued command), then the interface will seize the channel and store the device address in AR1 and the command byte in BR1. If the channel sequence is generated as a result of a valid channel command, the command byte stored in BR1 must be nonzero, and will be an odd number if channel-outbound service is indicated and an even number if channel-inbound service is indicated.

Note that in order for the selection sequence to be initiated, the parity of the device address must be odd. If this parity is odd and yet the parity of the command byte is not odd, then the CMD PCK bit of the control register is set. This situation, interpreted as a BUS OUT parity check, does not affect the progress of the selection sequence or the status byte subsequently transmitted to the channel.

At the conclusion of the initial selection operation, the CMD END bit of the control register is set if the channel accepted the interface-generated all-zero status byte and the CMD STK bit if the channel rejected the byte. If the channel sequence is generated as the result of a valid channel command, an occurrence of the later situation must be interpreted as a System/360 machine check.* When either the CMD END or CMD STK bits are set, the PDP-8 is interrupted.

^{*} Note that in current System/360 channel equipment, stack on initial selection (CMD STK) never occurs on an all-zero status byte. In the case of a nonzero status byte, stack on initial selection will be generated only in certain cases

INITIAL SELECTION—STATUS ACCEPTED

INITIAL SELECTION—TIO STATUS STACKED

INITIAL SELECTION-HIO

FIGURE 7.

A Halt I/O (HIO) instruction executed by the System/360 causes a special channel sequence to be transmitted to a control unit. If the device address specified in the HIO instruction lies within the block recognized by the command interface and if the interface is not busy, then the interface will seize the channel and store the device address in AR1. BR1 will be forced to an all-zero byte. This sequence ends by setting the CMD HLT bit of the control register. A selective reset sequence generated by the channel during the progress of any command interface operation will also set this bit.** When the CMD HLT bit is set, the PDP-8 is interrupted.

A Test I/O (TIO) instruction executed by the System/360 causes a special channel sequence which is identical to the SIO sequence except that the command byte contains only zero bits. If the device address specified in the TIO instruction lies within the block recognized by the interface and if the interface is not busy, then the sequence ends by the transmission to the channel of a status byte containing only the status-modifier bit. If the channel accepts this byte, the interface is released and the PDP-8 is not disturbed. If the channel rejects the status byte, then the CMD STK bit is set in the control register and the PDP-8 program is interrupted. It is the responsibility

involving command chaining. Since the command interface generates a nonzero status byte only in response to a Test I/O instruction, and since this "instruction" may not occur as an element of a channel-command sequence, it is not at all clear from extant documentation whether the CMD STK bit can ever be set in any likely programming situation.

^{**} A selective reset sequence is generated by channel equipment, at least in some models, in response to a status presentation of bad parity and possibly in response to an invalid tag-line sequence. A presentation of a device address of bad parity in conjunction with ADR IN will usually result in a channel-generated system reset sequence. A presentation of a data byte of bad parity is not always detected by the channel itself, but may be detected by the CPU or memory bus register circuitry and cannot be differentiated from parity errors due to other causes.

of the PDP-8 program to retransmit a status byte containing the status modifier bit via the service interface when allowed by the channel (however, see preceding footnote). Note that this behavior in connection with the TIO instruction is consistent with that of the IBM 2702 Transmission Control and implies, in particular, that the command interface cannot provide status in response to a program-generated TIO instruction. Note further that pseudo-TIO instructions can be generated by the channel without intervention by the program, and in these cases the command and service interfaces must cooperate in the successful transmission of a status byte to the channel. Such situations arise in connection with ending-status transmissions to subchannels not in the busy state (see below).

If a system reset sequence is generated by the channel, either as the result of power-up, initial program load, or manual operator intervention, the CMD RST bit of the control register is turned on. This operation clears all other bits of the control register and results in a PDP-8 program interrupt. All System/360 registers and subchannels are reset and placed in the available state. Pending data and status transmissions on the part of the PDP-8 should be suspended.

If any System/360 channel operation is directed to the command interface when either the CMD STK,CMD RST,CMD HLT, or CMD END control register bits are set, the command interface will immediately reject the operation with the control unit busy sequence, which involves the transmission to the channel of a status byte containing the status modifier, busy, and control unit end bits. This sequence is by convention interpreted by both the channel and the System/360 program as an indication to immediately retry the operation. For this reason, the resident PDP-8 program should give high priority to command interface interrupts, since the System/360 program may be hung up during the response interval. The PDP-8 interrupt processor clears such interrupts by inverting the

appropriate bit of the control register to a zero. Previous to this operation, meaningful contents of both the AR1 and BR1 register must of course be preserved in core storage by the interrupt processor. It is possible in some System/360 programming systems that tight TIO or HIO loops may be executed under certain conditions. In the case of the HIO instruction, the resultant load on the command interface will most certainly lock up the PDP-8 interrupt processor, which then must clear the System/360 condition, presumably by the transmission of ending status to the channel. In any case, the PDP-8 program must be aware of situations inherent in the particular parent System/360 supervisory programming system in which TIO or HIO loops are involved or in which the multiplex channel is masked against interrupts, and must give high priority to channel service under those conditions.*

4.2 <u>Service Interface Operations</u> (Figure 8)

In all service-interface operations, a block of data is transferred either channel-inbound or channel-outbound. The three-cycle data break facility of the PDP-8 is used for this block transfer operation, which once initialized by the PDP-8 program, continues until the PDP-8 residual word count decrements to zero, until the channel detects that a System/360 core memory storage area is exhausted, or until the System/360 program issues an HIO instruction. All transmission operations make use of only the low-order eight

^{*} A typical instance of a tight TIO loop occurs after presentation of a unit check to certain present System/360 programming systems. Programming constraints imposed by other control units, in particular the 2841, require that a TIO be directed to the control unit immediately following a unit check. In such a case, the selector channel must be disabled before issuance of the TIO. In such cases, the same behavior may exist on the multiplexor channel, a behavior which is strongly disadvised, since not only the command interface but other IBM control units as well will hang up the system for some time.

SERVICE CYCLE (BYTE-INTERLEAVED MODE)

SERVICE CYCLE-STOP

Figure 8a.

SERVICE CYCLE-END

FIGURE 8b.

bits of a PDP-8 core memory location. The four high-order bits are ignored in channel-inbound operations, and are replaced by zeros in channel-outbound operations. Either data bytes or status bytes may be transferred using the appropriate interface order codes (see below). In the case of status byte transmission, the service interface will automatically represent status to the channel following a stack-status channel sequence.

All data and most status operations involving the service interface take place only when the associated System/360 subchannel is busy, that is when a valid channel command has been stored by the command interface. If the low-order bit of the channel command is a zero, then channel-inbound service is requested and the PDP-8 program must select the interface-outbound data operation. If the low-order bit of the channel command is a one, then channel-outbound service is requested and the PDP-8 program must select the interface-inbound data operation. Violation of these constraints will usually result in either a channel check, processor check, or storage check, depending upon the particular System/360 model.

Status presentation to the channel when the sub-channel is busy will not usually be stacked by the channel; and, if a status presentation happens to be stacked, it can eventually be cleared by re-presentation to the channel. If the subchannel is available to the System/360 program, then any status presentation will be automatically stacked and must be cleared by a channel-generated pseudo-TIO command. Such considerations dictate a careful organization of the PDP-8 program to avoid System/360 hangups due to conflicts at the command and service interfaces.

All service interface operations involve a programmed procedure which

- a. presets the word count and current address locations accessed by the three-cycle data break facility,
- $\ensuremath{\text{c.}}$ loads a three-bit order code into the control register.

The service interface then proceeds with alternate channel sequences and three-cycle data break operations until either the PDP-8 word count is decremented to zero, or until a stop sequence is generated by the channel. The appropriate bits are then set in the control register and the PDP-8 program is interrupted. The interrupt is cleared by inverting the appropriate control register bits to zeros.

In the case of data operations, operation can be selected in either the byte-interleaved or burst mode. The byte-interleaved mode is appropriate for either low-speed operations with all models or both low- and high-speed operations with the higher-numbered models. Depending upon the width of the data paths to core memory and the degree of CPU involvement in the multiplexor channel operations, the burst mode may be appropriate for high-speed operations with the lower-numbered models.

A channel-outbound byte-interleaved data operation is started by loading an octal 2 into the high-order three bits of the control register. An octal 3 starts the same operation in burst mode. These orders initiate a data operation from the channel to the PDP-8 core memory. When the PDP-8 word count decrements to zero, the SRV END bit is set in the control register. When a stop sequence is transmitted by the channel in response to a service request by the interface, the SRV HLT bit is set in the control register. No data byte is transmitted to the PDP-8 core memory on a SRV HLT cycle.

This operation is suppressible. That is, if the channel is undergoing some critical sequence which should not be interrupted for lower priority operations, the service interface will suspend data transmission. Such is the case when another control unit on the channel is operating in burst mode or when certain status operations are pending at the channel. If an operation is not outstanding in the System/360 subchannel addressed by AR2, then, depending upon the model, the channel will either respond unconditionally with a stop sequence or an interface disconnect sequence, either of which sets the SRV HLT bit of the control register, or hang up the channel. If a data byte presented by the channel does not have odd parity, then the SRV PCK bit is set in the control register. This condition does not affect the further progress of the operation and in particular does not cause a PDP-8 program interrupt.

A channel-inbound byte-interleaved data operation is started by loading an octal 4 into the high-order three bits of the control register. An octal 5 starts the same operation in burst mode. This order initiates a data operation from the PDP-8 core memory to the channel. When the PDP-8 word count decrements to zero, the SRV END bit is set in the control register. The last byte fetched from PDP-8 memory on the SRV END cycle is transmitted to the channel. When a stop sequence is transmitted by the channel in response to a service request by the interface, the SRV HLT bit is set in the control register. The last byte obtained from PDP-8 memory on a SRV HLT cycle is then lost whether or not the SRV END bit is set during the same cycle.

The comments above under channel-outbound data transmission concerning data suppression and operation with an available subchannel apply also to channel-inbound data transmission. Odd parity is automatically generated on all channel-inbound operations whatever their nature, and the SRV PCK control-register bit is never affected by such operations.

When either the SRV END or the SRV HLT control register bits become set as a result of a service interface operation, the PDP-8 program is interrupted. The interrupt processor can determine how many data bytes have been successfully transmitted by inspecting the residual word count stored by the three-cycle data break facility and applying the modifying factors shown in Table 1. If the SRV HLT bit is not on at the conclusion of an operation, the opportunity exists to transmit additional data blocks. If both the SRV HLT and SRV END bits are set in the control register following a channel-outbound data operation, an interface failure is evident.

At the conclusion of the transmission of all data blocks, and in any case following any operation terminated by the SRV HLT bit, a status presentation is expected by the channel. Such a presentation must include the channel end bit and may include others as well. Following the presentation of channel end, the subchannel involved reverts to the interruption-pending state and may allow certain I/O instructions addressing the subchannel to proceed directly to the command interface. The subchannel reverts to the available state upon receipt of an interrupt response from the System/ 360 CPU, following which any I/O instruction may be directed to the command interface. The channel end and device end bits may be combined in a single status byte.

A standard status operation is one in which a status byte containing the channel-end bit is to be transmitted to a working subchannel. Such an operation is started by loading an octal 7 into the high-order three bits of the control register. This order initiates a status operation involving status byte transmission from the PDP-8 core memory to the channel. Usually only one byte will be transmitted to the channel on any one operation; but, regardless of the number of bytes actually transferred, the operation can legitimately terminate only when the PDP-8 word count decrements to zero,

TABLE I

Order	SRV HLT	SRV END	Sequence	*Bytes Transmitted
Data Outbound				
CTL 2 CTL 3	0 1 1	1001	PDP-8 stop channel stop not possible (see text)	M - N N - N
Data Inbound				
CTL 4 CTL 5	0 1 1	1 0 1	PDP-8 stop channel stop channel stop on last byte	N - W $N - W$ $N - W - 1$ $N - W - 1$
Status Inbound				
CTL 6 CTL 7	0 1 1	1 0 0	PDP-8 stop not possible (see text) not possible (see text)	$N - W \\ N - W \\ N - W - 1 \\ N - W - 1$
* N = initial word count	ord count			

N = initial word count
W = residual word count

a condition that sets the SRV END bit in the control register and interrupts the PDP-8 program. If an interface disconnect or selective reset sequence is transmitted by the channel in response to a status presentation, then the interface will immediately disconnect from the channel and cause the SRV HLT bit to be set in the control register.

The standard status operation is not suppressible by the channel. That is, status presentations cannot be locked out of the system if the channel is disabled but has an interrupt pending for another device. these conditions, a TIO instruction issued by the System/360 program can clear pending status at the service interface. Such a procedure is called for following presentation of unit check in a status byte to certain System/360 programming systems (see preceding footnote). Such systems regularly follow presentation of unit check by a Sense channel command while the channel is disabled, and rely on clearing device status using a TIO loop. Note that in such cases a busy indication is returned to the System/360 program as long as the subchannel is working; and, in particular, the TIO is not propagated to the device itself. Thus, if the subchannel is working, a standard status operation will always terminate with the channel accepting the presentation by the service interface, and in particular without the generation of pseudo-TIO commands on the part of the channel.

If a standard status presentation is once stacked by the channel for any purpose, then the interface itself automatically "demotes" the priority to that of a special status presentation. A special status operation is one in which a status byte is to be transmitted to a subchannel not in the working state. That is, a subchannel in either the available or interruption-pending states. Such an operation is started by loading an octal 6 into the high-order three bits of the control register. This order initiates a status byte transmission in the same manner as the standard operation, with

the exception that the presentation is suppressible by the channel. Such behavior is necessary to avoid the lockout of a channel-end status presentation of a lower-priority control unit on the channel interface cable by an unsolicited status presentation by the service interface. As in the standard operation, the special operation ends by setting the SRV END bit in the control register.

To summarize the application of the two kinds of status operations, the standard operation is used to transmit a status byte, which must contain the channel-end bit, to a working subchannel; and the special operation is used to transmit a status byte to a non-working subchannel. A failure to make this distinction will result in a machine hangup in the lower-numbered models of the System/360 product line and in an interface control check (channel timeout) in the higher-numbered models. Such situations may result in a diagnostic Channel Status Word (CSW) to be stored by the System/360.

If SUP OUT is up when SRV OUT is raised by the channel in response to an ending status presentation, the CMD CHN bit of the control register is set. Such an action is interpreted as an indication that the channel is command-chaining the previous operation and is about to reselect the interface for issuance of a new channel command. The indication of the CMD CHN bit is only advisory to the PDP-8 program and does not affect the progress of any channel or interface sequence. Depending upon the circumstances involved, the PDP-8 program may process this indication as a request to save such status presentations as the attention bit until the end of the System/360 channel program, or to assign high priority to command interface operations so that the immediately following reselection procedure will not delay the channel.

4.3 System/360 Control Program Operations

Interface programming considerations for the System/ 360 resident control programs are similar to those for the 2702 Transmission Control. However, due to the somewhat richer architecture of the interface, the behavior of the two machines will be slightly different. The main differences are:

- 1. channel-end and device-end status presentation do not necessarily have to occur in the same byte,
 - 2. burst-mode operation can be sustained,
- ${\tt 3.}$ no immediate channel command operations are possible,
 - 4. unsolicited status presentations are possible.

Considerations 1 and 2 imply that it is possible to use the interface on a shared subchannel, effecting a cost reduction in channel equipment on some models. However, since it is not possible to determine at initial selection time whether a particular device attached to the PDP-8 and logically connected to a particular System/360 subchannel can or cannot accept a channel command (consideration 3), use of this capability would be rather awkward. Consideration 2 implies that system performance at moderate data rates can be materially improved in the lower-numbered models by programming the PDP-8 to operate in short multi-byte bursts. The System/360 programming problems in connection with burstmode operations are similar to those arising in connection with tape control unit operations on the multiplexor channel. Consideration 3 is another implication of the general interface characteristic that all commands are accepted if the interface is not busy. Consideration 4 is an implication of the capability of the interface to clear asynchronous unsolicited status presentations as the result of a pseudo-Test I/O instruction.

Following is a short summary of the operation of System/360 I/O instructions when directed to a device address recognized by the interface. Only those features of operation dependent upon the peculiar characteristics of the interface are emphasized.

Start I/0

Issued to a nonworking channel and subchannel, this instruction will always result in a command interface operation involving the transmission of a channel command to If both the command and service interface the interface. are idle before transmission of the channel command, then condition code 0 is set at the conclusion of the Start I/O operation. I/O activity is begun and the subchannel is placed in the working state. If the command interface is busy, then condition code 1 (CSW stored) is set at the conclusion of the operation. The device status field of the CSW contains the busy, control unit end, and status modifier bits. No I/O activity is started and the command interface is undisturbed following this operation. Normally the indicated busy condition may be expected to last in the order of a few hundred microseconds, representing the interrupt processing time of typical PDP-8 programs. If the command interface is idle and the service interface is holding pending status for the device addressed by the Start I/O instruction, then condition code 1 is set at the conclusion of the operation. The device status field of the CSW contains the status presented by the service interface and in addition the busy bit. No I/O activity is started and both the command and service interfaces are idle following the operation.

Halt I/O.

Issued to a nonworking channel, this instruction will always result in a command interface operation without regard to the state of the subchannel. In addition, the

subchannel will be set up to signal the service interface to stop data transmission the next time a service cycle is requested. If the command interface is idle prior to the issuance of a Halt I/O instruction, then condition code 1 is set at the conclusion of the Halt I/O operation and the status field of the CSW is replaced with zeros. I/O activity is stopped by the addressed device, which will then provide ending status under control of the resident PDP-8 program. If the command interface is busy, then condition code 1 is also set following the operation, but the status field of the CSW contains the busy, control unit end, and status modifier bits. The Halt I/O indication has not been stored by the command interface, although the subchannel is set up to signal this condition when the service interface next requests a service cycle.

Test I/O

Issued to a nonworking channel and subchannel, this instruction will always result in a command interface operation but will not affect the PDP-8 program unless status presented is stacked by the channel. (And whether this can ever happen is highly dubious—see comments elsewhere in this document.) Condition Code 1 will always be stored at the conclusion of the Test I/O operation. If the command interface is busy prior to the issuance of this instruction, then the status field of the CSW will contain the busy, control unit end, and status modifier bits. If the command interface is idle and status for the addressed device is available at the service interface, then that status replaces the status field of the CSW. If neither of these conditions hold, then the single status modifier bit is placed in the status field of the CSW.

Programming Notes

Contrary to published doctrine, it is evidently possible to cause I/O interrupts from devices whose subchannels are working, but without including the channel end bit and without affecting the status of the subchannel. It is not at all clear whether this is possible on all models or whether unknown machine incompatibilities can occur. Use of this feature (for instance as an attention interrupt) in real-time control environments is obvious.

In some programming systems, an automatic Sense channel command is issued (with channels disabled) when a unit check bit is set in a status byte. These systems rely on a Test I/O loop to clear ending status from the Sense command. If the Test I/O loop is looking for device end, then the cooperating PDP-8 program must present channel end and device end together on the status byte which ends the Sense command. Alternatively, the PDP-8 program must arrange that a channel end status presentation for a particular device address be followed only by status pertaining to the same device. Otherwise conflicts between the channel and the interface can occur in which the channel is asking for status (via a programmed or pseudo-Test I/O) for a device that the service interface is just not prepared to surrender.

V. ARCHITECTURE OF SYSTEM/360 INTERFACE*

The System/360 interface contains the registers and control circuitry to provide a bidirectional asynchronous transmission of both command, status, and data bytes between the System/360 multiplexor channel and the PDP-8. The interface consists of four data registers, their transfer gates, a control register, and various sequencing circuitry. The organization of these components is shown in Figure 9.

^{*} Logic symbology in this section corresponds to IBM standard usage. See Preface.

FIGURE 9. PRINCIPAL INTERFACE COMPONENTS

Referring to Figure 9, the four data registers are designated Address Register 1 (AR1), Buffer Register 1 (BR1), Address Register 2 (AR2), and Buffer Register 2 (BR2). four registers are provided with jam-transfer direct-coupled diode-capacitor-diode (DCD) gates from the test switches, and, in addition, all except BR2 are provided with onestransfer DCD gates from the PDP-8 AC. ARl is used to hold the device address presented by the channel during the initial selection sequence and is provided with jam-transfer directcoupled (DC) gates from BUS OUT. BR1 is used to hold the command byte presented by the channel during the initial selection sequence and is provided with ones-transfer DC gates from BUS OUT. AR2 is used to hold the device address presented to the channel during a service cycle. No inbound transfer gating is provided except for the DCD gates mentioned BR2 is used to hold a status or data byte during a service cycle and is provided with ones-transfer DCD gates from the PDP-8 MB and with ones-transfer DC gates from BUS OUT. BUS IN is provided with ones-transfer DC gates from AR1, AR2, and BR2 as well as constant generators 10, 40, and 70 (hex), which are used to synthesize certain status bytes. PDP-8 AC is provided with a special set of ones-transfer DC gates called the EAC bus, which is in turn provided with ones-transfer DC gates from AR1, BR1, and AR2. The EAC bus is used both to isolate the PDP-8 AC bus from the loading of the transfer gates and to provide a uniform interface for additional equipment, other than the interface, which may be connected to the PDP-8. The PDP-8 MB is provided with onestransfer gates from BR2. These gates are used in connection with a special data multiplexor described elsewhere.

A nine-bit parity detector connected to BUS OUT indicates that odd parity is present on these lines and is used in conjunction with AR1, BR1, and BR2 when these registers are loaded from BUS OUT. A parity error during the

BR1 or BR2 loading operation will set the CMD PCK or SRV PCK bits of the control register respectively. An eight-bit parity generator connected to the BUS IN transfer gates provides odd parity for the BUS IN (P) line and is used in conjunction with all BUS IN operations.

An eight-bit zero detector connected to BR1 is used during the initial selection sequence to detect the occurrence of a Test I/O channel command and to condition the following BUS IN status accordingly. An eight-bit compare circuit is connected to AR1 and AR2 to detect when these two registers contain identical bits and is used during the pseudo-TIO status sequence.

A three-bit decoder connected to BUS OUT is used during the initial selection sequence to determine whether the device address present on BUS OUT falls within the block serviced by the interface. Eight blocks of addresses, each consisting of a contiguous block of 32 addresses, may be selected by a jumper card.

The twelve-bit Control Register (CTL) is composed of a three-bit Order Register (OR) and a nine-bit Status Register (SR). The OR is used to hold the order code during a service cycle and is automatically reset following the conclusion of a block transfer operation. The SR is used to hold the various bits that indicate termination conditions of the interface sequences. However, the SR has no direct connection with any status byte that may be presented to the channel.

The logical details of these registers and their transfer gates are shown in Figure 10. Figure 11 shows the logical details of the PDP-8 data paths, and Figure 12 shows those of the BUS IN data paths. Circuit names, which appear only in this simplified description, are indicated on these diagrams. In some cases the actual circuit names and logical details differ from those recorded here. The logical details of the circuitry for all of these components are straightforward and are recorded in Appendix E. The logical organization of the control and sequencing circuitry, however, is

FIGURE 10a. AR1, BR1, AR2 REGISTERS.

FIGURE 10b. BR2 AND CTL REGISTERS

FIGURE 11. PDP-8 DATA PATHS

FIGURE 12. BUS GATING

central to the operation of the interface and is discussed below.

Figures 13 and 14 show respectively the logical organization of the circuitry used to intercept polling signals from the channel and that used to seize the control unit interface for the various kinds of sequences. During an initial selection sequence, the OUR ADR gate (Figure 13) detects the conditions for channel-requested service (initial selection) and the REQ IN gate detects the condition for control-unit requested service (service cycle). These gates may not respond simultaneously.

The remaining circuitry shown in Figure 13 is used in conjunction with the channel polling signal to detect the conditions under which the interface may seize the channel. The principal functional block in this circuitry is the select latch, shown in simplified form in Figure 13 but actually consisting of two interconnected flip-flops. This rather interesting circuit is a high-speed two-input switch with inputs derived from SEL OUT and from the two service-request gates OUR ADR and REQ IN. An analysis of this circuit is given in Appendix C.

When SEL OUT rises at the interface while either of the two service-request gates OUR ADR and REQ IN have true-valued outputs, the interface will fall into one of three states: CMD CYC, SRV CYC, or CU BUSY (see Figure 14). If OUR ADR is true and if the command interface is not busy (i.e., contains no previously stored command), then CMD INT is false and CMD CYC state is entered; if OUR ADR is true and if the interface is busy, then CMD INT is true and the CU BUSY state is entered. If OUR ADR is false and if REQ IN is true, then the SRV CYC state is entered. Entrance into either the CMD CYC or the SRV CYC state causes OPL IN to be raised after a short delay to allow the circuitry to stabilize, and entrance into the CMD CYC state causes the address presented by the channel on BUS OUT to be jam-transferred to

FIGURE 13. SELECT INTERCEPTION

FIGURE 14. CHANNEL SEIZURE.

AR1. Entrance into the CU BUSY state causes the control-unit-busy byte to be placed on BUS IN, and STA IN to be raised without disturbing any of the active interface registers. The CMD CYC and SRV CYC flip-flops each have their own reset line, which is connected to gates described below. The CU BUSY flip-flop is reset when SEL OUT drops.

Figure 15 shows the logical organization for the circuitry used during the command-storage/proceed phases of the sequences initiated by entrance into either the CMD CYC and SRV CYC states. Both of these sequences begin by placing on BUS IN the contents of AR1 or AR2 as appropriate and proceeding through the channel sequence until CMD OUT is dropped. During the CMD CYC sequence the byte on BUS OUT is transferred to BR1 when CMD OUT is raised by the channel. The short delays indicated on Figure 15 allow time for the parity circuitry to stabilize before bus transfers are executed.

Following the command-storage/proceed phase of either the CMD CYC or SRV CYC sequence, both the CMD DLY and CHL SRV flip-flops are set. These flip-flops are reset when OPL IN When the CHL SRV flip-flop becomes set, a byte of data or status information may be transferred between the channel and the interface. If the CMD CYC flip-flop is set, then the sequence ends by presenting to the channel either an all-zero status byte or a status byte containing the status modifier bit, depending upon whether BR1 has been stored as a nonzero byte or a zero byte respectively. If the SRV CYC flipflop is set, then the sequence ends by transferring a byte from BUS OUT to BR2 (channel-outbound service requested) or from BR2 to BUS IN (channel-inbound data or status service requested) with the appropriate tag line. If the CU BUSY flip-flop is set, then a status byte containing the status modifier, control unit end, and busy bits is placed on BUS IN. Appropriate delays are included to allow time for the parity circuitry to stabilize and for skew distortion to stabilize. Outbound parity-checking circuitry is shown in Figure 17.

FIGURE 15. COMMAND STORAGE/PROCEED

FIGURE 16. STATUS

FIGURE 17. PARITY CHECK

If a status request is pending at the time an initial selection procedure is signalled by the channel, then, if the contents of AR1 match those of AR2, the SRV CYC flip-flop will be set when the channel command is stored in BR2. (See gate next to SRV CYC flip-flop in Figure 14.) This special condition is detected when the status byte is transmitted to the channel. If both CMD CYC and SRV CYC flip-flops are set following the command—storage/proceed phase of the sequence, then BR2 is transferred to BUS IN and STA IN is raised. If, furthermore, the command byte stored in BR1 during the sequence contains nonzero bits, then the busy bit is logically OR'ed into the status byte. Figure 18 shows the details of the BR2 gating.

The terminating conditions for the CMD CYC sequence are shown in Figure 19. If a nonzero command byte has been stored in BR1 during a CMD CYC sequence, and if the channel has responded to presentation of the all-zero status byte with SRV OUT (any other response is an equipment check), then the CMD END bit is set in the control register. If an all-zero command byte has been stored in BR1 during the sequence and if the channel has responded to the presentation of the status byte containing the status modifier bit with CMD OUT (stack status on initial selection), then the CMD STK bit is set in the control register. These are the only two bits that can be set following a complete CMD CYC sequence, and they are mutually exclusive.

If at any time, either during an interface operation or not, both SUP OUT and OPL OUT are down at the interface, the CMD RST bit is set in the control register. This operation clears all control register bits except the CMD RST bit, which is forced to the set condition, and in addition clears all flip-flops in the interface to the channel-disconnect condition. If during a CMD CYC sequence ADR OUT is up at the interface while SEL OUT is down (interface disconnect) or SUP OUT is up while OPL OUT is down (selective reset), then the CMD HLT

FIGURE 18. BR2 GATING

FIGURE 19. COMMAND END

bit of the control register is set. This operation clears all flip-flops in the interface to the channel-disconnect condition.

The terminating conditions for the SRV CYC sequence are shown in Figure 20. This sequence may end in three ways:

- a. in a request for a data break operation to fetch a data or status byte from PDP-8 core memory (BRK REQ).
- b. in an ending condition which stops data transmission and interrupts the PDP-8 program (SRV END and SRV HLT), or
- c. in a stack-status condition which disconnects the interface from the channel and immediately re-requests channel service.

The PREP END flip-flop is set on a data or status operation in which the PDP-8 block transfer word count decrements to zero. In the channel-inbound case the channel must either accept or reject the byte before an ending-condition bit (SRV END or SRV HLT) is set in the control register.

Following the ending operation in the case either of a CMD CYC or SRV CYC sequence, the interface is disconnected from the channel with the circuit shown in Figure 21. Here the various terminating conditions are detected and the reset signals for the CMD CYC and SRV CYC flip-flops are generated. In addition, signals are derived that condition the PDP-8 interrupt bus (INT REQ) and that indicate that the command interface is busy (CMD INT).

The channel-request circuitry is shown in Figure 22. Note that when a channel-outbound request is initiated a special pulse is generated which sets the CHL REQ flip-flop and starts the operation. Conversely, when a channel-inbound data or status request is initiated a special pulse is generated which sets the BRK REQ flip-flop (see Figure 20) and starts the operation.

FIGURE 20. SERVICE END

FIGURE 21. CYCLE RESET

FIGURE 22. CONTROL OPERATION DECODER AND CHANNEL REQUEST FLIP-FLOP.

 $\begin{tabular}{lll} Additional details of interface operation are summarized in flow chart form in Appendix A. Circuit details are shown in Appendix E. \\ \end{tabular}$

APPENDIX A CHANNEL SEQUENCE FLOW CHARTS

FIGURE A1. CHANNEL SEIZURE

FIGURS A2. COMMAND BYTE STORAGE

FIGURE A3. COMMAND STATUS PRESENTATION

FIGURE A4. SPECIAL STATUS PRESENTATION

FIGURE A5. SERVICE CYCLE

FIGURE A6. SERVICE CYCLE END

FIGURE A7. PDP-8 DATA BREAK CYCLE

APPENDIX B

CHANNEL SEQUENCE PHOTOGRAPHS

Fig. B1 INITIAL SELECTION

Fig. B2 SERVICE CYCLE

FIGURE B1

INITIAL SELECTION (1µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	ADR OUT	ADO	1BØ1S	IBM
2	OPL IN	OPI	1 B Ø 1 D	IBM
3	ADR IN	ADI	1BØ1H	IBM
4	CMD OUT	CMO	1 B Ø 1 T	IBM
5	STA IN	STI	1BØ1E	IBM
6	SRV OUT	SRO	1B31D	I BM

FIGURE B2

SERVICE CYCLE (1µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	REQ IN	REI	1B31M	I BM
2	OPL IN	OPI	1BØ1P	I BM
3	ADR IN	ADI	1BØ1H	IBM
4	CMD OUT	CMO	1 B Ø 1 T	IBM
5	SRV IN	SRI	1 B Ø 1 K	IBM
6	SRV OUT	SRO	1 B 3 1 D	IBM

Fig. B3 CONTROL UNIT BUSY

 ${\rm 0.5}\mu{\rm S/CM}$ Fig. B4 INTERFACE DISCONNECT

FIGURE B3

CONTROL UNIT BUSY (1µs/cm)

Line	Name	Signal Name	Pin	Polarity
		450		
1	ADR OUT	ADO	1BØ1S	IBM
2	SEL OUT	SEL OUT	1BØ1P	IBM
3	STA IN	STI	1BØ1E	IBM
4	SUP OUT	SUO	1 B Ø 1 V	IBM

FIGURE B4

INTERFACE DISCONNECT (0.5µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	ADR OUT	ADO	1BØ1S	IBM
2	SEL OUT	SEL OUT	1BØ1P	IBM
3	OPL IN	OPI	1BØ1D	IBM
4	ADR IN	ADI	1BØ1H	IBM
5	SUP OUT	SUO	1BØ1V	IBM

Fig. B5 CHANNEL SEIZURE

1.0 S CM Fig. B6 GATE TRANSFERS

FIGURE B5
CHANNEL SEIZURE (0.5µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	ADR OUT	ADO+	1B18P	DEC +
2	OUR ADR	OURAD+	3B1ØP	DEC +
3	SEL OUT	SEO+	1A22N	DEC +
4	CU SEL	SEL+	3B1ØF	DEC +
5	CMD CYC	CMDCY+	3B12L	DEC +
6	OPL IN		1BØ1D	IBM

FIGURE B6

BUS TRANSFERS (1.0µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	OUR ADR	OURAD+	3 B 1 Ø D	DEC +
2	BO→AR1	BOAR1+	3B13P	DEC +
3	ADR IN	BADI+	3AØ9D	DEC +
4	AR1→BI	AR1BI+	3A13D	DEC +
5	CMD OUT	CMO+	1 A 2 5 U	DEC +
6	BO→BR1	BOBR1+	3A13J	DEC

Fig. B7 MAJOR STATE-SERVICE CYCLE

Fig. B8 DATA BREAK-SERVICE CYCLE

FIGURE B7

MAJOR STATES-SERVICE CYCLE (1µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	CHL REQ	CHNRQ+	3B18P	DEC+
2	CU SEL	SEL+	3B1ØF	DEC+
3	SRV CYC	SRVCY+	3B13N	DEC+
4	CMD DLY	CMDLY+	3AØ7J	DEC+
5	CHL SRV	CHSRV+	3 A Ø 7 P	DEC+
6	BRK REQ	BRKRQ+	3B17P	DEC+

FIGURE B8

DATA BREAK-SERVICE CYCLE(1µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	MPX REQ	REQ1	3A17D	DEC-
2	MPX SEL	SEL1-	2B30E	DEC-
3	BRK STA	BRKSTA	1B03P	DEC+
4	CHLREQ	CHNRQ+	3B18P	DEC+
5	BT1	BT1	3B29S	DEC(P)
6	BT 2	BT2A	3B29T	DEC(P)

1μS/CM
SEL OUT
SEL OUT PROP
SEL IN

O.1μS/CM

SEL OUT PROP

SEL OUT PROP

Fig. B10 SEL OUT/SEL IN DELAYS

FIGURE B9
TEXT I/O LOOP (2µs/cm)

Line	Name	Signal Name	Pin	Polarity
1	ADR OUT	ADO	1BØ1S	IBM
2	OPL IN	OPI	1BØ1D	IBM
3	CMD OUT	CMO	1BØ1T	IBM
4	STA IN	STI	1BØ1E	IBM
5	SRV OUT	SRO	1BØ1D	I BM
6	SUP OUT	SUO	1BØ1V	I BM

FIGURE B10
SEL OUT/SEL IN DELAYS

Line	Name	Signal	Name	Pin	Polarity
	$(1\mu s/cm)$				
1	SEL OUT	SEL	OUT	1BØ1P	IBM
2	SEL OUT PROP	SEL	PRP	1BØ2P	IBM
3	SEL IN	SH	ΞI	1BØ1M	IBM
	$(0.1\mu s/cm)$				
1	SEL OUT	SEL	OUT	1BØ1P	IBM
2	SEL OUT PROP	SEL	PRP	1BØ1P	IBM

APPENDIX C

ANALYSIS OF SELECT LATCH CIRCUITRY

ANALYSIS OF SELECT LATCH CIRCUITRY

The select latch consists of two interlocking flip-flops interconnected as shown in Figure C1. The outputs of one flip-flop are designated 0 and 1 in the diagram and those of the other flip-flop as 2 and 3. The latchback lines connect from 1 to 1' and 3 to 3' respectively. The request signal is designated —REQ and the select signal as SEL.

By straightforward analysis, the state table of Figure C1 is derived, which gives the outputs of the circuit as a function of the inputs. Four states may be recognized; and these are called Q, R, S, and T. (T does not appear for any output and is an unstable state.)

A transition diagram for this circuit is shown in Figure C2. The stable states are designated idle (no activity), select (this control unit selected), and bypass (some other control unit selected). Gates connected to the circuit detect the select and bypass states and inhibit propagation of SEL OUT in the bypass case. These states and the output decoding are so arranged that races between states cannot occur and so that no noise appears on any output during transitions.

The circuitry is implemented using standard modular components of about 35 nS propagation delay. Decisions and state transitions must be completed in times comparable to this.

Two of these circuits are used in the System/360 interface. One is connected to the CU SEL line and used in the channel seizure operation; and the other is connected to the CU BUSY line and used in the control unit busy operation.

TABLE I

INPUTS			OUTPUTS					
-REQ	SEL	1'	3 '	0	1	2	3	STATE
0	0	0	0	1	1	1	1	Q
0	0	0	1	1	1	0	1	Q
0	0	1	0	1	1	1	1	Q
0	0	1	1	1	1	0	1	Q
0	1	0	0	1	1	1	0	R
0	1	0	1	1	0	0	1	S
0	1	1	0	1	1	1	0	R
0	1	1	1	1	0	0	1	S
1	0	0	0	1	1	1	1	Q
1	0	0	1	1	1	0	1	Q
1	0	1	0	0	1	1	1	Q
1	0	1	1	0	1	1	1	Q
1	1	0	0	1	1	1	0	R
1	1	0	1	1	0	0	1	S
1	1	1	0	0	1	1	0	R
1	1	1	1	0	1	1	0	R

FIGURE C2. SELECT LATCH STATE TABLE

APPENDIX D ADDITIONAL CONSTRUCTION DETAILS

ADDITIONAL CONSTRUCTION DETAILS

D1. System Configuration

The System/360 Interface as a component of the Data Concentrator is assembled in two equipment racks which also house a high-speed paper tape reader/punch and the various power supplies and connectors which service the system. euqipment layout in these racks is shown in Figure D1. PDP-8 occupies one of these racks in which space is available for further expansion of extended memory, from the now present 12K. The other rack contains interface circuitry, the reader/punch, and the power supplies. The top three bays contain the interface circuitry itself. These bays are connected to the Test Panel immediately below, to the PDP-8, and to the Channel Interface connectors (bottom bay) with DEC module connectors. The tape transport for both the reader and the punch are mounted on slides immediately above the operating table The two logic bays which service this equipment as shown. are installed immediately below the table. Except for the attached PDP-8 cables, which are routed through the interface, this equipment is entirely independent of the interface.

At the bottom of the rack is a panel which carries the four channel interface connectors. The eight cables which connect to the Data Concentrator side of these connectors are routed to DEC module connectors on Bays 1 and 2 above. The four cables which connect to the IBM side of these connectors enter through the fan hole in the bottom of the cabinet. The fan itself has been relocated to a panel on the rear plenum door immediately below the power supplies.

The power supplies and AC distribution system are mounted on the rear plenum door. A resonant-transformer—regulated supply provides +10 volts and -15 volts to the interface equipment and Test Panel. A separate supply provides various voltages to the reader/punch equipment. Power for

RACK 1	RACK2				
SPARE	SPARE				
P D P - 8	BAY 1				
	BAY 2				
	BAY 3				
	INDICATOR PANEL				
	PCO1 TAPE READER/PUNCH				
→ TABL					
MEMORY EXTENSION	PCO1 BAY 1				
	PCO1 BAY 2				
	SPARE				
	CHANNEL CONNECTORS				

FIGURE D1. PHYSICAL CONFIGURATION

margin-check operation is obtained from an internal supply of the PDP-8. Switches mounted on each mounting bay allow power for that bay to be obtained either from the regular supply or the margin-check supply. The Power Control Unit provides AC power to the Data Concentrator in response to control signals issued by the parent IBM system. Power requirements for the Data Concentrator, including the PDP-8, total about two kilowatts at 115 VAC. A single 30-ampere circuit is used to power the equipment.

D2. Power Control Unit

All line power to both the PDP-8 and the interface circuitry is controlled by the Power Control Unit. This equipment sequences power on and off in response to standardized signals furnished by the System/360. The operation of the equipment in response to these signals is summarized in System/360 Power Control Interface-Original Equipment Manufacturers' Information, IBM Corporation, Form A22-6906-0.

The Power Control Unit (Figure D2) includes a 24V DC power supply, which is connected to the line power at all times, and two relays. One of the relays is actuated by the power sequence control of the channel and turns on the line power to the PDP-8 and interface circuitry. The other relay is actuated by a DC power supply in the interface circuitry and enables the power sequence control of the channel to step to the next control unit on the interface.

Two switches are used to control the operation of the equipment. One of these, the LOCAL/REMOTE switch, is used to transfer control of the equipment between the channel (REMOTE) and the local controls (LOCAL) for maintenance purposes. This switch should not be actuated while the equipment is in the on-line state. The other switch (POWER ON/OFF) actuates a relay which turns on line power to the PDP-8 and interface circuitry. It is effective only when the LOCAL/REMOTE switch is in the LOCAL state.

D3. IBM/DEC Interface Modules

The accompanying circuits have been designed to provide IBM/DEC compatibility in a package appropriate for installation in DEC 1943 Mounting Panels. Characteristics have been chosen to satisfy the requirements outlined in System/360 I/O Interface—Channel-to-Control Unit Original Equipment Manufacturers Information, Form A22-6843. None of the available DEC modules satisfy these requirements, notably that which specifies that the components not disturb the interface bus lines in the event of power failure or off-line operation.

BUS DRIVER (Figure D3)

Input

DEC standard levels of -3v and ground. The circuit acts as an AND for negative true-valued inputs and as an OR for positive inputs. Other input characteristics are identical to those of the R111 Diode Gate.

Output

IBM Standard SLT bus levels of ground and +3 ν . SLT conventions assign a logical 0 to ground level and a logical 1 to +3 ν . The leakage in the 0 state is less than lnA at +3 ν and the output voltage in the 1 state is 3.85 ν at 59.3 mA and 4.5 at 30 ν A. In a power-off condition the leakage in either state is less than lnA.

Performance

Propagation delay is 45ns for output rise (0 to +3V) and 25ns for output fall (+3v to 0). Transition time is 20ns for output rise and 10ns for output fall. Characteristics are not significantly affected for power supply variation of +5V on either the +10V or the -15V supply.

FIGURE D3. DEC TO IBM BUS DRIVER MODULE.

BUS RECEIVER (Figure D4)

Input

IBM standard SLT bus levels of ground and +3V. SLT conventions assign a logical 0 to ground level and a logical 1 to +3v. The circuit is non-inverting. Input bus loading is +250 μ A at +3V and -90 μ A at ground. (+equals conventional current into the receiver input.) The input impedance (at 1kc/s) is 10K ohms. In a power-off condition the input bus is loaded at 285 μ A for an input voltage level of +3v, and linearly decreases to zero as the input voltage falls to zero.

Output

DEC standard levels of -3v and ground. Output characteristics are identical with those of the R111 Diode Gate.

Performance

Propagation delays and transition times are all 20ns for both output rise and output fall. Characteristics are not significantly affected for power supply variations of +5V on either the +10V or -15V supply.

SELECT-OUT BYPASS (Figure D5)

This module contains an encapsulated DPDT relay, together with its driving circuitry, and in addition an electronic switch which provides termination for the SEL OUT signal on the channel-control unit interface cables. The terminator is a 92-ohm resistor. Bus voltage levels are expected to be in the range zero to +5V.

Inputs

DEC standard levels of -3v and ground. Relay driver: ground level activates relay armature. Terminator switch: ground level causes terminator to be disconnected.

FIGURE D4. IBM TO DEC BUS RECEIVER MODULE

FIGURE D5. SEL OUT BYPASS MODULE

APPENDIX E

LOGIC DIAGRAMS

FIGURE E1. AR1

FIGURE E2. BR1

FIGURE E3.

AR1/BR1 PULSING

FIGURE E4. AR2

FIGURE E5. BR2

FIGURE E6. AR2/BR2 PULSING

FIGURE E7. BR2 GATING

FIGURE E8. CONTROL REGISTER

FIGURE E9. CLEARING THE CONTROL REGISTER

FIGURE E10: CONTROL OPERATION DECODER

FIGURE E11: IOT DETECTION

FIGURE E12.

MASK TEST

GATE EAC AC

FIGURE E 13.

ADDRESS DETECT

FIGURE E14.

CHANNEL REQUEST

FIGURE E15.

FIGURE E16. SELECT INTERCEPTION

FIGURE E17. CHANNEL SEIZURE

FIGURE E18. COMMAND STORAGE

FIGURE E19. STATUS

FIGURE E20. COMMAND CYCLE END.

FIGURE E21. DATA BREAK

FIGURE E22. DATA BREAK.

FIGURE E23. SERVICE CYCLE RESET

SYSTEM RESET

CHANNEL SERVICE RESET

FIGURE E25. BUS OUT PARITY

FIGURE E26. BUS IN PARITY

NOTE: BSRO NEEDS A DELAY (0.001 µfd TO GROUND)

* -IBM LOGIC LEVELS

FIGURE E28. BUS-TAGS OUT GATING

- * IBM LOGIC LEVELS
- ** REMOVE AT EC 29 DEC 67

FIGURE E29. SELECT OUT GATING

FIGURE E30. BUS-TAGS IN GATING

FIGURE E31. ON-LINE/OFF-LINE CIRCUITRY

FIGURE E32. TEST PANEL PUSH BUTTON GATING

A	T B	A	N B	A ,	В
31-32 IBM BUS	31-32 IBM TAG	32 TEST PANEL	32 TEST PANEL	31-32 PDP-8 ME35	31-32 PDP-8 MF35
		31 TEST PANEL	31 TEST PANEL	29-30 PDP-8 ME34	29-30 PDP-8 MF34
		30 TEST PANEL	30 MPX	28 EAC	28 EAC
			·		
05-06 PDP-8 ME30		03 TEST PANEL			
03-04 PDP-8 PE03	03-04 PDP-8 PF03	02 TEST PANEL	02 TEST PANEL	03-04 PDP-8 PE04	03-04 PDP-8 PF04
01-02 IBM BUS	01-02 IBM TAG		01 TEST PANEL	01-02 PDP-8 PE02	01-02 PDP-8 PF02
A -	B	Α (B P	A	s S

FIGURE E33. CONNECTOR POSITIONS

FIGURE E34. PDP-8 CABLE CONNECTORS (Page 1 of 3)

FIGURE E34. PDP-8 CABLE CONNECTORS (Page 2 of 3)

BBIP+)	
BBIØ+	WØ21MJ	
BBI1+	CABLE	(ISOLATORS ON ALL LINES)
BBI2+	H TO	,
	TEST	
BBI4+	PANEL	
BBI5+	2B31	
BBI6+	М	
BBI7+	V	
CTLØØ+	P	
	R	
CTLØ2+	S	
CTLØ3+	Γ	
CTLØ4+	J	
CTLØ5+	V	
CTL1Ø+	WØ21MJ CABLE TO TEST PANEL 2B32	(ISOLATORS ON ALL LINES)
		SBOP
(SWITCH FILTERS	WASTAT	SBOØ
ON ALL LINES)	WØ21MJ CABLE	SB01
,	TO	SB02
	TEST	SB03
	PANEL	SB04
	2 A 3 Ø	SB05
		SB06
		SB07
	1	350/

FIGURE E36. TEST PANEL CONNECTORS (Page 3 of 3)

NOTE: ALL LINES CARRY IBM LOGIC LEVELS.

NOTE: ALL LINES CARRY IBM LOGIC LEVELS

FIGURE E35. IBM CABLE CONNECTORS(Page 2 of 2)

AR1Ø+ AR11+ AR12+ AR13+ AR14+ AR15+ AR16+ AR17+ BR1Ø+ BR11+ BR12+ BR13+ BR13+ BR14+ BR15+ BR16+	E F H J K L M N P R S T U	WØ21MJ CABLE TO TEST PANEL 2AØ3	(ISOLATORS ON ALL LINES)
(UNASSIGNED) BADI+ BSTI+ BSRI+ SPROP+ BOPI+ BREI+ BR17+ OFTST+ ADO+ CMO+ STO+ SEO+ OPO+ SUO+	D E F H J K L M N P R S T U V	WØ21MJ CABLE TO TEST PANEL 2AØ2	(ISOLATORS ON ALL LINES)
(ISOLATORS ONLY ON*) (SWITCH FILTERS ON ‡) OFLIN+		WØ21MJ CABLE TO TEST PANEL 2BØ2	PBØ PB1 PB2 PB3 PB4 PP5 PB6 PB7 OLSW1 OLSW2
ONLIN+		* #	SSE01

FIGURE E36. TEST PANEL CONNECTORS (Page 1 of 3)

(SWITCH FILTERS ON ALL LINES)

	_	
	D	TEST
wø21MJ	E	SADO
CABLE	F	SCMO
TO	H	SSRO
TEST	J	SSE02
PANEL	K	SOPO
2BØ1	L	SSUO
	М	SWØ+
	N	SW1+
	P	SW2+
	R	SW3+
	S	SW4+
	T	SW5+
	U	SW6+
	V	SW7+

AR2Ø+	D	
AR21+	Е	WØ21MJ
AR22+	F	CABLE
AR23+	Н	TO
AR24+	J	TEST
AR25+	K	PANEL 2A31
AR26+	L	2A31
AR27+	M	
SEL+	N	
CMDCY+	P	
SRVCY+	R	
CUBSY+	S	
CMDLY+	T	
CHSRV+	U	
	-	}

(ISOLATORS ON ALL LINES)

BR2Ø+	D	
BR21+	Е	WØ21M
BR22+	F	CABLE
BR23+	Н	ТО
BR24+	J	TEST
BR25+	K	PANE 2A32
BR26+	L	2 A S Z
BR27+	M	
CHNRQ+	N	
PREND+	P	
BRKRQ+	R	
INTR8+	S	
SKIP+	T	
EACENB	U	

(ISOLATORS ON ALL LINES)

FIGURE E36. TEST PANEL CONNECTORS (Page 2 of 3)

FIGURE E34. PDP-8 CABLE CONNECTORS (Page 3 of 3)

PANEL 1 ... IBM INTERFACE ... BUSS DRIVERS AND RECEIVERS

A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A2: A25 A26 A27 A28 A29 A30 A31 A32 |W021CR|W021CR|W021CR|W021CR|W021CR|R113 R113 R107 R113 R107 R123 R123 B123 R123 R123 B107 B107 W002 B121 B107 B107 R113 R113 R113 R107 W021CR W021CR С GN1R01 GN1A31 D BIO DADROO DADROO ADREX1 ADREX1 BBIO-BBI4+ *PARIB PARIF #BBIO+ BOPO #800÷ ≼807+ BOP-#OFTST+ #OFTST- #ONLIN+ BOO+ PAROF ★PAROB ⊯BBI7+ SCMO+ SSRO+ B00 ADREX2 BBI1-BB15+ PARIA PARIH BBIO-BB01 BB05 8807 BSR0 BSUO B00-B07-ADO-TEST OFTST+ ONLIN-B07+ PAROH PAROA BBI7-B01 GN1A01 *PARIA *PARIE *PARID **≭PARIK** ×BBI1+ ONL IN+ ONL IN+ ONL IN+ ∞R01÷ -ROPA SBO-OFLIN-≪RGATE+ ₩OFLIN+ ≪PAROG **⊭PARCK** ≪PAROD ⊯BREI+ ⊯SCMO+ ⊯SSRO+ GN1831 GN1831 DADR02 ADREYS ADREX3 BBIO+ BB16-PARIC PARIE BBI1-∗806-⊯CMO-*0P0-B01-BOP-MB04 ≈OLR-RGATE-OFLIN-B00-B06-PARCE PAROC BREI-B02 B02 GN1801 GN1801 GN1A01 BBI1+ BB17-**¤PARIF** PARIG **≭BBI2**+ ×801-×805− ∗B07-#SB0-#SH0-**≈**802+ ≈AD0+ MB05 OLSW1 ∗LOADRS B01-B07-PAROG **≈PAROF** #SPROP+ GN1A31 GN1831 DADRO3 DADR03 *PARIA *PARIG PARIE BB12-SB00 SB04 SB06 SCMO+ SOPO B02-MB06 RGATE+ SEL1+ *PAROA **≭PAROG** ⊯PAROK PAROE SPROP- PB092 PB102 BOPI+ B03 B03 GN1901 GN1801 GN1R01 GN1A01 BB12-BB16+ *PARIH *BBI3+ SB01 SB05 SB07 SSR0+ SSUO **≈**B03+ ∗RGATE-#OLR− *HIADRS PAROB B02+ PAROJ ∗PAR0H **⊭CDY2** PB092 PB102 ≪SKIP+ GN1831 GN1831 DADBO4 DADRO4 DF1 DF1 BBI3-BB17+ PARIG PARIL BBI3-OFL IN+ OFI TNA OFI TNA OFLIN+ OFL IN+ B03-BREI-OLR+ SEL1+ B03+ PAROD PAROL PAROG PB093 PB103 SKIP-RN4 B04 N GN1801 GN1A01 GN1R01 GN1A01 GN1A01 GN1R01 *PARIC ≪PARIG *PARIJ ∗PARI ≼BBI4+ ≉B00-⊭B04-#ROS-∝CMO-**≈**B04+ MB09 ADO-**≈**BDGATF ⊯SE0+ **≭PAROC** ≪PAR0I I∗PAR0 *PAROJ ⊭CDY3 PB093 PB103 **≪SRVENB** GN1A31 GN1831 BIS DADB05 DADR05 DF2 DF2 BB12+ PARIB PARII PARII B814-≽B∩1-∗B05-#B07-⊯SR0-≈SUO-MB10 BOPI-ONL IN-SEO-B02-PARCA PAROI PAROI CDY2 ADO+ B05 B05 GN1A01 GN1801 GN1A01 GN1A01 GN1A01 GN1A01 BB13+ PARID *PARIL PARIK ×BB15+ RROS SB02 RROP SROP SSE01 #0P0+ MB11 eΩl R÷ ≈80PAR-≈SEO-B03-PRROC PAROK ≪PAROL <10BI+ PB091 PB101 wBTBRK+ GN1831 BI6 B16 DADR06 AXJ1 AXJ1 *PARIC *PARII PARIK BB15-BB03 SB03 RADO 0P0npn-OLSW2 BOPAR SEO+ **≭PAROC** ₩PAR0I «PARO PAROK 10BI-SCMO SSRO BI7 BI7 DADR07 AXJ2 AXJ2 BB14-PARIA ⊯PARI-#BBI6+ ONL IN+ OFLIN+ ONL IN+ OFLIN+ ×BO6+ ≈SU0+ SUO-BGATE+ «PWCLR+ ∗HL0-B04+ 304-BADI+ ⊯PAR0-#40BT+ PB091 PB101 B07 GN1A01 GN1801 GN1A01 GN1A01 GN1801 GN1A01 BB15-PARIC PARI BB16-**≉**B02− ∝SE0-SUO-ONL IN-PWCLR- BHLO B05+ B05-CMO+ PARO 40BI-SCMO GN1A31 U DADRO8 DADRO8 AXJ3 AXJ3 *PARIE *PARII ∗ADO-∗ADO-∗SE0+ OFLIN-*PAROE ⊯CDY1 BOP BOP

WOLTON W		B01	B02	B03	B04	B05	B06	B07	B08	B09	B10	B11	B12	B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24	B25	B26	B27	B28	B29	B30	B31	B32
R		W021CR	W021CR	W021CR	W021CR	W990	BD	BD	BD	BD	BD	BD	BD	BD	BR	BR	BR	BR	BR	BR	BR	BR	R141	R121	R121	1	T			T			
	А																_	 	-		<u> </u>		 					-					
	В																				-		 		-							<u> </u>	
	C	GN1B01																1				 	+	-	-					014500			В
E STI STI DADRIO	D	OPI	OPI	DADR09	DADR09	LOADRS	≭BI0	⊯BI2	∗BI4	¤BI6	∝BIP	≅STI	#REI	≈SELPRP					1				#BRIP-	⊭B∩PBB	#RRTP+	#BUBBS+	SCTI DA	LDDT1	CMDCHN		ODDDT	000	
Figure College Colle	E	STI	STI	DADR10	DADR10	DADR09									∝BB00	≰BB02	⊯BB04	∝8806	≪B80P	⊯BCMO	≰BSE0	≅BHL0								 			
H RO	F	GN1B01	GN1B01	GN1B01	GN1801		BB10+	BBI2+	BBI4+	BB16+	BBIP+	BSTI+	BRE I+	SPROP+	B00	B02	B04	B06	BOP		+	-			DDI	DODITE							
Callion Call	H	ADI	ADI	DADR11	DADR11	DADR11	BDGATE	BDGATE	BDGATE	BDGATE	BDGATE	BDGATE	BDGATE	BDGATE											=SIINPN	-BSRT-		-		-		-	
R	i-			GN1B01	GN1B01	HIADRS															 									-			
CARROL GALBOL GA	F			BRKREQ	BRKREQ	ADREX1																											
Sel	L	GN1B01		GN1B01	GN1B01	ADREX2																						+					
N SHIDT ONIBOL O	- F				XFER	ADREX3	BDGATE	BDGATE	BDGATE	BDGATE	BDGATE	BDGATE	BDGATE									—			+								
P SELOUT SELPR BRKSTA B	N	GN1801	GN1B01	GN1B01	GN1B01		BBI1+	BBI3+	BB15+	BB17+	BADI+	BSRI+	BOPI+		B01	B03	B05	B07	ADO	SRO	OP0	SUO	-										
R GNIBO1				BRKSTA	BRKSTA										∗BB01	≭ BB03	∗BB05	≭BB 07	*BADO	∗BSR0		+									EUFF		
S ROU ROU ROBREY	R L	GN1B01	GN1B01	GN1B01	GN1B01												1																
J CM CM0 MBINCR	S	ADO	AD0	ADDACP	ADDACP												1				-	 											
U GN1801 CN1801	1	CMO	CMO	MBINCR	MBINCR		≋BI1	∗ BI3	∗BI5	≅BI7	∗ADI	≖SRI	±0PI	*																			PWRINT S
V SID SID OR	U	GN1B01	GN1B01	GN1B01	GN1B01																	 		III.U									
PRRI- ■EOFF OPO OPO	٧	SU0	SU0	DAJ	DAJ												†	 	<u> </u>			 	PARI-		21 21H-	CHONY+	JEL1+	DUP1+					GN1B31 U

PANEL 2 ... ADDRESS AND BUFFER REGISTERS

	A01	A02	A03	A04	A05	A06	A07	80A	A09	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	A30	A31	A32
	RELAY	W028S	W028S	W501	W501	W501	W501	R603	R205	R141	R141	R141	R205	R205	R205	R205	R603	R205	P1205	R205	R205	R107	W028S	W028S	W028S							
А																														 		
В																																□ □ P
C [G2A01		GOD														GN2A17										İ		<u> </u>			C
D [AR10+	GOD	SWAR1	SWBR1	SWAR2	SWBR2	IOP2-	PSWAR1	PSWAR1	PSWAR1	PSWAR1	PSWBR1	PSWBR1	PSWBR1	PSWBR1	«AR=AR	≪AR≃AR	∗AR=AR	PSWAR2	PSWAR2	PSWAR2	PSWAR2	I0P2-	PSWBR2	PSWBR2	PSWBR2	PSWBR2	⊭SH0-	SBOP	AR20+	BR20+ D
E		AR11+	BADI+					≪AR1AC-	∗AR10-	≭AR11-	∗RR12-	≪AR13-	∗BR10~	∗BR11-	₩BR12~	⊭BR13-	AR10+	AR12+	AR15+	#AR20-	∗AR21-	 ₩AB22-	 ₩AR23~	∗AR2AC-	⊯BR20-	≉ BR21−	≼BR22-	∗BR23-	SW0+	SB00	RR21+	BR21+ E
F	SELOUT	AR12+	BSTI+	⊭SWAR1	∗SWBR1	#SWAR2	∗SWBR2	PDCAR1	PDCAR1	PDCAR1	PDCAR1	PDCAR1	PDCBR1	PDCBR1	PDCBR1	PDCBR1	AR20~	AR22-	AR25-	PDCAR2	PDCAR2	PDCAR2	PDCAR2	PDCAR2	PDCBR2	PDCBR2	PDCBR2	PDCBR2	≪SW1-	SB01	RR22+	BR22+ F
н		AR13+	BSRI+						BAC04-	BAC05-	BACO6-	BAC07-	BRC04-	BAC05-	BAC06-	BAC07-	AR10-	AR12-	AR15-	BAC04-	BAC05-	BACO6-	BAC07-		BMB04-	BMB05-	BMB06-	BMB07-	SW1+	SB02	AR23+	BR23+ H
J	OFLIN-	AR14+	SPROP+		-			PWCLR-	*AR10+	∗AR11+	∗AR12+	≰AR13+	∗BR10+	∗BR11+	≼BR12+	∝BR13+	AR20+	AR22+	AR25+	#AR20+	≪AR21+	¥AR22+	∗AR23+	PWCLR-	≼ BR20+	≉ BR21+	≪BR22+	≪ BR23+	æS₩2-	SB03	AR24+	BR24+ J
K		AR15+	BOPI+	PB02	PB12	PB22	PB32	SWAR1	SWO-	SW1-	SMS-	SH3-	SW0-	SW1-	SW2-	SW3-	AR11+	AR13+	AR16+	SWO-	SW1-	SM2-	SW3-	SWAR2	SWO-	SW1-	SW2-	SM3-	SW2+	SB04	RR25+	BR25+ K
L	ONLIN-	AR16+	BREI+	PB02	PB12	PB22	PB32	OFTST-	SW0+	SW1+	SW2+	SW3+	SW0+	SW1+	SW2+	SW3+	AR21-	AR23-	AR26-	SW0+	SW1+	SW2+	SW3+	OFTST-	SW0+	SW1+	SW2+	SW3+	≪SW3 -	SB05	AR26+	BR26+ L
М		AR17+	BR17+	PB03	PB13	PB23	PB33	≈PSWAR1	PACAR1	PACAR1	PACAR1	PACAR1	PACBR1	PACBR1	PACBR1	PACBR1	AR11-	AR13-	AR16-	PACAR2	PACAR2	PACAR2	PACAR2	≪PSWAR2	PMBBR2	PMBBR2	PMBBR2	PMBBR2	SW3+	SB06	AR27+	BR27+ M
· ·	OFLIN-	BR10+	OFTST+	PB03	PB13	PB23	PB93		PSWAR1	PSWAR1	PSWAR1	PSWAR1	PSWBR1	PSWBR1	PSWBR1	PSWBR1	AR21+	AR23+	AR26+	PSWAR2	PSWAR2	PSWAR2	PSWAR2		PSWBR2	PSWBR2	PSWBR2	PSWBR2	≪SH4-	SB07	SEL+	CHNRQ+ N
P	G2A01	BR11+	ADO+						-			×AR17+	∗BR14+	∗BR15+	≼BR16+	≼BR17+		AR14+	AR17+	≼AR24+	≰AR25+	*AR26+	×AR27+		∗BR24+	₩BR25+	≪BR26 +	∗BR27+	SW4+		CMDCY+	PREND+ P
R		BR12+	CMO+	PB01	PB11	PB21	PB31	IOP4-	∗AR14-	≭AR15-	∗AR16-	≭AR17-	≼BR14-	∗BR15-	≼BR16-	≼BR17-	GN2A17	AR24-	AR27-	#AR24-	×AR25−	#AR26-	∗RR27-	IOP4-	∗BR24-	∗B R25-	∗BR26-	∗BR27-	 #S₩5-		SRVCY+	BRKRQ+ R
S	SELOUT	BR13+	SR0+	P80	PB1	PB2	PB3	AR1AC-	BAC08-	BAC09-	BAC10-	BAC11-	BAC08-	BAC09-	BAC10-	BAC11-		AR14-	AR17-	BAC08-	BAC09-	BAC10-	BAC11-	AR2AC-	BMB08-	BMB09-	BMB10-	BMB11-	SW5+		CUBSY+	INTR8+ S
T		BR14+	SE0+	PB01	PB11	PB21	PB31	*PACAR1	SW4-	SW5-	SW6-	SW7-	SW4-	SW5-	SW6-	SW7-	GN2A17	AR24+	RR27+	SW4-	SW5-	SW6-	SW7-	≈PACAR2	SW4-	SW5-	SW6-	SW7-	⊯SW6-		CMDLY+	SKIP+ T
·	SELPRP	BR15+	0P0+						SW4+	SW5+	SW6+	SW7+	SW4+	SM5+	SW6+	SW7+				SW4+	SW5+	SW6+	SW7+		SW4+	SM5+	SW6+	SW7+	SW6+		CHSRV+	EACENB U
٧	OLR+	BR16+	SU0+			Ĺ	L	1	PACAR1	PACAR1	PACAR1	PACAR1	PACBR1	PACBR1	PACBR1	PACBR1	GN2A17	GN2A17	GN2A17	PACAR2	PACAR2	PACAR2	PACAR2		PMBBR2	PMBBR2	PMBBR2	PMBBR2				V

E	301	B02	B03	B04	B05	B06	B07	B08	B09	B10	B11	B12	B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24	B25	B26	B27	B28	B29	B30	B31	B32
M	285	W028S	R123	W501	W501	W501	W501	R123	R123	R123	R123	R123	R123	R123	R123	R603	R002	R107	R107	R602	R123	R123	R123	R603	R123	R123	R123	R123	W002	W021CR	W028S	W028S
A \square																										 			†	†		- I
В																																P
c L																				GN2B20				GN2B24								C
DI	EST	PB0		SWCTL	ZIPCTL	PWCLR-	SWRST	AR10+	AR11+	AR12+	AR13+	B00-	B06-	BR11+	B02+	SWBR1	BR10-	*EAC00+	₩EAC06+		AR20+	AR21+	AR23+	SWBR2	BR20+	BR21+	BR22+	BR23+	B00-	REQ1	BBIP+	BOP+ D
	ADC	PB1						AR14+	AR15+	AR16+	AR17+	B01-	B07-	BR15÷	B06+	₩OFTST-	BR11-	EACOO-	EAC06-	IOP2-	RR24+	AR25+	AR27+	₩OFTST-	BR24+	BR25+	BR26+	BR27+	B01-	SEL1-	BBIO+	B00+ E
	CMO	PB2	OFTST-	#SWCTL	*ZIPCTL	«PWCLR-	*SWRST	AR1AC+	AR1AC+	AR1AC+	AR1AC+	B0AR1+	BOAR1+	BR1AC+	BOBR1+	PSWBR1	≼BR1=0	∗EAC01+	∗EAC07+	BR1AC-	AR2AC+	AR2BI+	AR2AC+	PSWBR2	SEL1+	SEL1+	SEL1+	SEL1+	B02-		BBI1+	B01+ F
· -	SR0		≖PB4										*AR16+	*EAC05-	#BR12~		BR12-	EAC01-	EAC07-	BOAR1-	≰EAC04-	∗BBI1-	∝EAC07-		⊯MB04	⊯ 11805	∞ MB06	⊯MB07	B03-		BBI2+	B02+ H
· -	SE02	PB4	≈P85					≈EAC08-	⊯EAC09-	*EAC10-	≈EAC11-	*AR11+	≼AR17+	≈EAC09-	#BR16-		BR13-	¥EAC02+	⊯EAC08+	GN2B20	≪EAC08-	≉8815 −	∗EAC11-		∗MB08	⊯MB09	₩MB10	⊯MB11	B04-		BB13+	B03+ J
· -	OPO	PB5		PB42	PB52	PB62	PB72	AR10+	AR11+	AR12+	AR13+	B02-	BR10+	B01+	BR13+	IOP4-	≭BR1=0	EAC02-	EACO8-	≉PDC8R1	RR20+	RR22+	AR23+	BT2A-	BR20+	BR21+	BR22+	BR23+	B05-	INTRPT	BBI4+	B04+ K
-	SUO	PB6		PB42	PB52	PB62	PB72	AR14+	AR15+	AR16+	AR17+	B03-	BR14+	B05+	BR17+	BR1AC-	BR14-	∗EAC03+	₩EAC09+	PWCLR-	RR24+	AR26+	RR27+	BRKST-	BR24+	BR25+	BR26+	BR27+	B06-		BB15+	B05+ L
· –	W0+	PB7	OFTST-	PB43	PB53	PB63	PB73	AR1BI+	ARIBI+	AR1BI+	ARIBI+	BOAR1+	BR1AC+	BOBR1+	+	₩PACBR1	BR15-	EAC03-	EAC09-		AR2BI+	AR2AC+	AR2BI+	₩PMBBR2	BR2BI+	BR2BI+	BR2BI+	BR2BI+	B07-	SKIP	8816+	B06+ M
_			#P86	PB43	PB53	PB63	PB73	+	₩BBI1-				∗EAC04-	*BR11~	∗EAC07-		≼BR1=0	∗EAC04+	∗EAC10+		*BBI0-	∗EAC06-	∝BBI3-		≼BBI0-	∗BBI1-	≈ B8I2-	*BBI3-	BOP-		BBI7+	B07+ N
-			∗rPB7			ļ		≋BBI4-	×BB15−	∗BBI6-	∗BB17-	×AR13+	∗EAC08-	∗BR15~	∗EAC11-		BR16-	ERC04-	EAC10-	BT1-	⊯BBI4-	∗EAC10-	∗BBI7-		⊯BBI4-	≭BB I5-	₩BBI6-	#BB17-	BBIO-		CTL00+	CTL06+ P
R S	W3+	OFLIN+		PB41	PB51	PB61	PB71	B00+	B01+	B02+	B03+	B04-	B00+	BR12+	B03+	IOP4-	BR17-	∗EAC05+	₩EAC11+	BRKST-	AR21+	AR22+		SUOPO	B00+	B01+	B02+	B03+	BBI4-		CTL01+	CTL07+ R
SS		ONL IN+		PB4	PB5	PB6	PB7	B04+	B05+	B06+	B07+	B05-	B04+	BR16+	807+	CTLAC-	⊭BR1=0	EAC05-	EAC11-	ZBR2	AR25+	AR26+		GN2B24	B04+	B05+	B06+	B07+	BBI5-		CTL02+	CTL08+ S
· -		SSE01		PB41	PB51	PB61	PB71	BORR1+	BOAR1+	BOAR1+	BOAR1+	BOAR1+	BOBR1+	BR1AC+	BOBR1+	∗PBAC		∗TSTIO-	#SW7-	GN2B20	AR2AC+	AR2BI+	PWCLR+	⊭SYSRST	B0BR2+	B0BR2+	B0BR2+	B0BR2+	BBI6-		CTL03+	CTL09+ T
US			*					∗AR10-	≪AR11~	≼ AR12−	⊭AR13-	×AR14+	×BR10-	∗EAC06∽	≉BR13-				SW7+	⊯PDCBR2	∗EAC05-	≋BBI2 -	∗CMDCY+		₩BR20-	≈BR 21~	∗BR22-	∗BR23-	BBÍ7-		CTL04+	CTL10+ U
V s	W7+		44				L	⊭AR14-	*AR15-	≉AR16-	≼AR17-	*AR15+	≭B R14-	⊭EAC10-	∗BR17-		4	BR1=0	L	PWCLR-	∗EAC09-	≈ BBI6-	≼SRVCY +	SWRST	₩BR24~	∗BR25 −	≭BR26 -	∗BR27-	BBIP-		CTL05+	CTL11+ V

PANEL 2 ... ADDRESS AND BUFFER REGISTERS

PANEL 3 ... CONTROL REGISTER AND SEQUENCE GATING

	A01	A02	A03	A04	A05	A06	A07	80A	A09	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	A30	A31	A32	_
	W021CR	W021CR	W021CR	W021CR	R123	R113	R205	R121	R121	R121	R121	R121	R107	R107	R121	R121	R121	R121	R107	R121	R121	R151	R113	R107	R123	R141	R107	W021CR	W021CR	W021CR	W021CR	W021CR	
А																															-		A
В																																	18
С	GN3R01						GN3A07		İ													GN3ASS				GN3A26						GN3A28	1 c
D	AC00	AC00	MB00	MB00	EAC00+	BOREQ-		∗CHSRS	≈BADI+	*PREND-	≈CTL10-	≪TSTIO+	≪AR1BI+	⊯CMINT-	≪INTR8+	≪SR0BUR	≪REQ1	¤RSTCMD	∗BT2A-	≪SRINT+	≤CHNRQ+	GN3A22	BOR1	≪BOREQ-	CTL00+	*ACTEST	*BAC00+	EACOO-	BACOO-	BACOO-	BMB00-	BMB00-	1 D
Ε	AC01	AC01	MB01	MB01	EAC01+	SEL1+	*CMDLY-	CMDLY+	AR1BI-	PREND+	ADO+	TSTIO-	AR1BI-	CMINT+	CMINT-	BURST+	SROBUR	CMINT-	BT2A	CTL10-	SRVCY+	CTL01-	B0R2	BCREQ+	CTL01+	BAC00+	BACOO-	EAC01-	BACO1-	BACO1-	BMB01-	BMB01-	ļΕ
F	GN3A01	GN3A01	GN3A01	GN3A01	EACAC+	∝XFER	BOPI+	CMO-	AR2BI-	ZCTLO	SRVCY+		≪AR2BI+	#SPSTA+	SRINT-	SRO+	BRKRQ+	SCCC	⊲BT1-	CTL11-	SR0+	CTL01+	≉B0REQ+	ď	CTLAC+	EACOO-	≪BAC01+	GN3A28	GN3A28	CN3A28	GN3A28	CN3458	J F
н	AC02	AC02	MB02	MB02	≈AC00	EACENB	GN3R07	≰CHSRV+	≼AR2BI-	⊯CTL11-	∝CTL10-	«CTL07−	AR2BI-	SPSTA-	≪40BI-	≈108I-	⊲DC6	⊲SCCC	BT1	≪BURBRK	≪CLRCR+	CTL00+	BIR1		∗EAC00-	BACQ1+	BACO1-	EAC02-	BAC05-	BAC02-	BMB02-	BMB02-] H
J	GN3A01	GN3R01	GN3A01	GN3R01	≉AC01	IOP1	#CMDLY+	RSTCHN	CMDLY-	PREND+	SRVCY+	CMO+	≼BOBR1÷	≈00BI÷	00BI+	SPSTA+	PWCLR-	SRO+	¤IOP4−	BURST-	PWCLR-	CTL00-	BIR2	∝BURST-	∗EACO1-	EACO1-	∞BAC02+	GN3A28	GN3A28	GN3A28	GN3A28	GN3A28	JJ
К	AC03	AC03	MB03	MB03	ERC02+	⊯EACAC-			SRVCY+	CTL10+	0P0-	0081+	B08R1-	CMSTA-	TSTI0+	TSTIO-	ZIPCTL	CMDCY+	IOP4	BRKRQ+	CTL10-	CTL02-	∉BIREQ+	BURST+	CTL02+	BAC02+	BAC02-	EAC03-	BRC03-	BAC03-	BMB03+	BMB03+	K
ï	GN3A01	GN3R01	GN3A01	GN3A01	ERC03+	RDENB+		≈BOBR1-	≪AR1BI-	≈CTL11-	«CTL10−	≈CTL09-	#ADDAC-	⊯CHNRQ+	«CMSTA-	#SPSTA-	⊯DC3	≈SCCC	≈IOP2-	≪SYCVCO	⊯BMB30	CTL02+	STR1	≪AR1AC+	CTL03+	EAC02-	∉BAC03+	GN3A28	CN3A28	GN3A28	GN3A28	GN3A28	L
М	AC04	AC04	MB04	MB04	EACAC+	IOP1	CDY3	BADI+	CMDCY+	PREND+	SRVCY+	00BI+	ADDACP	CLRCR+	CMDCY+	CMDCY+	SYSRST	CMDCY+	10P2	SRVCY+	BMB03-	€.	STR2	AR1AC-	CTLAC+	BAC03+	BAC03-	EAC04-	BACQ4-	BAC04-	BMB03-	BMB03-	M
N	GN3A01	GN3R01	GN3A01	GN3A01	⊭AC02	⊯EACAC-	CHSRS	CMO+	ADO-	SR0+	BSRI+	SR0+	≈PREND+	⊯CYCSEL.	SRVCY-	SRVCY+	PWCLR-	CHSRV+	≈SRINT-	CHSRV+	BMB04+	æ	≪STREQ+	⊯BR1AC+	≈EAC02-	EAC03-	∝BAC04÷	GN3A28	GN3A28	GN3A28	GN3A28	GN3A58	N
P	AC05	AC05	₩B05	MB05	∗AC03	BURST+	⊭CHSRV+	CMDCY+	CMDLY-	SRVCY+	CHO+	TSTIO-	PREND-	SEL1+	CHSRV+	CHSRV+	ZIPCTL	CMO+	SRINT+	CMO+	BMB05+	∝B0R1	STR2	BR1AC-	∞EAC03-	BAC04+	BACO4-	EAC05-	BAC05-	BAC05-	BMB04+	BMB04+	J P
B	GN3A01	GN3R01	GN3801	GN3R01	ERC04+	BRKRQ+	≈CHSRV-	∗SBMA	≅BRKRQ-	≈CTL11-	*PREND-	⊯CTL08-	≪RDENB+	≼SEL1+	≪SRSTA-	¤BSTI+	⊲DC0	⊲SCCC	⊲CTL0Z+	#CMINT+	≪SBM	≪B0R2	SU0+	≪AR2AC+	CTL04+	EAC04-	⊯BAC05+	GN3A28	GN3A28	GN3A28	GN3A28	GN3A28	_ R
S	AC06	AC06	MB06	MB06	EAC05+	∗BURBK-	SBHA	SRINT-	SR0÷	BTBRK+		CMDCY+	RDENB	SEL1-	CMDCY-	CMSTA-	SYSRST	CMDCY+	SRINT-	CTL06-	SRINT-	≼BIR1	₩DISABL	AR2AC-	CTL05+	BAC05+	BAC05-	EAC06-	BACQ6-	BACO6-	BMB04-	BMB04-	S
T	AC07	AC07	MB07	MB07	EACAC+	BURBK-	GN3A07	BRKSTA	PREND-	BOREQ+	SEL1+	ADO+	«EACAC+	∝BOPI-	SRVCY+	SRSTA-	PWCLR-	OPO-	∝CTL0Z-	CTL07-	BRKSTA	≪BIR2	BOR2	∝CTLAC+	CTLAC+	EAC05-	∝BAC06+	EAC07-	BACO7-	BACO7-	BMB05+	BMB05+	_ T
Ü	GN3801	GN3R01	GN3A01		⊭AC04	BOPI+		SEL1+	SRVCY+	SEL1+	MC=0	SEO-	EACAC-	BOPI+	CHSRV+	SPSTA-	CTLOZ-	SU0+	CTL0Z+	CTL08-	SEL1+	∝STR1	BIR2	CTLAC-	∞EAC04−	GN3A26	BACO6-	GN3A28	GN3A28	GN3A28	GN3A28	GN3A28	U
V	OCU8	DLU8	MBOS	MB08	*8C05	*BSTCHN	BT28-	SBVCY+	SBINT-	PREND+					STREQ+	CUBSY-	ZIPCTL			CTL09-	SRVCY-	≈STR2	⊯BURST+		∞EAC05-			EAC08-	BAC08-	BACO8-	BMB05-	BMB05-	V

	B01	B02	B03	B04	B05	B06	B07	B08	B09	B10	B11	B12	B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24	B25	B26	B27	B28	B29	B30	B31	B32
	√021CR	W021CR	W021CR	W021CR	R123	R121	R001	R111	R121	R107	R121	R121	B107	R111	R001	R205	R205	R205	R205	R205	R205	R205	R151	W002	R123	R141	B107	W021CR	W021CR	W021CR	W021CR	W021CR
a h																																Α Α
В																																В
c	GN3B01																GN3B17	GN3B18								GN3B26						GN3B28 C
ם	AC09	AC09	MB09	MB09	EAC06+	≈80PI+	BOPAR-	0P0+	≈PR0P3	≈OURAD+	≈OURCM1	≈OURCM4	∝CUBSY+	CMDCY+	CHNRQ+	PBAC	PBAC	PBAC	PBAC	PBAC	PBAC	PBAC	BMB30	EACOO-	CTL06+	∗ACTEST	⊭BAC07+	EAC09-	BAC09-	BAC09-		BMB06+ D
E	AC10	RC10	MB10	MB10	ERC07+	CMDCY-	∞EXTADD	ADO+	PROP1	OURAD-	CMINT+	OURCM3	CUBSY-	AR=AR	≅CSAC	aCTL00-	«CTL02-	⊲CTL06+	≪CTL03-	≪CTL05-	⊄CTL08-	⊲CTL10-	BMB07-	EAC01-	CTL07+	BAC06+	BAC07-	EAC10-	BAC10-	BAC10-		BMB06- E
F	GN3B01	GN3B01	GN3B01	GN3B01	EACAC+	SRVCY-	ADRDT+	EXTADD	PROP2	≪SEL+	OURAD+	SEL+	∝BOAR1+	CSAC	STREQ+	ZCTLO	PWCLR-	SYSRST	ZCTL3	ZCTL3	ZCTL3	ZCTL3	BMB07+	EAC02-	CTLAC+		⊯BAC08+	GN3B28	GN3B28	GN3B28	GN3B28	GN3B28 F
н	AC11	AC11	MB11	MB11	≅ACO6	∝CTLSKP	*EXTADD	#OURAD-	«PROP2	SEL-	≈OURCM2	≼SRVCY-	BOAR1-	∝SRVCY-	≈CSAC	SWO-	SW2-	GN3B18					BMB06÷	EAC03-	≪EAC06-	BAC07+	BAC08-	EAC11-	BAC11-	BAC11-	BMB07+	BMB07+ H
J	GN3B01	GN3B01	GN3B01	GN3B01	×AC07	SKPENB	B0P1-	OURAD-	PROP3	*PWCLR-	OURCM1	SEL+	«CMDCY+	AR=AR	BADI+	≈CTL00+	≈CTL02÷		∉CTL03÷	⊄CTL05+	aCTL08÷	≅CTL10+	BMB06-		≈EAC07-		≪BAC09+	GN3B28	GN3B28	GN3B28		GN3B28 J
К	SKIP	SKIP	CYCSEL	CYCSEL	EAC08+	CTLAC-	«EXTADD	OPO+	SE0÷	PWRCLR	CUBSY-	SRVENB	RSTCHD	INTR8+	≈CSAC	BACOO-	BAC02-	BRC06-	BAC03-	BAC05-	BAC08-	BAC10-	BMB08-	EAC05-	CTL08+	BAC08+	BAC09-	RDENB	IOP1	IOP1		BMB07- K
L	GN3B01	GN3B01	GN3801	GN3B01	EAC09+	⊯PROP1	DISABL	ADO-	≪SEL-	æ	∗CUBSY-	≈CMDCY+	*CMDCY-		CMO+	BACOO-	BAC02-	BACO6-	BAC03-	BAC05-	BAC08-	BAC10-	BMB08+	EAC06-	CTL.09+		≼BAC10+	GN3B28	GN3B28	GN3B28	GN3B28	GN3B28 L
М	INTRPT	INTRPT	MBJ1	MBJ1	ERCRC+	BRE I-	∞EXTREQ	EXTREQ	PROP1		OURCM2	BOAR1-	CMDCY+		≅CSAC	SWCTL	SWCTL	ZCTL6					≼AR1AC-	EAC07-	CTLAC+	BAC09+	BAC10-	SKPENB	IOP2	IOP2		BMB08+ M
N	GN3801	GN3B01	GN3801	GN3801	¤AC08	OURAD-	CHNRQ+	*BREI-	SEO+	≈ZCTL0	SEL+	CMDCY-	∗SRVCY+	≈ INTRPT	SYCVCO	PBAC	ADDAC-	BOREQ-	PBAC	PBAC	PBAC	PBAC	≈BR1AC-	EAC08-	⊯EAC08−		∗BAC11+	GN3B28	GN3B28	GN3B28		GN3B28 N
Р	ACCLR	ACCLR	MC=0	WC=0	≈AC09	SEL-	≈EXTREQ	BREI-	PROP2	DCO	OURCM4		SRVCY-	CMO-	∗SYCVC1			∗CHNRQ+			≈CTL09+	≈CTL11+			₩EAC09-	BAC10+	BAC11-		IOP4	IOP4		BMB08- P
R	GN3B01	GN3B01	GN3801	GN3B01	ERC10+	*EACENB	BOPI-	IOP2	≪SPROP-	₩ZCTL3	≈ OURCM3	≈BOAR1-	∗SRVCY-	SRINT-	SYCVCO			+	⊯CTL04-	≈CTL07-	⊄CTL09-	≈CTL11-	₩CTLAC-	EAC10-	CTL10+	EAC10-		GN3B28	GN3B28	GN3B28	GN3B28	GN3B28 R
s	RUN	RUN	MBJ2	MBJ2	EAC11+	AR1AC-	≈EXTREQ	ACTEST	SEO+	DC3	OURCM2	CUBSY-	SRVCY+	BURBRK	∗CTL02+	SW1-	GN3B17	SBM		ļ			*	EAC11-	CTL11+	BAC11+	IOP2		BT1	BT1		BMB09- S
Т	ACJ1	ACJ1	MBJ3	мвјз	EACAC+	BR1AC-	CTLSKP	CTLSK1	PROP3	∗ZCTL6	OURCM4		≼SRVCY+	SYCVC1	ZCTLO	BAC01-		GN3B18	BAC04-			BAC11-		ACTEST	CTLAC+				BT2A	BT2A		BMB10- T
u	GN3B01	GN3B01	GN3801	GN3B01	∝AC10	AR2AC-	≈CTLSK1	*SKIP	SEL-	DC6		OURCM3	RSTSRV	*RSTSRV	≼CTL02+		SEL1-	L	BAC04-	BAC07-	BAC09-	BAC11-	×		₩EAC10-	GN3B26	IOP4	GN3B28	GN3B28	GN3B28	 	GN3B28 U
v	ACJ2	ACJ2	MBJ4	MBJ4	∝AC11	CTLAC-		SEL1-	BOPI-		1	SEL+		RSTSRV		SWCTL	CTL00-	BT2A-					*	SKPENB	₩EAC11-				PWRCLR	PWRCLR	BMB11-	BMB11- V

APPENDIX F

MAINTENANCE AND DIAGNOSTIC FACILITIES

MAINTENANCE AND DIAGNOSTIC FACILITIES

Fl. The Test Panel

The System/360 interface contains facilities for self-checking during its operation and for diagnosing circuit faults. Maintenance operations can be carried out both onand off-line using built-in test controls and indicators. Precipitous fault conditions can be detected with conventional perturbation methods using the margin-check power supply of the PDP-8. The principal test component is the Test Panel, shown in Figure F1. The top two rows of indicators on the left on this panel monitor the contents of the four principal data registers of the interface: AR1, AR2, BR1, and BR2. The next two rows of indicators monitor the status of the channel interface tag lines and bus lines. The upper row of these monitors information placed by the interface on the inbound lines to the channel; the lower row monitors information placed by the channel on the outbound lines to the interface. Beneath these indicators is a row of switches used to simulate the outbound lines in off-line operation. The large pushbutton at the extreme lower right controls the on/offline status of the interface. None of the test controls are operable when this switch in the on-line position, although the various indicators continue to monitor the state of the circuitry. When the equipment is in the off-line or test condition the signals to the channel lines are deactivated in such a way that servicing operations and power up/down sequencing can be conducted without in any way affecting the operations by the channel with other control units. To the right of the block of indicators just described is a block of 24 indicators which monitor the status of most of the control flip-flops of the interface. These can be roughly grouped as follows: If one of the top row of indicators is lit, then the interface is actively communicating with the

IGHRE FI. TEST PANEL LAYOUT.

channel. During various parts of a channel-interface operation, the next row of indicators may be lit. A service cycle (data or status) will result in alternate operation of the CHL REQ and BRK REQ indicators. The last two rows of indicators represent the contents of the CTL register exactly as indicated to the resident PDP-8 program.

F2. Diagnostic Procedures

In normal system operations the interface is online to the System/360 as indicated by the illuminated pushbutton switch at the lower right of the test panel. Alternate depressions of this pushbutton switch the interface from the on-line, to the off-line state and vice versa. In the off-line state the interface is logically disconnected from the System/360 channel-control unit lines and may be tested independently of the System/360 using the manual controls on the test panel and certain PDP-8 test programs constructed for this purpose and described below.

In some situations it is desirable to activate the manual controls on the test panel when the interface is on-line to the System/360. A special override switch (TEST) is provided for this purpose. The lamp above this switch indicates, when lit, that the manual controls are operative.

The interface contains special circuitry which prevents transitions to and from the on-line state when channel operations are pending at the interface. Therefore servicing operations involving such transitions can proceed without disturbing the System/360. Following is a description of diagnostic utilities intended to ferret out most component failures.

360 INTERFACE REGISTER TEST

Purpose

Program tests AR1, BR1, AR2, and CTL gating with the AC, and in addition tests BR2 gating with the MB. Read, Clear, and Write operations are tested with AR1, BR1, and AR2. Read, test-under-mask and invert under-mask operations are tested with CTL. The interrupt facility is tested in conjunction with CTL; and the 3-cycle data break facility is tested in conjunction with BR2.

DIRECTIONS FOR USE

- a. Switch interface off-line.
- b. START program at 200. Program will stop at 214.
- c. Using manual controls, load all ones (377 octal) into AR1, BR1, and AR2. Press CONTINUE.
- d. Program will loop through all tests in about 3 seconds Error stops are documented in program listing.

360 INTERFACE ECHO TEST

Purpose

Program tests all channel interface circuitry except bus drivers, receivers and on-line/off-line circuitry. Channel interface sequences are simulated with the manual controls.

DIRECTIONS FOR USE

- a. Switch interface off-line. Raise OPL OUT and BUS OUT(P) switches.
- b. Load program. START at 0200. Lower SR switches. Program will loop.
- c. System Reset. Lower OPL OUT switch. Program will stop at 221. AC will contain 0040 and SYS RST lamp will be on in CTL. Raise OPL OUT; press CONTINUE.

PAGE 1

/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES

```
/*
          /*
                 SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                                 *
           /*
           /INTERFACE REGISTER DEFINITIONS
          RD=1
                                /IOP READ
          CLR=2
                                /IOP CLEAR
          TST=2
                                /IOP TEST
          WR=4
                                /IOP WRITE
           INV=4
                                /IOP INVERT
          AR1=6300
                                /ADDRESS REGISTER 1
          BR1=6310
                                /BUFFER REGISTER 1
          AR2=6320
                                /ADDRESS REGISTER 2
          CTL=6330
                                 /CONTROL REGISTER
           /INTERFACE CONTROL REGISTER BIT DEFINITIONS
           STREQ=7000
                                /STATUS REQUEST
           BIREQ=4000
                                /BUS-INBOUND SERVICE REQUEST
           BORE0=2000
                                /BUS-OUTBOUND SERVICE REQUEST
          CMDCHN=0400
                                /COMMAND CHAIN
          CMDPCK=0200
                               /BUS-OUT PARITY CHECK ON COMMAND BYT
                               /BUS-OUT PARITY CHECK ON DATA BYTE
           SRVPCK=0100
          CMDRST=0040
                               /SYSTEM OR SELECTIVE RESET
          CMDSTK=0020
                               /STACK STATUS ON INITIAL SELECTION
          CMDHLT=0010
                               /HALT I/O
          CMDEND=0004
                                /COMMAND ACCEPT
                                /SERVICE STOP
           SRVHLT=0002
                                /PDP-8 WC=0
           SRVEND=0001
           /SYSTEM/360 STATUS BYTE DEFINITIONS
          UNCHCK=002
                                /02 UNIT CHECK
           DEVEND=004
                                /04 DEVICE END
          CHNEND=010
                                /08 CHANNEL END
           1
           *1
0001 5420
                 JMP I INTRPT
           BR2BLK,*.+2
           *10
           AXR1, *.+1
           *20
0020 0100
          INTRPT, INTX
0021
     0001
          BR2DBP, BR2BLK-1
          BR2CA, TMP3-1
0022
     0035
     0002 XSRHLT, SRVHLT
0023
          XBOREQ, BOREQ
0024
     2000
0025
     4000
          XBIREQ, BIREQ
     0377
          K0377, 0377
0026
0027
     0777
          K0777, 0777
0030
     7000
          K7000, 7000
0031
     7400 K7400, 7400
```

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                                    PAGE
                                                                           2
0032
      7767
            K7767, 7767
0033
      7772
            K7772, 7772
             TMP1,
                   *.+1
             TMP2,
                    *.+1
             TMP3,
                   *•+1
            AC,
                    *.+1
             *100
             /
             /INTERRUPT ROUTINE
0100
     3037
                    DCA AC
            INTX,
0101
      6042
                    TCF
0102
      6032
                    KCC
0103
     6331
                    CTL RD
0104
      0027
                    AND KO777
0105
      7640
                    SZA CLA
0106
      2000
                    ISZ 0
0107
      1037
                    TAD AC
0110
     5400
                    JMP I O
            /START USING START KEY
            *200
            /TEST AR1, BR1, AR2 REGISTERS
0200
            START, AR1 RD
      6301
0201
      7440
                    SZA
0202
      7402
                    HLT
                                      /AR1-AC GATES PICKED UP A BIT (AC)
0203
      7200
                    CLA
0204
                    BR1 RD
      6311
      7440
0205
                    SZA
0206
      7402
                    \mathsf{HLT}
                                      /BR1-AC GATES PICKED UP A BIT (AC)
0207
      7200
                    CLA
0210
     6321
                    AR2 RD
0211
      7440
                    SZA
0212
      7402
                    HLT
                                      /BR2-AC GATES FAILED A BIT (AC)
0213
      7200
                   CLA
0214
      7402
                    HLT
                                      /OPERATOR ACTION PAUSE
            /LOAD ONES INTO AR1, BR1, AND BR2 USING MANUAL
            /CONTROLS. RESTART USING CONTINUE KEY
            AR1T1, TAD K7400
0215
      1031
0216
      6301
                    AR1 RD
0217
      7040
                    CMA
0220
      7440
                    SZA
      7402
0221
                    HLT
                                      /AR1-AC GATES DROPPED A BIT (AC)
0222
      7200
                    CLA
0223
      6302
                    AR1 CLR
0224
      6301
                    AR1 RD
0225
      7440
                    SZA
0226
      7402
                    HLT
                                      /CLEAR AR1 GATES FAILED A BIT (AC)
0227
      7240
                    STA
0230
      6304
                    AR1 WR
0231
      0031
                    AND K7400
```

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                              PAGE 3
0232 6301
                  AR1 RD
0233 7040
                  CMA
     7440
0234
                  SZA
     7402
0235
                  HLT
                                 /AC-AR1 GATES DROPPED A BIT (AC)
0236
     7200
                  CLA
0237
     6304
                  AR1 WR
0240
     1031
                  TAD K7400
0241
     6301
                  AR1 RD
0242
     7040
                  CMA
0243
     7440
                  SZA
0244
     7402
                  HLT
                                  /AC-AR1 GATES INVERTED A BIT (AC)
0245
     7200
                  CLA
0246
     1031 BR1T1, TAD K7400
0247
     6311
                  BR1 RD
0250
     7040
                  CMA
0251
     7440
                  SZA
0252
     7402
                 HLT
                                 /BR1-AC GATES DROPPED A BIT (AC)
0253
     7200
                 CLA
0254
     6312
                BR1 CLR
0255
     6311
                BR1 RD
0256
     7440
                 SZA
0257
     7402
                HLT
                                 /CLEAR BR1 GATES FAILED A BIT (AC)
                STA
0260
     7240
     6314
                 BR1 WR
0261
                 AND K7400
0262
     0031
0263
                 BR1 RD
     6311
0264
     7040
                  CMA
0265
     7440
                  SZA
                HLT
     7402
0266
                                  /AC-BR1 GATES DROPPED A BIT (AC)
0267
     7200
                 CLA
0270
     6314
                 BR1 WR
0271
     1031
                 TAD K7400
0272
     6311
                 BR1 RD
0273
     7040
                  CMA
0274
     7440
                  SZA
     7402
0275
                  HLT
                                 /AC-BR1 GATES INVERTED A BIT (AC)
0276
     7200
                  CLA
0277
     1031 AR2T1, TAD K7400
                  AR2 RD
0300
     6321
0301
     7040
                  CMA
0302
     7440
                  SZA
0303
     7402
                  HLT
                                 /AR2-AC GATES DROPPED A BIT (AC)
0304
     7200
                  CLA
0305
                  AR2 CLR
     6322
0306
                  AR2 RD
     6321
0307
     7440
                 SZA
0310
     7402
                 HLT
                                 /CLEAR AR2 GATES FAILED A BIT (AC)
0311
     7240
                 STA
                AR2 WR
0312
     6324
0313
     0031
                AND K7400
0314
     6321
                 AR2 RD
0315
     7040
                 \mathsf{CMA}
     7440
0316
                 SZA
     7402
0317
                 HLT
                                 /AC-AR2 GATES DROPPED A BIT (AC)
                  CLA
0320
     7200
0321
                  AR2 WR
     6324
```

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                                    PAGE
0322
      1031
                    TAD K7400
0323
      6321
                    AR2 RD
0324
      7040
                    CMA
0325
      7440
                    SZA
0326
      7402
                    HLT
                                     /AC-AR2 GATES INVERTED A BIT (AC)
0327
      7200
                    CLA
0330
      5731
                    JMP I .+1
0331
      0400
                    AR1T2
            *400
             /TEST AR1, BR1, AR2 REGISTERS
0400
      3034
            AR1T2, DCA TMP1
0401
      1034
                    TAD TMP1
0402
      6306
                    AR1 CLR+WR
0403
      0031
                    AND K7400
0404
      6301
                    AR1 RD
0405
      3035
                    DCA TMP2
0406
      1035
                    TAD TMP2
0407
      7040
                    CMA
0410
     0034
                    AND TMP1
      7440
0411
                    SZA
0412
      7402
                    HLT
                                     /AR1 ECHO DROPPED A BIT (AC)
0413
      7200
                    CLA
0414
      1034
                    TAD TMP1
0415
      7040
                    CMA
0416
      0035
                    AND TMP2
0417
      7440
                    SZA
0420
      7402
                    HLT
                                      /AR1 ECHO PICKED UP A BIT (AC)
0421
      7200
                    CLA
0422
      2034
                    ISZ TMP1
0423
      5201
                    JMP AR1T2+1
            BR1T2, DCA TMP1
0424
      3034
                    TAD TMP1
0425
      1034
0426
      6316
                    BR1 CLR+WR
0427
      0031
                    AND K7400
0430
     6311
                    BR1 RD
0431
      3035
                    DCA TMP2
0432
      1035
                    TAD TMP2
0433
      7040
                    CMA
0434
      0034
                    AND TMP1
0435
      7440
                    SZA
0436
      7402
                    HLT
                                      /BR1 ECHO DROPPED A BIT (AC)
0437
      7200
                    CLA
0440
                    TAD TMP1
      1034
0441
      7040
                    CMA
0442
      0035
                    AND TMP2
0443
      7440
                    SZA
0444
      7402
                    HLT
                                      /BR1 ECHO PICKED UP A BIT (AC)
0445
      7200
                    CLA
                   ISZ TMP1
0446
      2034
0447
      5225
                    JMP BR1T2+1
0450
      3034
            AR2T2, DCA TMP1
0451
      1034
                    TAD TMP1
```

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                                   PAGE
                                                                         5
0452 6326
                   AR2 CLR+WR
0453 0031
                   AND K7400
                   AR2 RD
0454
     6321
0455
      3035
                   DCA TMP2
0456
      1035
                   TAD TMP2
0457
      7040
                   CMA
0460
      0034
                   AND TMP1
0461
      7440
                   SZA
0462
      7402
                   HLT
                                     /AR2 ECHO DROPPED A BIT (AC)
0463
      7200
                   CLA
0464
      1034
                   TAD TMP1
0465
      7040
                   CMA
0466
      0035
                   AND TMP2
0467
      7440
                   SZA
0470
      7402
                   HLT
                                     /AR2 ECHO PICKED UP A BIT (AC)
0471
      7200
                   CLA
0472
      2034
                   ISZ TMP1
0473
      5251
                   JMP AR2T2+1
0474
      5675
                   JMP I .+1
0475
      0600
                   CTLT1
            *600
            /TEST CONTROL REGISTER GATING
0600
     6331
           CTLT1, CTL RD
0601
      7440
                   SZA
0602
      7402
                   HLT
                                     /CTL-AC GATES PICKED UP A BIT (AC)
0603
      7200
                   CLA
0604
      1027
                   TAD K0777
0605
      6334
                   CTL INV
0606
      7200
                   CLA
0607
      1030
                   TAD K7000
0610
     6331
                   CTL RD
0611
      7040
                   CMA
0612
      7440
                   SZA
0613
      7402
                   HLT
                                     /CTL-AC GATES DROPPED A BIT (AC)
0614
      7200
                   CLA
0615
      1027
                   TAD K0777
0616
      6334
                   CTL INV
0617
      7200
                   CLA
0620
      6331
                   CTL RD
0621
      7440
                   SZA
0622
      7402
                   HLT
                                     /CTL FAILED TO INVERT A BIT (AC)
0623
      7200
                   CLA
0624
      3034
           CTLT2, DCA TMP1
0625
      1034
                   TAD TMP1
0626
      6334
                   CTL INV
0627
      7200
                   CLA
0630
      6331
                   CTL RD
0631
      3035
                   DCA TMP2
0632
      1035
                   TAD TMP2
                   CMA
0633
      7040
0634
                   AND TMP1
      0034
0635
      7440
                   SZA
0636
      7402
                   HLT
                                     /CTL ECHO DROPPED A BIT (AC)
```

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                                    PAGE
                                                                            6
0637
      7200
                    CLA
0640
                    TAD TMP1
      1034
0641
      7040
                    CMA
0642
      0035
                    AND TMP2
0643
      7440
                    SZA
      7402
0644
                    HLT
                                      /CTL ECHO PICKED UP A BIT (AC)
0645
      7200
                    CLA
0646
      1034
                    TAD TMP1
0647
      6334
                    CTL INV
0650
      7200
                    CLA
0651
      6331
                    CTL RD
0652
      7440
                    SZA
0653
      7402
                                      /CTL FAILED TO INVERT A BIT (AC)
                    HLT
0654
      7200
                    CLA
                    TAD TMP1
0655
      1034
0656
      7001
                    IAC
0657
      0027
                    AND K0777
      7440
0660
                    SZA
      5224
                    JMP CTLT2
0661
      1032 CTLT3, TAD K7767
0662
                    DCA TMP1
0663
      3034
0664
      7120
                    STL
0665
      6334 CTLT3A, CTL INV
                    CTL TST
0666
      6332
0667
      7402
                    HLT
                                      /CTL TST FAILED TO SKIP
0670
      7040
                    CMA
0671
      6332
                    CTL TST
0672
      7410
                    SKP
      7402
                    HLT
                                      /CTL TST SKIPPED IN ERROR
0673
      7040
0674
                    CMA
      6334
                    CTL INV
0675
0676
      7004
                    RAL
0677
      2034
                    ISZ TMP1
0700
      5265
                    JMP CTLT3A
0701
      7200
                    CLA
            CTLT4, DCA TMP1
0702
      3034
                    TAD TMP1
0703
      1034
                    CTL INV
0704
      6334
      7200
                    CLA
0705
            CTL4C, DCA TMP2
0706
      3035
                    TAD TMP2
0707
      1035
0710
      0034
                    AND TMP1
                    CIA
0711
      7041
      1035
                    TAD TMP2
0712
0713
      7640
                    SZA CLA
0714
      5321
                    JMP CTL4A
                    TAD TMP2
0715
      1035
                    CTL TST
0716
      6332
                                      /CTL TST FAILED TO SKIP
0717
      7402
                    HLT
0720
      5325
                    JMP CTL4B
            CTL4A, TAD TMP2
0721
      1035
                    CTL TST
0722
      6332
      7410
                    SKP
0723
                                     /CTL TST SKIPPED IN ERROR
0724
      7402
                    HLT
0725
      7001
            CTL4B, IAC
```

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                                     PAGE 7
     7440
                    SZA
0726
                    JMP CTL4C
0727
     5306
0730
     6335
                    CTL RD+INV
0731
      7104
                    CLL RAL
                    AND KO777
0732
      0027
      7440
                    SZA
0733
                    JMP CTLT4
      5302
0734
0735
      1033
            CTLT5, TAD K7772
0736
      3035
                    DCA TMP2
0737
      7120
                    STL
0740
      7004
             CTLT5A, RAL
                    CTL INV
0741
      6334
0742
      6001
                    ION
0743
                    NOP
      7000
0744
                    HLT
                                      /CTL FAILED TO INTERRUPT
      7402
                    CTL INV
0745
      6334
0746
                    ION
      6001
0747
      7000
                    NOP
0750
      7410
                    SKP
                                      /CTL INTERRUPTED IN ERROR
0751
      7402
                    HLT
0752
      6002
                    IOF
                    ISZ TMP2
0753
      2035
                     JMP CTLT5A
0754
      5340
0755
      7200
                    CLA
0756
      5757
                     JMP I .+1
                     BR2T1
0757
      1000
             *1000
             /TEST BR2 AND DATA BREAK
             BR2T1, DCA TMP1
1000
      3034
                     TAD TMP1
1001
       1034
                     DCA TMP3
1002
      3036
                     TAD BR2DBP
1003
       1021
                     DCA AXR1
1004
       3010
1005
      7240
                     STA
                     DCA I AXR1
1006
      3410
                     TAD BR2CA
1007
      1022
1010
                     DCA I AXR1
      3410
1011
      1025
                     TAD XBIREQ
1012
       6334
                     CTL INV
       7200
                     CLA
1013
                     DCA TMP2
1014
       3035
1015
       1021
             BR2T1E, TAD BR2DBP
1016
       3010
                     DCA AXR1
                     TAD I AXR1
 1017
       1410
                     SNA CLA
 1020
       7650
                     JMP BR2T1A
       5225
 1021
                     ISZ TMP2
       2035
 1022
                     JMP BR2T1E
       5215
 1023
                                       /DB WORD COUNT FAILED TO DECREMENT
 1024
       7402
                     HLT
 1025
       1022
             BR2T1A, TAD BR2CA
 1026
       7040
                     CMA
                     TAD I AXR1
 1027
       1410
                     SZA
 1030
       7440
```

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                              PAGE
                                                                     8
1031
     7402
                  HLT
                                   /DB CURRENT ADDRESS FAILED TO INCREM
     7200
1032
                  CLA
     1034
1033
                  TAD TMP1
1034
     7041
                  CIA
                  TAD TMP3
1035
     1036
1036
     7440
                 SZA
1037
     7402
                 HLT
                                   /DB TRANSFER DIRECTION SENSE WRONG
1040
     7200
                 CLA
1041
     1023
                 TAD XSRHLT
1042 6335
                 CTL RD+INV
1043
     7200
                 CLA
1044 6335
                 CTL RD+INV
1045
     7200
                 CLA
1046 3036
                 DCA TMP3
1047
     1021
                  TAD BR2DBP
1050
     3010
                 DCA AXR1
1051
     7240
                  STA
1052
     3410
                  DCA I AXR1
1053
     1022
                  TAD BR2CA
1054
     3410
                  DCA I AXR1
                  TAD XBOREQ
     1024
1055
                                  /(RATHER UNORTHODOX SEQUENCE)
                  CTL INV
1056 6334
                  TAD XBIREO
1057
     1025
1060
     6334
                  CTL INV
1061
     6334
                  CTL INV
1062
     7200
                  CLA
1063
     3035
                  DCA TMP2
1064
     1021 BR2T1D, TAD BR2DBP
1065
     3010
                 DCA AXR1
1066 1410
                  TAD I AXR1
1067
     7650
                  SNA CLA
1070 5274
                  JMP BR2T1C
1071
     2035
                  ISZ TMP2
1072 5264
                  JMP BR2T1D
1073
     7402
                  HLT
                                   /DB WORD COUNT FAILED TO DECREMENT
     1022 BR2T1C, TAD BR2CA
1074
1075
     7040
                  CMA
1076
     1410
                  TAD I AXR1
     7440
1077
                  SZA
     7402
1100
                 HLT
                                   /DB CURRENT ADDRESS FAILED TO INCREM
     7200
1101
                 CLA
1102
     1023
                 TAD XSRHLT
                 CTL RD+INV
1103
     6335
1104
     7200
                 CLA
1105
     6335
                 CTL RD+INV
1106
     7200
                 CLA
1107
     1036
                 TAD TMP3
1110
     0031
                  AND K7400
1111
     7440
                  SZA
1112
     7402
                  HLT
                                  /DB PICKED UP BITS IN POS 0-3
1113
     7200
                  CLA
1114
     1034
                  TAD TMP1
1115
     0031
                  AND K7400
1116
     1036
                  TAD TMP3
                  DCA TMP3
1117
      3036
                  TAD TMP1
1120
     1034
      7040
                  CMA
1121
                  AND TMP3
1122
     0036
```

```
/SYSTEM/360 INTERFACE DIAGNOSTIC ROUTINES
                                                                     PAGE
                                                                             9
      7440
1123
                    SZA
                    HLT
                                      /BR2 ECHO FAILED
1124
      7402
1125
      7200
                    CLA
1126
      1036
                    TAD TMP3
1127
      7040
                    CMA
1130
      0034
                    AND TMP1
1131
      7440
                    SZA
                                      /BR2 ECHO FAILED
1132
      7402
                    HLT
1133
                    CLA
      7200
1134
                    ISZ TMP1
      2034
1135
                    JMP BR2T1+1
      5201
1136
      5737
                    JMP I .+1
1137
      0215
                    AR1T1
AC
        0037
AR1
        6300
AR1T1
        0215
        0400
AR1T2
        6320
AR2
AR2T1
        0277
        0450
AR2T2
AXR1
        0010
BIREQ
        4000
BOREQ
        2000
BR1
         6310
BR1T1
        0246
        0424
BR1T2
        0002
BR2BLK
BR2CA
        0022
BR2DBP
        0021
        1000
BR2T1
BR2T1A
        1025
BR2T1C
         1074
BR2T1D
         1064
BR2T1E
         1015
CHNEND
         0010
CLR
         0002
CMDCHN
         0400
CMDEND
         0004
CMDHLT
         0010
CMDPCK
         0200
CMDRST
         0040
CMDSTK
         0020
         6330
CTL
CTLT1
         0600
CTLT2
         0624
CTLT3
         0662
CTLT3A
         0665
CTLT4
         0702
CTLT5
         0735
         0740
CTLT5A
CTL4A
         0721
CTL4B
         0725
CTL4C
         0706
DEVEND
         0004
INTRPT
         0020
```

INTX

0100

INV	0004
K0377	0026
K0777	0027
K7000	0030
K7400	0031
K7767	0032
K7772	0033
RD	0001
SRVEND	0001
SRVHLT	0002
SRVPCK	0100
START	0200
STREQ	7000
TMP1	0034
TMP2	0035
TMP3	0036
TST	0002
UNCHCK	0002
WR	0004
XBIREQ	0025
XBOREQ	0024
XSRHLT	0023

- d. Test I/O. Perform the following sequence.
 - 1. Place valid device address recognized by interface on BUS OUT switches.
 - 2. Raise ADR OUT.
 - 3. Raise SEL OUT. Interface will respond with OPL IN, store BUS OUT in AR1 and clear BR1, CU SEL and CMD CYC lamps will go on.
 - 4. Lower ADR OUT. Interface will respond with ADR IN and place AR1 on BUS IN. CU SEL lamp will go off.
 - 5. Raise BUS OUT (P). Lower all other BUS OUT switches.
 Raise CMD OUT. Interface will respond by dropping
 ADR IN. CMD DLY lamp will go on.
 - 6. Drop CMD OUT. Interface will respond with STA IN and place the status modifier bit (position 2) on BUS IN. CHL SRV lamp will come on.
 - 7. Raise SRV OUT. Interface will drop all inbound signals and disconnect. CMD CYC, CMD DLY, and CHL SRV lamps will all go off.
- e. Start I/O. Perform the above sequence except Step 5.

 At Step 5 place a valid (non zero) channel command on BUS OUT and raise CMD OUT. Interface will respond by dropping ADR IN. CMD DLY lamp will go on. At Step 6 the interface will place an all-zero status byte on BUS IN. Before Step 7 press STOP on PDP-8. After Step 7 the CMD END lamp will go on CTL. Press CONTINUE; the CMD END bit will go off and the CHN REQ lamp will go on together with one or more bits in the order field of the CTL. The PDP-8 will continue running.
- f. Service cycle sequences. Perform a Start I/O operation with a channel command specifying channel-inbound service (e.g., octal 2). The CHL REQ and CTL (0) lamps will go on. The REQ IN tag line lamp will also go on. Perform the following procedure.
 - 1. Load a nonzero device address in AR2.

- 2. Raise SEL OUT. Interface will respond by placing AR2 on BUS IN and raising ADR IN and OPL IN. REQ IN will be dropped. CU SEL and SRV CYC lamps will go on.
- 3. Lower SEL OUT. CU SEL lamp will go out.
- 4. Raise CMD OUT. Interface will respond by dropping ADR IN. CMD DLY lamp will go on.
- 5. Drop CMD OUT. Interface will respond by raising SRV IN. CHL SRV lamp will go on.
- 6. Stop PDP-8. Raise SRV OUT. Interface will drop all inbound tags and disconnect. SRV CYC, CMD DLY, and CHL SRV lamps will go out. BRK REQ lamp will go on.
- 7. Start PDP-8. The cycle will recommence at Step 2 and may be continued until either PDP-8 word count decrements to zero or until at Step 6 CMD OUT is raised instead of SRV OUT. In these cases the appropriate bits are set in CTL. (See interface description.)

```
/SYSTEM/360 INTERFACE ECHO TEST ROUTINES
                                                            PAGE
                                                                   1
           /*
           /*
                 SYSTEM/360 INTERFACE ECHO TEST ROUTINES
                                                                   *
           /*
                 OR - HOW TO GET ALONG WITH THE 2870 ALMOSI
                                                                   *
           /*
                                                                   **
           /ASSEMBLY PARAMETERS
           BUFSIZ=4000
                                  /MAXIMUM SIZE OF DATA BUFFER
           /INTERFACE REGISTER DEFINITIONS
           RD=1
                                  /IOP READ
                                  /IOP CLEAR
           CLR=2
           TST=2
                                  /IOP TEST
                                  /IOP WRITE
           WR = 4
           INV=4
                                 /IOP INVERT
           AR1=6300
                                 /ADDRESS REGISTER 1
           BR1=6310
                                 /BUFFER REGISTER 1
           AR2=6320
                                  /ADDRESS REGISTER 2
           CTL=6330
                                  /CONTROL REGISTER
           /INTERFACE CONTROL REGISTER BIT DEFINITIONS
           STREQ=7000
                                  /STATUS REQUEST
           BIREQ=4000
                                  /BUS-INBOUND SERVICE REQUEST
           BOREQ=2000
                                  /BUS-OUTBOUND SERVICE REQUEST
           CMDCHN=0400
                                  /COMMAND CHAIN
                                 /BUS-OUT PARITY CHECK ON COMMAND BYT
           CMDPCK=0200
           SRVPCK=0100
                                 /BUS-OUT PARITY CHECK ON DATA BYTE
           CMDRST=0040
                                 /SYSTEM OR SELECTIVE RESET
           CMDSTK=0020
                                 /STACK STATUS ON INITIAL SELECTION
           CMDHLT=0010
                                 /HALT I/O
           CMDEND=0004
                                 /COMMAND ACCEPT
           SRVHLT=0002
                                 /SERVICE STOP
           SRVEND=0001
                                  /PDP-8 WC=0
           /SYSTEM/360 STATUS BYTE DEFINITIONS
           UNCHCK=002
                                  /02 UNIT CHECK
           DEVEND=004
                                  /04 DEVICE END
           CHNEND=010
                                  /08 CHANNEL END
           *2
           BLKXFR, *.+2
                                 /3-CYCLE DATA BREAK BLOCK
           *200
0200 4246
           TEST,
                  JMS DELAY
                                  /WAIT FOR CHANNEL SERVICE
0201
     1320
                 TAD ACTIVE
                                  /DID CHANNEL STORE COMMAND
0202
     7450
                  SNA
0203
     5200
                 JMP TEST
                                  /NO. KEEP TRYING
0204
     7110
                 CLL RAR
                                  /YES. IS OUTBOUND SERVICE REQUESTED
0205
     7620
                 SNL CLA
0206
                 JMP TST2
                                  /NO. CONTINUE
     5213
0207
     1317
                 TAD BUFLNG
                                  /GET BUFFER SIZE
```

```
/SYSTEM/360 INTERFACE ECHO TEST ROUTINES
                                                                           2
                                                                   PAGE
      4277
0210
                    JMS XMT
                                     /YES. REQUEST OUTBOUND SERVICE
0211
      2000
                    BOREQ
      5216
                    JMP TST3
0212
      1317
            TST2,
0213
                   TAD BUFLNG
                                      /GET BUFFER SIZE
0214
      4277
                    JMS XMT
                                      /REQUEST INBOUND SERVICE
      4000
0215
                    BIREQ
            TST3,
      4232
0216
                    JMS STATUS
                                      /TRANSMIT ENDING STATUS
0217
      0004
                    DEVEND
0220
      5200
                    JMP TEST
            ERROR, HLT
0221
      7402
                                      /EQUIPMENT/PROGRAM CHECK
                    CTL INV
0222
      6334
                                      /RESET INTERFACE
0223
      7604
                    LAS
                                      /SR=ENDING STATUS
0224
      7450
                    SNA
      5200
2225
                    JMP TEST
0226
      3230
                    DCA .+2
0227
      4232
                    JMS STATUS
                                     /TRANSMIT ENDING STATUS
0230
      0000
                    0
                    JMP TEST
0231
     5200
                                     /RETURN TO WAIT LOOP
            /TRANSMIT STATUS TO CHANNEL
0232
     0000
            STATUS, 0
                                      /NORMAL ENTRY
0233
     4246
                    JMS DELAY
                                      /WAIT FOR CHANNEL SERVICE
0234
     1312
                    TAD ENDCHN
                                      /1ST BYTE - CHANNEL END
                    DCA BUF
0235
      3322
                    TAD I STATUS
                                      /ARGUMENT=2ND BYIL - DEVICE-END STAT
0236
      1632
0237
      2232
                    ISZ STATUS
0240
      3323
                    DCA BUF+1
0241
      3320
                    DCA ACTIVE
                                      /RESET CHANNEL COMMAND
0242
      1311
                    TAD K7776
                    JMS XMT
                                      /STATUS REQUEST
0243
      4277
      7000
                    STREQ
0244
                    JMP I STATUS
                                      /NORMAL EXIT
0245
      5632
            /DELAY FOR CHANNEL OPERATION
0246
      0000
            DELAY, 0
                                      /NORMAL ENTRY
0247
      6331
                    CTL RD
                                      /READ INTERFACE STATUS
0250
      3321
                    DCA TMP
0251
      1321
                    TAD TMP
                                      /IS INTERFACE BUSY
0252
      0310
                    AND K7000
                    SZA CLA
0253
      7640
                    JMP DELAY+1
                                      /YES. CONTINUE IN WAIT LOOP
0254
      5247
                    TAD TMP
                                      /NO. HAS DEVICE ADDRESS BEEN STORED
0255
      1321
0256
      0315
                    AND CMDBIT
                    SNA CLA
0257
      7650
                    JMP DEL1
0260
      5266
                                      /NO. CONTINUE
                    AR1 RD
0261
      6301
                                      /YES. COPY AR1 IN AR2
                    AR2 CLR+WR
      6326
0262
                    CLA
0263
      7200
                                      /STORE CHANNEL COMMAND
0264
      6311
                    BR1 RD
                    DCA ACTIVE
0265
      3320
0266
      1321 DEL1,
                    TAD TMP
                                      /RESET INTERFACE
0267
      0314
                    AND RSTBIT
0270
                    CTL INV
      6334
      7200
0271
                    CLA
```

```
/SYSTEM/360 INTERFACE ECHO TEST ROUTINES
                                                                      PAGE
                                                                             3
0272
      1321
                     TAD TMP
                                       /ARE ANY UNUSUAL-END BITS SET
0273
      0313
                    AND BADBIT
0274
      7450
                     SNA
0275
      5646
                    JMP I DELAY
                                       /NO. NORMAL EXIT
0276
      5221
                    JMP ERROR
                                       /YES. ABORT
             /TRANSMIT BYTES ON MULTIPLEX CHANNEL
             XMT,
0277
      0000
                                       /ENTRY. AC=WC
0300
      3002
                    DCA BLKXFR
0301
      1316
                    TAD PTR
0302
      3003
                    DCA BLKXFR+1
0303
      1677
                     TAD I XMT
                                       /ARGUMENT=CTL BITS
0304
      2277
                    ISZ XMT
0305
      6334
                    CTL INV
                                       /START OPERATION
0306
      7200
                    CLA
                    JMP I XMT
0307
      5677
                                       /NORMAL EXIT
0310
      7000
             K7000, 7000
             K7776, 7776
0311
      7776
0312
      0010
             ENDCHN, CHNEND
0313
      0370
             BADBIT, CMDRST+CMDSTK+CMDHLT+CMDPCK+SRVPCK
0314
      0407
             RSTBIT, CMDEND+SRVEND+SRVHLT+CMDCHN
0315
      0034
             CMDBIT, CMDSTK+CMDHLT+CMDEND
0316
      0321
             PTR.
                   BUF-1
                                       /POINTER FOR DATA BREAK
0317
      4000
             BUFLNG, -BUFSIZ
                                       /BUFFER SIZE
0320
      0000
             ACTIVE,0
                                       /CHANNEL COMMAND
             TMP.
                                       /TEMPORARY
                    *.+1
             BUF .
                    *.+BUFSIZ
                                       /BUFFER
ACTIVE
        0320
AR1
        6300
AR2
        6320
BADBIT
        0313
BIREQ
        4000
BLKXFR
        0002
BOREQ
        2000
BR1
        6310
BUF
        0322
BUFLNG
        0317
BUFSIZ
        4000
CHNEND
        0010
CLR
        0002
CMDBIT
        0315
CMDCHN
        0400
CMDEND
        0004
CMDHLT
        0010
CMDPCK
        0200
CMDRST
        0040
CMDSTK
        0020
CTL
         6330
DELAY
        0246
DEL1
        0266
DEVEND
        0004
ENDCHN
        0312
ERROR
        0221
INV
        0004
K7000
        0310
```

K7776	0311
PTR	0316
RD	0001
RSTBIT	0314
SRVEND	0001
SRVHLT	0002
SRVPCK	0100
STATUS	0232
STREQ	7000
TEST	0200
TMP	0321
TST	0002
TST2	0213
TST3	0216
UNCHCK	0002
WR	0004
XMT	0277

Security Classification						
DOCUMENT CONTROL DATA - R & D						
(Security classification of title, body of abstract and indexing	annotation must be e	ntered when the c	overall report is classified)			
1. ORIGINATING ACTIVITY (Corporate author) THE UNIVERSITY OF MICHIGAN		20. REPORT SECURITY CLASSIFICATION Unclassified				
		2b. GROUP				
CONCOMP PROJECT						
3. REPORT TITLE						
SYSTEM/360 INTERFACE ENGINEERING REPORT						
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Memorandum 13						
5. AUTHOR(S) (First name, middle initial, last name)						
MILLS, DAVID						
	•		•			
6. REPORT DATE	78. TOTAL NO. OF	PAGES	7b. NO. OF REFS			
March, 1968	166		none			
88. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S)					
DA-49-083 OSA-3050	Memorandum 13					
b. PROJECT NO.						
. c.	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)					
d,						
IO. DISTRIBUTION STATEMENT						
Qualified requesters may obtain copies of this report from DDC						
11. SUPPLEMENTARY NOTES	12. SPONSORING M	ILITARY ACTIV	/ITY			
12 ABCTDACT	L					

An interface which connects a small special-purpose digital computer to a large general-purpose digital data processing system is described in this report. The small computer is the Digital Equipment Corporation PDP-8 which itself is a component of a data collection and distribution system called the Data Concentrator. The large data processing system is the IBM System/360 Model 67, which is the principal computing element at The University of Michigan Computing Center. interface is designed to be attached to the multiplexor channel of the Model 67 along with other input-output components such as card readers, line printers, and communications equipment, and satisfies all IBM standards and interface conventions established for this type of attachment. The interface provides a bidirectional data transfer between the two machines of up to 80 thousand bytes (characters) per second using cycle-steal techniques in which data are transferred directly between the Model 67 multiplexor channel and the PDP-8 core memory without explicit program intervention.

Security Classification LINK C 14. LINK A LINK B KEY WORDS ROLE ROLE ROLE wT interface, multiplexor channel, cycle-steal, control unit, PDP-8, System/360, Model 67, data transmission,

