
31-Oct-05 1

Sir John Tenniel; Alice’s Adventures in Wonderland,Lewis Carroll

NTP Security Protocol

David L. Mills
University of Delaware
http://www.eecis.udel.edu/~mills
mailto:mills@udel.edu

31-Oct-05 2

Security protocol requirements

o It must interoperate with the existing NTP architecture model and
protocol design. In particular, it must support the symmetric key
scheme described in RFC-1305.

o It must provide for the independent collection of cryptographic values
and time values. A NTP packet is accepted for processing only when
the required cryptographic values have been obtained and verified and
the NTP header has passed all sanity checks.

o It must not significantly degrade the potential accuracy of the NTP
synchronization algorithms. In particular, it must not make
unreasonable demands on the network or host processor and memory
resources.

o It must be resistant to cryptographic attacks, specifically those identified
in the security model above. In particular, it must be tolerant of
operational or implementation variances, such as packet loss or
misorder, or suboptimal configurations.

31-Oct-05 3

Security protocol requirements (continued)

o It must build on a widely available suite of cryptographic algorithms, yet
be independent of the particular choice. In particular, it must not require
data encryption other than incidental to signature and cookie encryption
operations.

o It must function in all the modes supported by NTP, including
client/server, symmetric and broadcast modes.

o It must not require intricate per-client or per-server configuration other
than the availability of the required cryptographic keys and certificates.

o The reference implementation must contain provisions to generate
cryptographic key files specific to each client and server.

31-Oct-05 4

Autokey security protocol

o NTP and Autokey protocols work independently for each client, with
tentative outcomes confirmed only after both succeed.

o Public keys and certificates are obtained and verified relatively
infrequently using X.509 certificates and certificate trails.

o Session keys are derived from public keys using fast algorithms.

o Each NTP message is individually authenticated using session key and
message digest (keyed MD5).

o A proventic trail is a sequence of NTP servers each synchronized and
cryptographically verified to the next lower stratum server and ending
on one or more trusted servers.

o Proventic trails are constructed from each server to the trusted hosts at
decreasing stratum levels.

o When server time and at least one proventic trail are verified, the host
is admitted to the population used to synchronize the system clock.

31-Oct-05 5

o NTPv4 session keys have four 32-bit words (16 octets total).

o The session key value is the 16-octet MD5 message digest of the
session key.

o Key IDs have pseudo-random values and are used only once. A special
key ID value of zero is used as a crypto-NAK reply.

o In broadcast modes and in any message including an extension field,
the cookie has a public value (zero). These messages are always
signed.

o In client/server modes the cookie is a hash of the addresses and a
private value.

o In symmetric modes the cookie is a random roll; in case both peers
generate cookies, the agreed cookie is the EXOR of the two values.

Source
Address

Key ID
Dest

Address

Session keys

Cookie Hash

NTPv4 Session Key

31-Oct-05 6

Computing the cookie

o The server generates a cookie unique to the client and server
addresses and its own private value. It returns the cookie, signature
and timestamp to the client in an extension field.

o The cookie is transmitted from server to client encrypted by the clien
public key.

o The server uses the cookie to validate requests and construct replies.

o The client uses the cookie to validate the reply and checks that the
request key ID matches the reply key ID.

Client
Address

Cookie

Server
Address

Compute Hash

Cookie
Private
Value

Key ID
(0)

Compute Signature

Signature and
Timestamp

31-Oct-05 7

o The server rolls a random 32-bit seed as the initial key ID and selects
the cookie. Messages with a zero cookie contain only public values.

o The initial session key is constructed using the given addresses, cookie
and initial key ID. The session key value is stored in the key cache.

o The next session key is constructed using the first four octets of the
session key value as the new key ID. The server continues to generate
the full list.

o The final index number and last key ID are provided in an extension
field with signature and timestamp.

Session
Key ID

List

Source
Address

Next
Key ID

Dest
Address

Compute Hash

Generating the session key list
Final

Key ID
Final
Index

Index n

Index n + 1

Key IDCookie

Compute Signature

Signature

31-Oct-05 8

o The message authenticator code (MAC) consists of the MD5 message
digest of the NTP header and extension fields using the session key ID
and value stored in the key cache.

o The server uses the session key ID list in reverse order and discards
each key value after use.

o An extension field containing the last index number and key ID is
included in the first packet transmitted (last on the list).

o This extension field can be provided upon request at any time.

o When all entries in the key list are used, a new one is generated.

Sending messages

Session
Key ID

List

NTP Header and
Extension Fields

Message Authenticator Code (MAC)

Key IDCompute Hash

31-Oct-05 9

Receiving messages

o The intent is not to hide the message contents, just verify where it
came from and that it has not been modified in transit.

o The MAC message digest is compared with the computed digest of the
NTP header and extension fields using the session key ID in the MAC
and the key value computed from the addresses, key ID and cookie.

o If the cookie is zero, the message contains public values. Anybody can
validate the message or make a valid message containing any values.

o If the cookie has been determined by secret means, nobody except the
parties to the secret can validate a message or make a valid message.

NTP Header and
Extension Fields

Message DigestKey IDCompute Hash

Message Digest Compare

Message Authenticator
Code (MAC)

31-Oct-05 10

NTP protocol header and timestamp formats

Strat PollLI ModeVN

NTP v3 and v4

Root Delay
Root Dispersion

Reference Identifier

Reference Timestamp (64)

Originate Timestamp (64)

Receive Timestamp (64)

Transmit Timestamp (64)

Message Digest (128)

NTP Protocol Header Format (32 bits)
LI leap warning indicator
VN version number (4)
Strat stratum (0-15)
Poll poll interval (log2)
Prec precision (log2)

Seconds (32) Fraction (32)

NTP Timestamp Format (64 bits)

Value is in seconds and fraction
since 0h 1 January 1900

Authenticator uses MD5 cryptosum
of NTP header plus extension fields (NTPv4)

Key/Algorithm Identifier

Cryptosum

Authenticator
(Optional)

Extension Field 1 (optional)

Extension Field 2… (optional)

NTP v4 only

Prec

Extension Field
(padded to 32-bit boundary)

Field Type Length

NTP v4 Extension Field

Last field padded to 64-bit boundary

authentication only

31-Oct-05 11

NTPv4 extension fields

o New extension fields format defined for NTP Version 4

• Fields are processed in order.

• Requests may be transmitted with or without value fields.

• Last field padded to 64-bit boundary; all others padded to 32-bit boundary.

• Field length covers all payload and padding.

Padding (as needed)

Field Type Length
Association ID

Value

Signature Length

Signature

Timestamp
Filestamp

Value Length

NTP Extension Field

Value Fields (optional)

31-Oct-05 12

Host status word

o Host status word is constructed at initialization time.

• Client and server exchange status words with offered identity schemes

• Both client and server agree on the same scheme

o Digest/Signature NID

• 16 bits for Network ID of the message digest/signature encryption scheme

o Client

• 8 bits available for client Autokey protocol operations

o Host

• 8 bits available for host Autokey operations and offered identity scheme

Digest/Signature NID IdentClient

0 16 24

Host

28

31-Oct-05 13

Autokey protocol exchanges

o Parameter Exchange (ASSOC message - not signed)

• Exchange host names; agree on digest/signature and identity schemes.
Optional: verify host name/address using reverse-DNS.

o Certificate Exchange (CERT message)

• Obtain and verify certificates on the trail to a trusted root certificate.

o Identity Exchange (IFF, GQ and MV messages)

• Verify server identity using agreed identity scheme (TC, IFF, GQ, MV).

o Values Exchange (COOKIE and AUTO messages)

• Obtain and verify the cookie, autokey values and leapseconds table,
depending on the association mode (client-server, broadcast, symmetric).

o Signature Exchange (SIGN message)

• Request the server to sign and return a client certificate. The exchange is
valid only when the client has synchronized to a proventic source and the
server identity has been confirmed.

31-Oct-05 14

Parameter and certificate exchanges

Assoc Request

Assoc Response

Client Server

Agree digest NID
and ID scheme

Verify signature
and certificate

Send host name and
status word (unsigned)

o Initial exchange of host status words defines server message digest
and signature encryption algorithm and identity scheme.

o The Certificate Request/Response cycle repeats as needed.

• Primary (stratum 1) certificate is explicitly trusted and self-signed.

• Secondary certificates are signed by the next lower stratum server and
validated with its public key.

Certificate Response

Certificate Request

Send X.509 certificate
and signature

Agree digest NID
And ID scheme

Send host name and
status word (unsigned)

31-Oct-05 15

Identification exchange
Client Server

Verify response
and signature

Challenge Response

Challenge Request

Send response
and signature

Compute nonce1
and send

Compute nonce2
and response

o This is a challenge-response scheme

• Client Alice and server Bob share a common set of parameters and a
private group key b.

• Alice rolls random nonce r and sends to Bob.

• Bob rolls random nonce k, computes a one-way function f(r, k, b) and sends
to Alice.

• Alice computes some function g(f, b) to verify that Bob knows b.

o The signature prevents message modification and binds the response
to Bob’s private key.

o An interceptor can see the challenge and response, but cannot
determine k or b or how to construct a response acceptable to Alice.

31-Oct-05 16

Cookie exchange
Client

Active Peer
Server

Passive Peer

Verify signature; decrypt cookie
Cookie Response

Cookie Request

o Client sends public key to server without signature when not
synchronized.

o Symmetric active peer sends public key and signature to passive peer
when synchronized.

o Server cookie is encrypted from the hash of source/destination
addresses, zero key ID and server private value.

o Symmetric passive cookie is a random value for every exchange.

o Server private value is refreshed and protocol restarted once per day.

Send encrypted cookie and signature

Verify signature; encrypt cookieSend public key and signature

31-Oct-05 17

Autokey exchange

o Server generates key list and signature calculated to last about one
hour.

o Client sends request to server without signature when not
synchronized.

o Server replies with the last index number and key ID on the list.

o Broadcast server uses AUTO response for the first message after
regenerating the key and ASSOC response for all other messages.

Client
Active Peer

Server
Passive Peer

Verify signature; install values
Autokey Response

Autokey Request

Send autokey values and signature

Verify signatureSend request and signature

31-Oct-05 18

Sign certificate exchange
Client

Active Peer
Server

Passive Peer

Verify signature; install certificate;
Sign Response

Sign Request

o This is used to authenticate client to server, with server acting as de
facto certificate authority using encrypted credential scheme TBD.

o Client sends certificate to server with or without signature.

o Server extracts request data and signs with server private key.

o Client verifies certificate and signature.

o Subsequently, client supplies this certificate rather than self-signed
certificate, so clients can verify with server public key.

Send certificate and signature.

Verify signature; sign certificateSend certificate and signature

31-Oct-05 19

Broadcast/multicast mode

o The broadcast server sends messages at fixed intervals.

• The first message sent after regenerating the key list includes the autokey
values and signature.

• Other messages include the server association ID, but no signature. This is
used as a handle for clients to request the autokey values if necessary.

• These messages are considered public values, so the cookie value is zero.

o When a multicast client receives the first message, it temporarily
switches to client/server mode in order to calibrate the network
propagation delay and authenticate the server.

o The client first obtains the parameters and verifies the certificate,
identity and signature as in client/server mode, then obtains the
autokey values and signature.

o When the propagation delay is calibrated, the client switches back to
broadcast client mode and makes no further transmissions.

31-Oct-05 20

Broadcast/multicast mode protocol

… Request

… Response

Autokey Request

Autokey Response

Mobilize association
generate key list
switch to client/server

Verify signature
calibrate delay
switch to multicast client

Send autokey and signature

Server Client

Regular operation
Assoc Response

Assoc Response

Verify certificate, identity
and signature

Regular operation

Request autokey values

31-Oct-05 21

Symmetric modes

o Symmetric peers can each synchronize the other, depending on which
one has the lowest synchronization distance.

• One of the peers must be active; the other can be active or passive. Each
peer computes a cookie and generates key lists independently.

• The passive peer is presumably already synchronized to a proventic source.
It mobilizes an association upon arrival of the first message from the active
peer and begins a parameter exchange.

• The active peer proceeds through the various exchanges until synchronized
to the passive peer. The passive peer continues the parameter exchange.

• When the active peer is synchronized, the passive peer proceeds through
the various exchanges until synchronized to the active peer.

• When the passive peer is synchronized, both peers continue using the key
lists as necessary. An AUTO response with

31-Oct-05 22

Symmetric modes protocol

Cookie Request

Autokey Request

Cookie Response

Symmetric
Active

Symmetric
Passive

Obtain credentials;
mobilize association;
compute cookie.

Autokey Response

Obtain credentials;
mobilize association;

generate key list.
Generate key list;
send cookie;
send autokey values.

Regenerate key list;
send autokey values.

31-Oct-05 23

TAI leapsecond table

o The UTC leapsecond table contains the historic epoches, in NTP
seconds, of leapsecond insertions since UTC began in 1972

• An authoritative copy is on NIST NTP servers in pub/leap-seconds

• It can be retrieved directly from NIST using FTP

• It can be retrieved from a server or peer during the Autokey dance

• If both peers have the table, only the most recent is used

• NTP provides the seconds offset relative to TAI to the kernel

o Application program interface

• The ntp_gettime() system call returns the current time and seconds offset
relative to TAI

• Currently, only FreeBSD, Linux and locally modified SunOS and Tru64
(Alpha) have modified kernels to support this interface

31-Oct-05 24

Further information

o Network Time Protocol (NTP): http://www.ntp.org/

• Current NTP Version 3 and 4 software and documentation

• FAQ and links to other sources and interesting places

o David L. Mills: http://www.eecis.udel.edu/~mills

• Papers, reports and memoranda in PostScript and PDF formats

• Briefings in HTML, PostScript, PowerPoint and PDF formats

• Collaboration resources hardware, software and documentation

• Songs, photo galleries and after-dinner speech scripts

o FTP server ftp.udel.edu (pub/ntp directory)

• Current NTP Version 3 and 4 software and documentation repository

• Collaboration resources repository

o Related project descriptions and briefings

• See “Current Research Project Descriptions and Briefings” at
http://www.eecis.udel.edu/~mills/status.htm

