T H E

CONCOMP:

UNIVERSTITY O F MICHTIGAN

Memorandum 11

I/0 EXTENSIONS TO RAMP

David Mills

Research in Conversational Use of Computers
ORA Project 07449
F.H. Westervelt, Director

supported by:
DEPARTMENT OF DEFENSE

ADVANCED RESEARCH PROJECTS AGENCY
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 0SA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

October 1967

TABLE OF CONTENTS

LIST OF FIGURES. ittt iiiiii i et
I. INTRODUCTION. ... v ittt it ii i e et nn s e
IT. BASIC SYSTEM ARCHITECTURE..........civiiiiinnnn.
2.1 The Task....... i, s e
2.2 Real-Time and Task-Time Operations.........
IIT. I/0 DEVICE SUPPORT ARCHITECTURE......... P .
3.1 Record Formatting........uooviiierinnennnns
3.2 Device Allocation.......... et e e
3.3 Message Processing......... , e e e ,
3.4 Device Support Routine Interactlon
3,5 Store-and-Forward Operations...........
3.6 Error ReCOVETrY......'vuiviuweennns Ve e
IvV. TIMING AND LOADING CONSIDERATIONS...... e
REFERENCE.............. C e e e .

iii

FIGURE

(o e Y Y T S

11
12

LIST OF FIGURES

Data Byte Format........ e
DCB Table Entry............ .
Dispatcher Task.............
Command Language Interpreter
Copy Task.........
Read/Write Tasks............

oooooooooooooooo

Input/Output Tasks Segment Returns......... '

Typical Read Segment........

Typical Input Device Interrupt Routine......

Typical Write Segment.......

Typical Output Device Interrupt Routine.....

Store-and-Forward Processing

I. INTRODUCTION

RAMP is a multiprogramming system written for the
PDP-8 and designed primarily for real-time interactive systems
using a variety of I/0 devices. The structure of the basic
system nucleus is described in Reference 1. This memorandum
describes the system interface to I/0 device support routines
and the conventions under which they operate. Several dif-
ferent kinds of I/0 devices have been attached to PDP-8/RAMP
systems, and support routines for these devices have been
coded. Some of these are described herein.

Since the publication of Reference 1, several func-
tional improvements have been incorporated into the currently
operating PDP-8/RAMP systems. 1In particular, the copy nucleus
has been completely rewritten and is described below. The
command language interpreter has also been restructured so
that hangups can occur only in those pathological cases where
device support routines malfunction. In addition, the I/O
.utility routine package has been expanded to include routines
for reading and printing decimal integers. These latter func-
tional improvements do not directly affect the utility of the
RAMP system in its multiprogramming environment and are not

discussed extensively in this memorandum.

IT. BASIC SYSTEM ARCHITECTURE

The basic architecture of the RAMP system is dis-
cussed in depth in Reference 1 and is only briefly summarized
here. The basic system nucleus consists of a task-switching
monitor, an interrupt identifier, a set of buffer management
routines, a rudimentary command language interpreter, and a
set of I/0 formatting routines. The copy nucleus, added to
the basic nucleus for store-and-forward message processing,
includes the copy and echo routines together with additional

elements of the command language interpreter. To the resultant

-1-

composite system is added a set of device support routines
which interface both to the command language interpreter and
to the copy nucleus.

‘ For the purmose of subsequent discussion, the most
salient features of the composite RAMP system involve the
notion of real-time/task-time operations and the structure of
the task itself. Of particular interest in device support
routine construction are the methods by which control and
text information is passed among the system components and
the conventions by which devices are allocated to the various

system operations.

2.1 The Task

A task is a subroutine which is designed to be in-
volved asynchronously with other such tasks in the system.
It may call upon other tasks in much the same manner that
ordinary subroutines may call upon each other. The principal
operational'difference in the RAMP system is that every such
task call is saved in a first-in-first-out queue, so that at
any time more than one call request for a given task may be
outstanding in the queue. The task—éwitching monitor refrieves
these call requests one at a time from the queue and invokes
the task indicated where possible. When a task has completed
execution it transfers control directly back to the task
‘which called it.

The task queue entries may be created by two methods.
One of these, effected by the system subroutine TASK, places a
called-task identifying entry in the task queue and places
the calling task in an inactive state. Following execution
of the called task, the calling task again becomes active.
The other method, effected by the system subroutine INSERT,
places the identifying entry in the task queue and then con-

tinues execution of the calling task. The first method

-3

allows concurrent processing of those tasks which must be
delayed while other tasks run to completion, while the second
allows parallel processing of those tasks which need not be
so constrained.

A princival attribute of a task is its re-entrability
status. When a serially reusable task is invoked by the task-
switching monitor, its entry point is. identified as being busy
and subsequent call requests for its use will be automatically
requeued. Presumably the invoked task calls upon another task
and is placed in the latent state pending completion of its
called task. The re-entrability attribute furnishes an inter-
lock which prevents outstanding call requests for the task
from being honored during this interval. The interlock 1is
removed explicitly by the task itself before returnine to

its own calling task.

2.2 Real-Time and Task-Time Operations

The vast majority of processing time spent in task
execution is under conditions of the interrupt system being
enabled. Thus, while a particular task is in control, I/0
device interrupts normally can occur; and the routines ser-
vicing these interrupts can insert call requests in the task
queue for deferred processing. This operation naturally en-
courages reference of the interrupt routine processing as
being done in real time, and that of the task itself as being
done in task time. This terminology has been extended to
refer to all processing done with the interrupt system disabled
as real time and to refer to all other processing as task time.
Real-time routines can share a good deal of common code and
temporary storage. However, task-time routines may operate
in a parallel-processing mode and therefore must maintain
private pools of temporary storage. In any case, of course,

real-time and task-time routines cannot share storage unless

-4 -

the task-time routine disables interrupts when the common
storage is changed. In particular, to conserve storage,
the resident buffer management routines and certain task-
switching monitor routines share common storage with many
interrupt routines. Thus the operations of fetching and
storing characters in a buffer, as well as the task-switch-
ing operation itself, take place in real time.

The environment of multiprogrammed operations in
task time thus requires a careful analysis of common storage
requirements if some degree of storage optimization is to
be achieved. The general rule is that if a particular task
calls another task via TASK or requeues itself for any
reason, then all temporary storage required after the called
task returns must be dedicated to the calling task and may
not be shared with any other task. Furthermore, if a partic-
ular task must always be re-entrable, as is usually the case
in device support routines, then any temporary storage it
requires must either reside in the task queue itself as part
of the call request or must reside in a control-block region

pointed to by such a call request.

III. I/0 DEVICE SUPPORT ARCHITECTURE

All data transfers between peripheral devices and
the system nucleus are standardized in format and allocation
procedures, with as much emphasis on common system routines
as possible. All transmission occurs on a byte-by-byte
(8 bit) basis, using integral cyclic buffers and buffer
management routines. (However, these conventions do not
disallow transmission on a block-transfer basis or of byte-
sizes other than 8 bits.) Full-transparent 8-bit operation
is possible using the common routines, with the high-order
four bits of each byte available within the system asg modi-

fier or format information (see Figure 1).

Must be 0 for
Control Char.

Must be 0 for
Control Char.

Must be 1 for
Control Char.

Spare

Used for Record
Suppress

Asynchronous
Halt

End of Record

11

10

EOR HALT | PROC ‘W/// 8

ASC11 BYTE

DATA BYTE FORMAT

Figure 1.

-6-

By convention, all transmissicns involving either
the command language interpreter or the copy nucleus operate
on a unit record basis, with the record delimited by a
modifier bit. Since it is possible that command and copy
operations may be in progress for a number of devices
simultaneously, a means for aborting a transmission and
clearing the transmission path is provided in case of de-
vice malfunction. The following sections describe these

considerations in greater detail.

3.1 Record Formatting

A stream of data bytes (see Figure 1) in transmis-
sion between a pair of devices is punctuated occasionally
by an end-of-record (EOR) indication. This gives the sink
device an opportunity to acknowledge the record for error
checking and buffer administration procedures. The decision
as to the exact point of punctuation is due to the source
device support routine (DSR) and usually occurs at a logical
breakpoint, such as at a teletype carriage-return. Common
system routines recognize the sign bit of a data byte as the
EOR indication. The low-order bits of the byte may contain
additional information, such as whether the EOR indication
punctuates a logical or physical end-of-block, whether end-
of-file is assumed, and so forth.

The sink DSR recognizes this EOR as a request for
record acknowledgment. This normally takes the form of a
special character transmitted back to the source DSR. In
most cases, the acknowledgment can be automatically provided
by the system itself in connection with an entry point pro-
vided for this purpose. In other cases, the device itself
processes the EOR and provides an asynchronous interrupt
for acknowledgment purposes. An example of the latter be-
havior occurs in connection with machine-to-machine communi-

cation, where the receiving machine normally indicates ready-

-7-

to-receive status by a character transmitted over the inter-
connecting data link. 1In such cases as these, the sink DSR
must provide real-time recognition of the acknowledgment
character and insert the appropriate task-time routine. Conm-
mon routines in the system make this process convenient.

The source DSR interprets the acknowleugment character
depending upon device type. In most cases, the only function
performed is in connection with device allocation status; but,
in some cases, the acknowledgment character may be transmitted
to the source device itself. Again, these situations commonly
arise in machine-to-machine communication and provide for an
indefinite number of store-and-forward repeaters on any one
transmission circuit.

These record formatting conventions allow a treat-
ment of message transmission independently of the particular
device-type involved, and thus allow a fair number of common
service routines. Recognition of the particular EOR and
acknowledgment criteria is at the discretion of the particular
DSR and may include device characteristics other than the

transmitted data stream.

3.2 Device Allocation

As demonstrated above, a good deal of programming
effort has gone into defining and implementing a viable inter-
face between the highly tailored device support routines and
the common routines in the basic system nucleus and the copy
nucleus. The following discussion describes how the common
system routines avoid device conflicts while allowing rather
general record interleaving among several devices.

Each device attached to the system is regarded as
both a source and sink for purposes of record transmission
and is identified by a single logical device number (LDN) in
the range from 0 to 63 (decimal). (This convention does not

preclude attachment of a read-only or a write-only device.)

-8-

This LDN also identifies the device for record acknowledgment
purposes. Corresponding to each LDN attached to a particular
RAMP system configuration is a four-word entry in a device
control block (DCB) table (see Figure 2). The four words of
this entry are associated symmetrically in pairs with the
device as a source and as a sink. One word of each pair re-
presents the entry point of a segment of code which services
the device as a source and sink respectively. The other word
of each pair contains switches as to the allocation status
of the device.

In case of a source device, the allodation status
word contains a bit indicating whether the device is busy
or not, a bit indicating whether an asynchronous halt is pend-
ing or not, and finally a field containing the LDN to which
any output activity generated by this device should be directed.
Unless asynchronous acknowledgment is required by the source
device, this word need be accessed only by the common system
routines, and by the source DSR only as described in the next
section,

In case of a sink device, the allocation status word
contains a bit indicating whether the device is busy or not,
a bit indicating whether acknowledgment is pending or not,
and finally a field containing the LDN to which the acknowl-
edgment should be directed. Unless an asynchronous acknowl-
edgement is furnished by the sink device, this word need be

accessed only by the common system routines.

3.3 Message Processing

Associated with each attached source LDN in a RAMP
system configuration are three bit attributes used by the
copy nucleus (see Figure 2). The first bit indicates whether
the source 1s input to the command language interpreter or to
the copy mucleus, while the last two specify the conditions

under which a copy/command task will be inserted. If the source

AJINd 31dVL 90a -z 2an814

P
Msz LNAW9TS ¥SA MNIS OL ¥ILNIOJ <
<~ =
(MDV) NAT dD4N0S ddTdN0OD iinnﬂmm”mwwmwmwnmmmwu ADV //MHH isngl 2
L I./ y/
mum:om\ LNAW9ES ¥Sa g0¥N0S 0L ¥YILNIOd T
< -
N@T MNIS ad1dn0D LNALYT | NIVHD | AdOD uﬁmwmw LIVH | ASnd| O
~ SN aQ4oM
IT 0T 6 8 L 9 S v ¢ 4 1 0

M 5N FTOAN AdOD = N——gTnaq0N 0/1—
Ad adsn Ad a@dsn

-10-

message 1is input to the command language interpreter (CLI),
then its interpretation (see Reference 1) may generate
none, one, or more lines of output. In this éase, record
acknowledgment is provided by the CLI itself only when the
last character of the source message has been processed.

If the source message is input to the copy nucleus, then

the text is transmitted unaltered to the sink LDN and record
acknowledgment is provided by the sink DSR itself.

The copy-mode attribute can be set by the CLI in
response to the appropriate command if the device is not busy
and not already in copy mode. The coupled sink LDN can be
changed if the device is not busy and not in copy mode. How-
ever, once a source device is placed in copy mode, these para-
meters cannot be changed unless the device is returned to com-
mand mode via a special escape character transmitted by the
source device itself.

The majority of devices which operate on a character-
by-character basis at moderate data rates provide an interrupt
when character assembly is complete. The interrupt routine
for a source device in this category typically edits the text
stream while placing the data bytes in an input cyclic buffer
using the common system routines. When the EOR criteria is

realized, the interrupt routine

a. inserts an EOR identifier in the input buffer,
and

b. inserts a dispatcher task in the task queue.

When the dispatcher task is inserted, the source DSR is
responsible for specifying as a parameter its own LDN. Further
operations on the record text can be performed in task time.
At any instant, more than one such record may reside in the
input buffer, and a dispatcher task will be outstanding for
each in the task queue.

The dispatcher task itself (see Figure 3) is a re-

entrable task which performs the following operations:

-11-

DISPATCH

HALT

BIT SET NO™

N
TRANSMIT
HALT VIA

WRITE TASK

RESET
HALT BIT

REQUEUE
THIS TASK

SOURCE

CHAIN BUSY COoPY YE S= CoPY NC~F COMMAND CHAIN BUSY
(NO RETURN) TASK BIT SET - TASK (NO RETURN)

Figure 3. DISPATCHER TASK

-12-

a. reserves the source device,

b. performs certain housekeeping chores, such as re-
trieving the sink LDN from the DCB table and supervising the
asynchronous halt condition (see below),

c. inspects the copy/command attribute and calls

the appropriate task.

The dispatcher task will be requeued in any case that the
source LDN is busy due to some prior uncompleted operation.
This organization allows a source device to be reconfigured
by its own input messages without confusion when several re-
cords have already been stored in the input buffer.

The command language interpreter itself (see Figure
4) is a serially reusable task and remains busy until the
entire command message record is processed. This processing
may be considerably involved, so that multiple call requests
may be requeued for several task queue cycles. However, all
requests involving production of output messages are inserted
by the CLI and processed in parallel with other tasks in the
system. Thus, system delay due to output buffer overflow for
some particular device is avoided at the expense of task
queue entries.

The copy task itself (see Figure 5) is a re-entrable
task which reads a character from a source LDN and writes it
unaltered on a sink LDN. The copy task is requeued upon
entry if the sink device is busy. After the EOR is transmitted
to the sink device, the copy task terminates. However, in
some special cases where the source device is not able to
provide interrupts, the dispatcher task is inserted prior to
any data transmission activity and remains in the queue for
the duration of activity. In these cases, the dispatcher
task calls either the command language interpreter or the
copy task, as appropriate. Once the input message is processed,
these tasks exit directly to the dispatcher task to process the
next input message. Two bits set in the source DCB table

entry control this function (see Figure 2).

-13-

READ
COMMAND
NAME

LOOK UP USE FIRST AND LAST
CMD NAME CHARS. IN FIRST
IN DICTION, WORD OF MSG.

by

COMMAN

\\\Xi}ID NO—]

YES

// PROCESS
COMMAND

<

CLOSE

INPUT BUFFER
& ACK

Figure 4. COMMAND LANGUAGE INTERPRETER

-14-

YES
SEIZE SINK BOTH SOURCE AND SINK
SET ACK REMAIN BUSY UNTIL
BIT ACKNOWLEDGMENT AFTER EOR

Figure 5. COPY TASK

-15-

Note that in the above architecture, each source
device is associated with only one sink device, but each
sink device may be associated with any number of source de-
vices. Note further that the source-sink device path re-
mains busy until all acknowledgment procedures connected with
any particular record have been completed. If several source
devices produce simultaneously output for a single sink device,
the system will interleave these records to the sink device
on a record-by-record basis, acknowledging each source device

in turn when its record is transmitted.

3.4 Device Support Routine Interaction

Since record transmission has been specified on a
byte-by-byte basis, it is natural to assume that the organiza-
tion of the device support hi€rarchy be built about a task
which transmits a single byte to or from the device. In order
to provide a convenient interface between the common system
routines and the device support routines, two tasks have been
included within the system: READ, which reads a single byte
from a device, and WRITE, which writes a single character on
a device (see Figure 6). Each of these tasks sets up DCB
pointers and performs other housekeeping functions, then
calls a segment of code which services the peculiar demands
of the device.

In the case of an input device, the segment of code
terminates through the IORTN exit (see Figure 7) which checks
for EOR and exits appropriately in turn to the calling task.
Thus the only obligatory character-sensitive operation re-
cognized in common by the READ task and the device support
segment is the EOR indication. When the acknowledgment is
transmitted to the source device, a simple convention is adopted
which enables the segment of code called by the READ task to
determine whether the task call was made as the result of an
input character request or as the result of a record acknowledg-

ment request. In the former case, the source DSR segment

-16-

N

|

COMPUTE
SEGMENT
ENTRY

Figure 6. READ/WRITE TASKS

-17-

READ/WRITE READ/WRITE
RESPONSE NO-RESPONSE

—CHAR N\
EOR or ACK _-

RELEASE
SOURCE/SINK

TASK
RTN+1

ACK
_REQUESTED

CHAIN BUSY
TO READ; RETURN
VIA TSKLNK

Figure 7. INPUT/OUTPUT TASKS SEGMENT RETURNS

-18-

returns to the IORTN exit as described above, while in the
latter case it returns to the IOREP exit, which releases the
source device for further system use. Also, in the latter
case, the source DSR has the option of transmitting a char-
acter to the source device itself, an operation which may,
for example, activate a data link to a remote machine. A
typical READ task segment is described in the next section.

In the case of an output device, the segment of
code may terminate through either of two exits. The IOREP
exit checks for the EOR, transmits the acknowledgment auto-
matically to the associated source DSR, and then returns to
the calling task. The IORTN exit returns directly to the
calling task. In the latter case, the system assumes that
at some future time an asynchronous interrupt will occur for
the sink DSR, which will then insert a utility task, which
in turn will transfer control to the first exit above, thus
providing the acknowledgment to the associated source DSR.
A typical WRITE task segment is described in the next section.

Both input and output buffers can be dynamically
allocated in units of a page (128 words) by common routines
in the system. The allocation technique makes use of a
table with as many entries as allocatable pages in the machine.
A buffer is seized by scanning this table for that entry
corresponding to the first free page, which is then reserved.
Following reservation, a buffer control block is built in the
page itself and its location passed to the READ/WRITE task
segment requesting buffer storage. If all allocatable pages
in the system are in use, the system is said to be in page-
wait status, and requests for additional pages are requeued.
When a buffer is emptied, its storage is returned to the
allocatable page pool for use by other I/0 devices.

Since storage is acquired and released by task-time
routines, device support routines which are constrained in
overrun requirements commonly either preallocate buffer

storage before record transmission begins or make use of

-19-

dedicated buffers not belonging to the allocatable page pool.
Most input devices such as keyboards are in this category,
while most output devices such as printers are not. For this
reason, a convenient output routine is included in the system
which can be common to many output devices. This routine al-
locates buffer storage as required and transmits characters
to the buffer. Each output real-time DSR routine can release
the storage so acquired by inserting a utility task when the
buffer becomes empty. These common routines recognize the
asynchronous halt indication (see below) as a request to dis-
card an entire buffer and to return its storage to the allo-
catable page pool. Thus page-wait conditions, which occur
when multiple device support routines contend for restricted

buffer space, can be cleared.

3.5 Store-and-Forward Operations

The operations of message store-and-forward pro-
cedures can perhaps best be illustrated by reference to a
particular I/0 device. The device chosen here as an example
is a serial-synchronous line adapter designed to interface two
PDP-8/RAMP systems to each other via 2000-baud data links
operating on the standard switched-telephone network. The
peculiar feature of this device, which recommends it for
study here, is that record acknowledgment is expected from
the remote machine via the data link itself. The following
discussion describes the appropriate real- and task-time de-
vice support routine segments and how they interface with
the system so far described. Finally an example is drawn
from typical system operating procedures showing how the
various parts of the system interact.

A typical READ I/0 segment is shown in Figure 8.
This segment is activated in task time by the READ task (see
previous section) and exits through the IORTN or IDREP return

as appropriate. Note the convention by which a record

REQUEUE
THIS TASK

-20-

GET CHAR

FROM BUFFER TOREP

ES

Figure 8.

BUFFER
UNDERFLOW

TYPICAL READ SEGMENT

FROM
READ
EONENT READ TASK
TSKARG # 0
INSERT DETERMINE
(WRITE (REPLY)| REPLY FORMAT
TASK (e.g., ACK
: or NAK)
RELEASE

THIS DEVICE

-21-

acknowledgment is indicated-a nonzero TSKARG in a call to

the READ task. In this case such an acknowledgment, presumab-
ly produced by the system or some other I/0 device in response
to a previous message, is transmitted over the data link to

the sender of the previous message. The intent here is that
this acknowledgment be transmitted asynchronously with possible
outgoing traffic and be detected at the other end of the link
by virtue of its special character code.

A typical input device interrupt routine is shown
in Figure 9. This routine is called by the interrupt identifier
when a service request for this device has been recognized.
The routine has the responsibility of clearing the interrupt,
reading the input character, and arming the device so that
the next character can be received.

There are three special characters recognized by
this routine—the EOR, ATN, and ACK characters. Others may of
course be identified, such as those for line-editing and
error-recovery procedures, but these do not contribute great-
ly to the present discussion. All of the non-special characters
are simply parked'in the input buffer as they arrive. The
three special characters cause task inserts, as shown for the
dispatcher task (see previous discussion).

A typical WRITE I/0 segment is shown in Figure 10.
This segment is activated in task time by the WRITE task and
exits to IORTN return. 1In this example, if a buffer is not
attached to the device when the segment is activated,then one
is seized and attached. If a buffer is already attached and
if the WRITE character has the halt modifier set (see next
section), then the buffer is discarded and the task is re-
queued. This behavior ensures recovery from page-wait con-
ditions if the device, in this case a data link, jams or
becomes inoperative and all available buffer storage has been
allocated. In this case the halt indication transmitted to
the jammed device will release its buffer storage so that

some other device can begin operation while the jammed device

IGNORE
OVERRUN;
CHARACTER
LOST

*F-NO

READ CHAR
FROM DEVICE
REGISTER

CHAR

-22-

FROM INTERRUPT
IDENTIFIER

NOTE :

IF LINE-EDITING

NOT REQUIRED,

INSERT

DISPATCH AT FIRST
RECEIVED CHAR

ACK

NO

PUT CHAR
IN BUFFER

L

INSERT
ACK
TASK

LINE
N EDITING
FUNCTIONS

INSERT INSERT
ATTN EOR
DISPATCH DISPATCH
¥ : =
Figure 9. TYPICAL INPUT

IF DISPATCH
ALREADY IN-
SERTED (SEE
NOTE ABOVE)
SET SUPPRESS
BIT IN TSKARG

DEVICE INTERRUPT ROUTINE

BUFFER™N
~ATTACHED

-23.

WRITE TASK

YES

SEIZE
BUFFER

REQUEUE
THIS TASK
(PAGE-WAIT)

STORAGE
AVAILABLE

Figure 10.

\L

PUT CHAR RELEASE
IN BUFFER BUFFER

olf
\

LOAD DEVICE
REGISTER; SET
ACTIVE BIT

TYPICAL WRITE SEGMENT

REQUEUE
THIS
TASK

-24-

unsnarls its own problems. In any case, if buffer storage
is either not available or the attached buffer is full, the
task is requeued.

Note the use of an '"active bit'" to identify whether
a device has a pending interrupt or not. Setting this bit is
equivalent to arming the device. If the device is idle when
this I/0 segment is activated, then the device is started
and the first character is loaded in its buffer. Following
this operation, normal device interrupts following each
transmitted character cause the restarting and reloading pro-
cedures to continue.

A typical output interrupt routine is shown in
Figure 11. This routine is called by the interrupt identifier
when a service request for this device has been recognized.
This routine has the responsibility of clearing the interrupt,
loading the next output character (if any) and arming the
device so that the next character (if any) can be transmitted.
Note that if an attempt is made to fetch a character from
an empty buffer, the device is not restarted and the attached
buffer storage is returned to the allocatable page pool.

The manner in which these specialized I/0 device
support segments operate in conjunction with the remainder
of the system is illustrated in Figure 12, which shows a
typical situation in which requests for device activity are
queued for both transmission and reception. The process
involved here is a store-and-forward operation between two
remote machines using a PDP-8/RAMP configuration as the
store-and-forward element. In this diagram the vertical
axis represents time, increasing toward the bottom of the
diagram. Across the top, several concurrent processes are
identified as the real- and task-time activity for a pair
of devices called A and B. The primary operations represented

here are

1. real-time transmit/receive activity for device A,

25

FROM INTERRUPT
IDENTIFIER

GET CHAR
FROM BUFFER

BUFFER g
NO EMPTY YES

LOAD I/O RELEASE
REG; SET BUFFER; CLEAR
ACTIVE BIT ACTIVE BIT

Figure 11. TYPICAL OUTPUT DEVICE INTERRUPT ROUTINE

-26-

REAL ACK COPY ACK REAL
B>A B~ A A~>B B
DISPAT
o COPY (DELAYED FOR A REC TO DIE)
[a
READ
-«
RITE —
READ
EOR
=
- READ =
= EOR ><
<
WRITE
EOR
- WRITE
EOR
o _.1
23] - o p
= | '-1[;£K. =
DISPAT
F
:;];t ACK][ft
> ;
COPY
T—
—————==W® DISPAT
READ
(@]
=)
(DELAYED FOR >
4 COPY A REC 'TO DIE)
READ
. I WRITE
= (DELAYED FOR
B REC TO DIE)

v v

Figure 12. STORE-AND-FORWARD PROCESSING

-27-

2. task-time activity for a copy operation from
A to B ,

3. record-acknowledgment task-time activity for
the copy operation from A to B ,

4. task-time activity for a copy operation from
B to A,

5. record-acknowledgment task-time activity for
the copy operation from B to A , and

6. real-time transmit/receive activity for device

Although real-time operations may proceed simultaneously for
both A and B , only one active task-time operation is
possible at any instant. The particular active task is
identified in the figure as a heavy line; other inactive
tasks are identified as light lines.

Reading Figure 12 from top to bottom, an input
operation is first detected on device A in real time. The
interrupt routine then inserts the dispatcher task which in
turn calls on the copy task. Following device seizure,
alternate calls on READ and WRITE then occur which copy the
incoming text from device A's buffer to device B's buffer.
Meanwhile, device B is started in real time to begin
transmitting the text.

Meanwhile, a second copy task, presumably inserted
at some past time by device B , has been held in the in-
active state because device A has not been available for
transmission. Once the record received from A has been
terminated, however, device A 1is presumably ready to begin
transmission. Note the manner in which the tail end of the
task-time copy from A to B is interleaved with the
beginning of the task-time copy from B to A

Following transmission of both the A-to-B and the
B-to-A records, devices A and B each wait for record

acknowledgment from the remote machine to be transmitted over

-28-

the respective data ‘link. The figure shows that device A
transmits its acknowledgment as a single-character record,
while device B . embeds its ‘acknowledgment in the midst of

a text record. Note the parallel processing of the acknowl-
edgment and the text as received from B , and the text

record as received from A,

3.6 Error Recovery

Situations can arise during normal system operation
which result in a failure of the acknowledgment to be returned
by the sink DSR.in response to an EOR from:the source DSR.
This may be due to a buffer overrun condition in the sink de-
vice, a very long processing time for the messagé at the sink
device itself (say due to human response-time at a terminal),
a hardware or transmission circuit failure, or a wait-before-
transmit request on the part of the sink device. Under these
conditions the source device hés the option, usually initiated.
by human intervention at a terminal, of transmitting a special
message which has the effect of clearing all device paths
and purging the sink device of a possibly jamming condition.
This ﬁessage isvrepresented by a special character which has
the halt modifier set. When this character is detected. in
real time by the source DSR, a special dispatcher task is in-
serted in the tésk queue, and the halt character is inserted
in the input buffef. - The special dispatcher task causes a
WRITE‘téskAfo.be invoked whi;h‘immediately.kills transmission
on the coupléd sink LDN and sets a bit in the source DCB entry
which causesiqil further transmissipn to be ignored. As a
result, all outstanding syétem outbound-text activity referenc-
ing the source.device,will eventually run dry for iack of in-
put text. At this time, thé_halt_character previ@usly in-
serted in‘the,inpgt.buffér is/transmitted to the sink DSR,

which then resets the halt indicators and resumes transmission:

-29-

This function is useful in connection with machine-
to-machine communication where asynchronous interrupts to
operating systems are required, and in particular to a time-
sharing system such as MTS, where the attention operation
from a terminal, perhaps a RAMP system, suspends execution
of a system program and returns control to the terminal.

Note that the sink DSR is unaware that the atten-
tion condition has occurred until the attention character is
in fact transmitted to the device. The WRITE task itself
diverts the output text stream, and the device support segment
is not called during the interval between execution of the
special dispatcher task and the appearance at the WRITE task
of the halt character. If the source device is in command
mode, then the halt character does not appear at a WRITE task
unless the ECHO is invoked. Except in this case, then, the
only effect of the halt operation from a device in command
mode is to suspend the associated sink device transmission
at the WRITE task. The convention has been adopted that if
the halt operation occurs a second time, the WRITE task
resumes transmission, again without the attention character
being transmitted to the sink device. This feature has
been highly useful within the RAMP system itself during de-

bugging operations.

IVv. TIMING AND LOADING CONSIDERATIONS

A large-scale PDP-8/RAMP system supporting a number
of I/0 devices, most of which are transmitting concurrently
on a character-by-character basis, would probably not be
described as a high-speed system. Currently operating systems
using the PDP-8 can realize an aggregate throughput of about
400-1000 bytes per second, with peak rates during any one
record of about 3000-10,000 bytes per search. If DSR support
for a pair of devices is organized about a record-by-record

basis using specially tailored buffer transmission routines,

-30-

then the peak rate can be realized in the aggregate for that
pair of devices. If data break operations are possible for

a particular device, then the character interrupt time in-
cluded here can be deleted, making the peak rate well up in
the tens-of-kilobytes range. The following discussion
summarizes only those considerations applying to character-by-
character transmission operations using devices that interrupt
on every character.

The timings indicated below were measured using
special equipment attached to a PDP-8/RAMP system operating
as a store-and-forward environment and including a System/360
interface, teletype adapters, medium-speed (2000 baud) syn-
chronous data sets, and miscellaneous other adapters. This
particular system, chosen as an example of a very heavily
loaded system, includes two banks of core memory, one of
which includes the buffer management routines and the buffers
themselves, and the other of which includes the basic system
nucleus, copy nucleus, and device support routines. The
overhead involved in core-bank switching contributes from 30
to 90uS in the figures shown below. All timings indicated
apply to the PDP-8. Those for the PDP-8S can be derived
very closely by multiplying the PDP-8 timings by 15.

The cyclic buffer routines operate with the interrupt
system dissdbled, so that they can be called directly by real-
time routines and, after toggling the interrupt system, by
task-time routines. The operation of fetching or storing
a single character in a cyclic buffer requires about 200uS.
This, added to about 100uS required for interrupt identifica-
tion, represents effectively the minimum time that any one
particular device may have to wait before another outstanding
interrupt is cleared. If a buffer is either empty or full,
only about 70uS is required to establish the fact.

When the system is idling with no call requests in
the task queue,a 113uS loop is in process, with the interrupt'

system being disabled for the majority of this time. About

e =31-

300uS is required to insert a call request in the task queue,
and about 425uS is required to switch between one task and
the next in the task queue.

The common routine processing in connection with
the READ and WRITE tasks dinvolves an overhead of about 150uS
per character, during which time the interrupt system is

enabled. Thus, assuming

1. an interrupt on every character which is then
placed in a cyclic buffer, and

2. a task which fetches this character from the
buffer,

a total of 300uS is required in the interrupt routines and
875uS is required in the task switching process. The peak
input character rate then is limited to about 3300 characters
per second on any one device, and the aggregate character

rate to about 1100 characters per second considering all de-
vices in the system. A simple analysis of queueing delay
shows that if N 1is the number of devices in the system con-
sidered above, then 300 x N(uS) would be the worst-case wait-
ing time for any one interrupt to be honored, and 1175 x N(uS)
would be the worst-case delay for task-time processing. Since
store-and-forward operations on a character-by-character

basis require two such transactions, one for the source de-
vice and the other for the sink device, an aggregate through-
put of about 400 characters per second seems to represent

the upper 1limit on performance for the particular PDP-8/RAMP

system analyzed here.

REFERENCE

1. Mills, D., RAMP: A PDP-8 Multiprogramming System for
Real-Time Device Control, Concomp Project Technical
Memorandum, The University of Michigan, May 1967, 24 pp.

-32-

