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Abstract

We present fault localization techniques suitable for diagnosing end-to-end service
problems in communication systems with complex topologies. We refine a layered
system model that represents relationships between services and functions offered be-
tween neighboring protocol layers. In a given layer, an end-to-end service between
two hosts may be provided using multiple host-to-host services offered in this layer be-
tween two hosts on the end-to-end path. Relationships among end-to-end and host-to-
host services form a bipartite probabilistic dependency graph whose structure depends
on the network topology in the corresponding protocol layer. When an end-to-end ser-
vice fails or experiences performance problems it is important to efficiently find the
responsible host-to-host services. Finding the most probable explanation (MPE) of the
observed symptoms is NP-hard. We propose two fault localization techniques based
on Pearl’s iterative algorithms for singly connected belief networks. The probabilistic
dependency graph is transformed into a belief network, and then the approximations
based on Pearl’s algorithms and exact bucket tree elimination algorithm are designed
and evaluated through extensive simulation study.1
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1 Introduction

Fault localization [15, 18, 35], a central aspect of network fault management, isolates
the most probable set of root problems based on their external manifestations, called
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symptoms. This paper focuses on the diagnosis of availability and performance prob-
lems associated with end-to-end services provided in a given protocol layer by means
of intermediate nodes invisible to the layers above. When an end-to-end service fails,
one needs to locate host-to-host services responsible for the end-to-end service failure.
This paper considers end-to-end service failure diagnosis to be a crucial step towards
multi-layer fault localization. We present probabilistic iterative fault localization tech-
niques capable of isolating multiple-simultaneous root problems responsible for end-
to-end service failures in a given layer. The proposed solutions allow the management
system to perform fault localization iteratively in real-time.

In the past, fault diagnosis efforts concentrated mostly on detecting, isolating, and cor-
recting faults related to network connectivity [9, 18, 33, 35]. The diagnosis focused
on lower layers of the protocol stack (physical and data-link layers) [24, 35], and its
major goal was to isolate faults related to the availability of network resources, such
as broken cable, inactive interface, etc. Modern enterprise environments increasingly
demand support for quality of service (QoS) guarantees. This paper, in addition to
dealing with resource availability problems, focuses on isolating the causes of notifi-
cations that indicate violations of the QoS.

Uncertainty about dependencies within the managed network and about the set of ob-
served symptoms has been recognized as a major obstacle in performing fault localiza-
tion [9, 18, 19]. In performance problem diagnosis, uncertainty becomes ubiquitous.
This paper presents an application of belief networks [25] as a representation of un-
certain knowledge about relationships among network entities, and fault localization
techniques based on this representation. The large number of dependencies among
network components (both physical and abstract ones) makes it reasonable to perform
fault localization in a hierarchical fashion. It may be argued that fault localization
should be performed starting from a macro-view (high level or abstract view) of the
problem to select a potential spot of the problem, and then it should focus on the micro-
view (low-level or detailed view) of the chosen spot. The modeling schema used in
this paper allows such a hierarchical representation. The fault localization techniques
proposed in this paper are suitable for fault models represented by bipartite graphs
with particular focus on diagnosing end-to-end service failures.

In Section 2, we describe the layered dependency graph model for multi-layer fault di-
agnosis refined to expose the end-to-end service model and to allow non-deterministic
reasoning about both availability and performance related problems. In Section 3, we
present belief networks concepts used in this paper. Section 4 presents the mapping
of the layered dependency graph into a belief network. In Section 5, we introduce
three algorithms for finding the best symptoms’ explanation using a bipartite belief
network, which include bucket tree elimination [6] and two approximations based on
Pearl’s iterative algorithms [25]. The performance and accuracy of the algorithms were
evaluated through an extensive simulation study described in Section 6. A comparison
of our solutions with other event correlation techniques is presented in Section 7.



2 Layered model for alarm correlation

For the purpose of fault diagnosis, communication systems are frequently modeled in a
layered fashion imitating the layered architecture of the modeled system [11, 35]. This
approach provides a natural abstraction of the modeled system’s entities, reusability
of the model’s modules, and ability to divide the fault management task into separate,
simpler subtasks. Because of fault propagation, the effects of an abnormal operation
of functions or services provided by lower layers may be observed in higher layers.
Fault management systems model fault propagation by representing either causal rela-
tionships among events [12, 35] or dependencies among system entities [11, 18].

In the layered fault model, the definition of entity dependencies is based on real-life
relationships between layers on a single host and among network nodes communicat-
ing within a single protocol layer. The model presented in this paper is based on the
model proposed in [11]. However, our model does not include representation of pro-
tocols, since we assume that protocols are implemented correctly. We divide the fault
model components intoservicesandfunctions. A service offered by protocol layerL
between nodesa andc (ServiceL(a,c)) is implemented in terms of layerL functions on
hostsa andc (Network FunctionsL(a) andNetwork FunctionsL(c)), and services that
layerL−1 offers between hostsa andc. LayerL functions on nodea depend on layer
L− 1 functions on nodea. The recursive dependencies among services and functions
constitute a dependency graph as presented in Figure 1.

The general dependency graph template
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Figure 1: Layered dependency model

obtained from services, protocols and
functions in different layers provides a
macro-view of the relationships that ex-
ist in the system. To incorporate the
micro-view of the relationships within
particular model components, the lay-
ered model should be further refined
to include possibly complex relation-
ships within services and functions in
the same layer. In particular, an end-to-
end service offered by layerL between
hostsa andc is implemented in terms of multiple host-to-host services offered by layer
L between subsequent hops on the path of a layerL packet from nodea to nodec (such
asServiceL−1(a,c) in Figure 1). Ability to reason about failures observed in an end-
to-end service, i.e., symptoms, and trace them down to particular host-to-host service
failures, i.e., faults, is the primary focus of the presented research.

With every dependency graph node we associate multiple failure modesF1, . . . , Fk,
which represent availability and performance problems pertaining to the service or
function represented by the dependency graph node. In real-life systems, the follow-
ing conditions are typically considered a service/function failure:F1 – service/function



ceases to exist (e.g., a cable connection is broken),F2 – service/function introduces un-
acceptable delay (e.g., one of the host-to-host links is congested),F3 – service/function
produces erroneous output (e.g., bit errors are introduced in a link between routers),
andF4 – service/function occasionally does not produce output (e.g., packets are lost
due to buffer overflow). The micro-model ofServiceL(a,c) or Network FunctionL(a)
defines which failure mode occurs inServiceL(a,c) or Network FunctionL(a) when
a particular failure mode occurs in a service or function on whichServiceL(a,c) or
Network FunctionL(a) depends. To create a micro-model forNetwork FunctionL(a),
the knowledge of its definition and implementation is required. The micro-model of
ServiceL(a,c) is built based on the knowledge of the network protocol used to provide
ServiceL(a,c). For example, knowing that layerL protocol implements an error detec-
tion mechanism, one can predict that erroneous output produced byServiceL−1(a,b)
(conditionF3) results in data loss inServiceL(a,b) (conditionF4). When layerL does
not implement an error detection mechanism, conditionF3 in ServiceL−1(a,b) results
in conditionF3 in ServiceL(a,b).

Uncertainty about dependencies among communication system entities is represented
by assigning probabilities to the links in the dependency or causality graph [18, 19].
Some commonly accepted assumptions in this context are that (1) given faulta, the
occurrences of faultsb and c that may be caused bya are independent, (2) given
occurrence of faultsa andb that may cause eventc, whethera actually causesc is
independent of whetherb causesc (the OR relationship among alternative causes of
the same event), and (3) root faults are independent of one another. We take advantage
of these approximating assumptions throughout the paper.

Unlike in other publications on this subject [17, 18], in this paper, the dependency
graph nodes have multiple failure modes. Therefore, instead of a single probability
value, we assign probability matrices to the dependency links. LetFX denote a set of
failure modes related to service or functionX, andFY denote a set of failure modes
related to the dependent service or functionY . The label assigned to dependency
link X → Y is a two-dimensional matrix|FY | × |FX |, P, such thatP(Fj , Fi) =
P{service/functionY is in failure modeFj | service/functionX is in failure modeFi},
whereFj ∈ FY andFi ∈ FX .

To model end-to-end services one needs to determine the set of host-to-host services on
which an end-to-end service depends. Because of the dynamic routing protocols (such
as Spanning Tree Protocol [26] in the data-link layer or any dynamic routing protocol
in the network layer), an end-to-end service may depend on different sets of host-to-
host services at different times. Current dependencies may be obtained using network
management protocols such as SNMP [3], which provide the means to dynamically
determine dependencies established using configuration or real-time algorithms. In
this paper, we use an example of a data link layer topology in which end-to-end con-
nectivity is achieved through a network of spanning-tree bridges. A current spanning
tree, which uniquely shows a set of MAC-layer links used for communication between
any two hosts may be obtained fromdot1dBase Group ofBridge MIB[8]. Updates



of the spanning tree may be triggered bynewRoot andtopologyChange traps [8].
Obtaining dependency information is, is general, still an open research problem. Some
of the available techniques are discussed in [30].

link–A→→B link–B→→Alink–B→→C link–C→→Blink–B→→D link–D→→B

path–A→B path–B→Apath–B→C path–C→Bpath–B→D path–D→B
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Bridge A Bridge B

Bridge CBridge D
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Figure 2: (a) Example bridge topology with the current spanning tree marked in bold;
(b) Dependency graph built based on the spanning tree in (a)

Figure 2 presents a dependency graph for data link layer services in the network topol-
ogy composed of four spanning-tree bridges [26]. The current spanning tree is marked
in bold lines. In the dependency graph, we distinguish betweenlinks, which provide
bridge-to-bridge delivery service, andpaths, which provide delivery service from the
first to the last bridge on the packet route from the source node to the destination node.
The delivery service provided by paths is built of services provided by links.

3 Belief network concepts

A belief network[6, 25] is a directed acyclic graph [6] (DAG), in which each node
represents a random variable over a multivalued domain. We will use terms “node”
and “random variable” interchangeably, and denote them byVi. The set of all nodes is
denoted byV . The domain of variableVi will be denoted byDi. The set of directed
edgesE represents causal relationships among the variables and the strengths of these
influences are specified by conditional probabilities. An evidence sete is a partial
assignment of variables inV .

Belief networks are used to make four basic queries given evidence sete: (1) belief
assessment, (2) most probable explanation, (3) maximum a posteriori hypothesis, and
(4) maximum expected utility [6]. The first two queries are of particular interest in the
presented research. Thebelief assessmenttask is to computebel(Vi=vi)=P (Vi=vi|e)
for one or more variablesVi. Themost probable explanation(MPE) task is to find a
complete assignment of values to random variables inV that best explains the observed
evidencee. It is known that these tasks are NP-hard in general belief networks [4]. A
belief updating algorithm, polynomial with respect to|V |, is available forpolytrees,
i.e., directed graphs without undirected cycles [25]. However, in unconstrained poly-
trees, the propagation algorithm still has an exponential bound with respect to the
number of a node’s neighbors. Since exact inference in belief networks is NP-hard,
various approximation techniques have been investigated [7, 25]. To the best of our



knowledge, no approximation has been proposed that works well for all types of net-
works. Moreover, some approximation schemas have been proven to be NP-hard [5].

In this paper, we focus on a class of belief networks representing a simplified model
of conditional probabilities callednoisy-OR gates[25]. The simplified model contains
binary-valued random variables. The noisy-OR model associates an inhibitory factor
with every cause of a single effect. The effect is absent only if all inhibitors corre-
sponding to the present causes are activated. The model assumes that all inhibitory
mechanisms are independent [13, 25]. This assumption of independence is ubiquitous
in probabilistic fault localization approaches reported in the literature [18, 19]. It indi-
cates that all alternative causes of the same effect are independent. This simplification
helps avoid exponential time and memory otherwise needed to process and store con-
ditional probability matrices associated with random variables in the belief network.
Furthermore, belief assessment in polytrees with the noisy-OR model has polynomial
complexity, which makes it attractive to use with our problem as an approximation
schema. The solution presented in this paper may be easily extended to incorporate
other canonical belief network models, e.g., an AND-gate, which may be useful to
represent some specific fault localization problems. The details of fault localization
with other belief network models are beyond the scope of this paper.

4 Mapping layered model into belief network

We designed a mapping from the layered dependency graph (Section 2) into a belief
network as follows.

• For every node of the layered dependency graph and for every failure mode associ-
ated with this node, we create a random variable, whose domain is{true, false} (we
will also use 1 and 0 to represent valuestrueandfalse, respectively). LetVi be a belief
network node created for failure modeFj of the dependency graph node represent-
ing ServiceL(a,b)or Network FunctionL(a). AssignmentVi=true (Vi=false) indicates
thatServiceL(a,b)or Network FunctionL(a) is (is NOT) in conditionFj .
• For every dependency graph edge X→Y and for every failure mode of node Y,Fi,
determineFj , the failure mode of node X that results from conditionFi in node Y. Let
Vi be the belief network node corresponding to dependency graph node Y and failure
modeFi. LetVj be the belief network node corresponding to dependency graph node
X and failure modeFj . Add a belief network edge pointing fromVi to Vj .
• Let P be the probability matrix associated with dependency link X→Y. Matrix Pj
associated with nodeVj represents the following conditional probability distribution.

P (Vj=false| Vi=false) = 1 P (Vj=true | Vi=false) = 0
P (Vj=false| Vi=true) = 1− P(Fi, Fj) P (Vj=true | Vi=true) = P(Fi, Fj)

To complete the mapping of the fault localization problem into the problem of com-
puting queries in belief networks, we need to define the interpretation of faults and
symptoms in the theory of belief networks. A symptom is defined as an observation
that a dependency graph node X, which typically corresponds to a higher-level service,
is in conditionFj (negativesymptom), or is NOT in conditionFj (positivesymptom).



We will denote byS the set of all possible symptoms. IfVi is the belief network node
corresponding to the dependency graph node X and its failure modeFi, then the nega-
tive symptom and positive symptom are interpreted as an instantiation ofVi with value
true andfalse, respectively. Thus, as a result of this mapping, the set of all observed
symptoms, which will be denoted bySo ⊆ S, becomes the evidence sete. The depen-
dency graph node X, which corresponds to a lower-level service or function, is at fault,
if it is in any of the conditionsF1, . . . , F4, say conditionFi. The set of all possible
faults is denoted byF . The fact that the service or function corresponding to X is in
failure modeFi is represented by valuetrue in the domain of the random variableVi.
The problem of finding the set of faults,Fc ⊆ F that best explains the set of observed
symptomsSo is equivalent to computing the MPE query based on the evidence sete.

5 Algorithms

In this section, three algorithms are presented to find the best symptom explanation
with causal dependencies between events represented by graphs described in Section 4:
bucket-tree elimination[6] and algorithms for polytrees [25], i.e.,iterative belief prop-
agation in polytreesand iterative MPE in polytrees. Iterative belief propagation [25]
is augmented here to provide a complete symptom explanation hypothesis rather than
the marginal posterior probability distribution. For iterative MPE, an approximation is
proposed that allows polynomial-time complexity to be achieved. We usen to denote
the number of nodes (bridges, routers, etc.) in the managed system.

5.1 Most probable explanation through bucket elimination

Bucket elimination [6] (Algorithm 1 ) is one of the most popular algorithmic frame-
works for computing queries using belief networks. For the purpose of fault localiza-
tion we use MPE query. The detailed description of the algorithm is beyond the scope
of this paper; the algorithm explanation may be found in [6, 30].

The bucket eliminationalgorithm for computing MPE is exact and always outputs
a solution. We consider it the optimal algorithm for computing the explanation of
the observed symptoms. The computational complexity of the algorithm in bipartite
graphs representing the problem of end-to-end service failure diagnosis (Figure 2-(b))
is bound byO(n2exp(n)) assuming that (1) the graph nodes are processed accord-
ing to the optimal ordering [6, 30], and (2) the belief network contains all possible
path nodes (there areO(n2) such nodes possible). Sections 5.2 and 5.3 present two
algorithms of polynomial complexity.

5.2 Iterative inference in Bayesian polytrees

Recall from Section 3 that in singly-connected networks (polytrees) representing the
noisy-OR-gate model of conditional probability distribution, Bayesian inference may
be computed in polynomial time using the algorithm presented in [25]. The graph in
Figure 2-(b) is not a polytree because it contains an undirected loop.

Networks with loops violate certain independence assumptions based on which the



local computation equations were derived for polytrees. As suggested in [25], the
iterative algorithm in loopy networks may not converge. Nevertheless, successful ap-
plications of the iterative algorithm have been reported. The most famous of them
are Turbo-Codes [2] that offer near Shannon limit correcting coding and decoding.
The Turbo-Codes decoding algorithm was shown to be an instance of iterative belief
propagation in polytrees applied to loopy networks [23].

Iterative belief propagation utilizes a
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Figure 3: Message passing in Pearl’s belief
propagation

message passing schema in which the
belief network nodes exchangeλ andπ
messages (Figure 3). MessageλX(vj)
that nodeX sends to its parentVj for
every validVj ’s valuevj , denotes a pos-
terior probability of the entire body of
evidence in the sub-graph obtained by
removing linkVj→X that containsX,
given thatVj = vj . MessageπUi(x)
that nodeX sends to its childUi for ev-
ery valid value ofX, x, denotes proba-
bility thatX = x given the entire body
of evidence in the subgraph containingX created by removing edgeX→Ui. Based
on the messages received from its parents and children, nodeX computesbel(x), i.e.,
the probability thatX=x given the entire evidence.

The belief propagation algorithm in polytrees starts from the evidence node and prop-
agates the changed belief along the graph edges by computingbel(x), λX(vi)’s and
πX(ui)’s in every visited node. The complete description of the iterative algorithm
for polytrees including expressions forλX(vj), πUi(x), andbel(x) along with some
illustrative examples may be found in [25]. In noisy-OR gate belief networks, func-
tionsλX(vj), πUi(x), andbel(x) may be evaluated in linear time with respect to the
number of nodeX ’s neighbours. In reported applications of iterative belief updating
to loopy graphs, several iterations are performed in which the entire graph is searched
according to some pre-defined ordering [20, 23].

This paper adapts the iterative belief propagation algorithm to the problem of fault
localization with fault models represented by bipartite graphs as in Figure 2-(b). In this
application, we perform one traversal of the entire graph for every observed symptom.
For every symptom we define a different ordering that is equivalent to the breadth-first
order started in the node representing the observed symptom.

It may be noticed that parents of an unobservedpath node are independent of one
another; therefore, unobservedpathnodes constitute a belief propagation barrier, i.e.,
change of belief passed from one unobservedpathnode’s parent may not change the
belief of another parent. This makes it reasonable to stop the traversal of the graph
any time an unobservedpathnode is reached and thereby avoid the calculations in the



unobservedpathnodes altogether.

Algorithm 2 (MPE through iterative belief updating)
Inference iteration starting from node Yi:

let o be the breadth-first order starting fromYi
for all nodesX such asX is not an unobserved path node, along orderingo

computeλX(vj) for all X ’s parents,Vj , and for allvj ∈ {0, 1}
computeπUi(x) for all X ’s children,Ui, and for allx ∈ {0, 1}

Symptom analysis phase:
for every symptomSi ∈ SO run inference iteration starting fromSi
computebel(vi) for every nodeVi, vi ∈ {0, 1}

Fault selection phase:
while∃ link nodeVj for whichbel(1)>0.5 andSO 6=∅ do

takeVj with the greatestbel(1) and mark it as observed to have value of 1
run inference iteration starting fromVj
remove allSi such thatVj may causeSi fromSO
computebel(vi) for every nodeVi, vi ∈ {0, 1}

The computations described above produce the marginal posterior distribution result-
ing from the observation of the evidence. Based on this distribution we approximately
calculate the most probable explanation of the observations as follows. We choose a
link node with the highest posterior probability, place the corresponding fault in the
MPE hypothesis, mark the node as observed with value 1, and perform one iteration
of the belief propagation starting from the chosenlink node. This step is repeated until
both of these conditions hold: (1) the posterior distribution containslink nodes whose
probability is greater than 0.5, and (2) unexplained symptoms remain inSO.

Local computations inpathnodes requireO(k) operations, wherek is the number of
links that constitute the path. Since in ann-node network, a path may be composed
of at mostn links, local computations inpathnodes requireO(n) operations. Thus,
in a single iteration processingpath nodes requiresO(n(|S|) ⊆ O(n3) operations.
Local computations inlink nodes requireO(k) steps, wherek is a number of node’s
children. Thus, processing alllink nodes isO(

∑
k). Observe that

∑
k = the number

of all causal links in the bipartite graph, i.e.,n3 because there are at mostn2 path
nodes and every path may be composed of at mostn links. We may conclude that a
single iteration of the algorithm isO(n3), and the complexity of the entire algorithm
isO(|So|n3) ⊆ O(n5).

5.3 Iterative most probable explanation in Bayesian polytrees

In this section, we introduce an augmentation of the iterative MPE algorithm for poly-
trees [25] to networks with undirected loops. The iterative belief updating algorithm
presented in Section 5.2 computes the marginal posterior probability of the Bayesian
network nodes given the observed evidence. In Algorithm 2 we used this distribution to
select the most probable explanation. The MPE algorithm in every iteration produces
the most probable value assignment to the belief network nodes. This allows us to



eliminate thefault selectionphase in Algorithm 2, which contributes to the complexity
and is an additional source of the inaccuracy.

Algorithm 3 (Iterative MPE)
Inference iteration starting from node Yi:

let o be the breadth-first ordering starting fromYi
for all nodesX along orderingo

computeλ∗X(vj) for all X ’s parents,Vj , and for allvj ∈ {0, 1}
computeπ∗Ui(x) for all X ’s children,Ui, and for allx ∈ {0, 1}

Symptom analysis phase:
for every symptomSi ∈ SO run inference iteration starting fromSi
computebel∗(vi) for every nodeVi, vi ∈ {0, 1}

Fault selection phase:
choose all link nodes withbel∗(X=1)>bel∗(X=0)

Similarly to belief updating, the MPE computation algorithm proceeds from the evi-
dence nodes by passing messagesλ∗ andπ∗ along the belief network edges. Message
λ∗X(vj) sent by nodeX to its parentVj represents the conditional probability of the
most probable prognosis for the values of nodes located in the subgraph containingX
resulting from the removal of the linkVi→X, given the propositionVi = vj . Message
π∗Ui(x) sent by nodeX to its childUi represents the probability of the most probable
values of the nodes located in the subgraph containingX resulting from the removal
of link X → Ui, which include the propositionX = x. The belief metricbel∗(x)
stands for the probability of the most probable explanation of evidencee that is con-
sistent with the propositionX = x. The equations for calculatingλ∗X(vj) andπ∗Ui(x),
and belief metricbel∗(x) are presented in [25]. However, unlike in iterative belief
updating described in Section 5.2 the message computation requires exponential time.
In [30], we introduce an approximation that reduces the complexity to polynomial. In
this paper, we take advantage of this approximation.

The algorithm for computing MPE calculatesλ∗ and π∗ for every network node
traversing the graph starting from the observed symptom in the breadth-first order.
A single traversal is repeated for every observed symptom. At the end,bel∗ val-
ues are computed for all network nodes. The MPE contains alllink nodes with
bel∗(x=1)>bel∗(x=0).

Local computations inpathnodes requireO(n2) operations, wheren is the maximum
path length. Thus, in a single iteration, processingpathnodes requiresO(n2(|S|) ⊆
O(n4) operations. Similarly to belief updating, local computations in alllink nodes
requireO(n3) operations. We may conclude that a single iteration of the algorithm is
O(n4), and the complexity of the entire algorithm isO(|So|n4) ⊆ O(n6).

6 Simulation Study and Comparison of Algorithms

The algorithms presented in Section 5 were implemented in Java. We used Jav-
aBayes [1] package to obtain an implementation of Algorithm 1. The algorithms were



evaluated through a set of comprehensive experiments. As a real-life application do-
main, we chose the data-link layer in a bridged network in which the path ambiguity
is resolved using Spanning Tree Protocol [26]. As a result, the shape of the con-
sidered graphs is reduced to trees, thus making random generation of dependencies
resembling real-life scenarios easier. We tested the algorithms on randomly generated
network topologies, whose size ranged from 5 to 50 nodes in the case of Algorithm 2.
Because of high computation time of Algorithms 1 and 3, we had to limit the scope of
experiments to graphs of size≤ 10 and≤ 25 (see Table 1).

Table 1: Comparison of Algorithms 1- 3
Algorithm Bucket Elimination Iterative Belief Iterative MPE

(Alg. 1) Updating (Alg. 2) (Alg. 3)
Theoretical bound exp(n) n5 n6

Detection rate 96-100% 93-98% 95-100%
False positive rate 0-4% 2-5% 0-8%

Max. network size with
localization time<10s

10 50 25

Lost and spurious symptoms yes yes yes
Is algorithm iterative? no yes yes
Prediction capabilities yes extension required yes

For every graph size, we randomly generated spanning tree connections, link fail-
ure probabilities, and conditional probabilities on causal links betweenlink andpath
nodes. The link failure probabilities were uniformly distributed random values of the
order of10−6, and the conditional probabilities on causal links were uniformly dis-
tributed random values in the range[0.5, 1). For every graph size, one hundred dif-
ferent graphs were generated. For each randomly generated graph, we performed 200
experiments. In every experiment, we randomly generated the set of malfunctioning
links, Fc, based on their failure probabilities. Then, based on the conditional prob-
abilities on causal links betweenlink andpathnodes, the set of observed symptoms,
So, resulting from the faults inFc was generated. The observed symptoms were then
randomly ordered. The ordered setSo was supplied as an input to the algorithms pre-
sented in Section 5. Their output, the set of detected faults,Fd, was compared with
Fc. We used the following two metrics to represent the accuracy of the algorithms.

detection rate= |Fd∩Fc|
|Fc| false positive rate= |Fd−Fc|

|Fd|

Detection raterepresents the percentage of faults that occurred in the network in a
given experiment that were detected by an algorithm.False positive raterepresents the
percentage of faults proposed by an algorithm that were not occurring in the network in
a considered experiment, i.e., they were false fault hypotheses. Table 1 shows detection
rate and false positive rate intervals of the analyzed algorithms.

Figure 4 presents the relationship between detection rate and graph size. The mean
for a particular graph size is an average over the mean detection rates for particular
graphs of that size, within statistically computed confidence intervals. We observe that



Algorithms 1 and 3 outperform Algorithm 2 by 1-2%. The shape of the graphs in Fig-
ure 4 indicates a strong dependency of the detection rate on the graph size. For small
(5-node) graphs, the number of symptoms observed is typically small (less than 10),
which in some cases is not sufficient to precisely pinpoint the actual fault. Since in
small graphs the size ofFc is also small, any mistake in fault detection significantly
reduces the detection rate. When the graph gets larger, the number of observed symp-
toms increases, thereby increasing the ability to precisely detect the faults. On the
other hand, as the graph size grows, the multi-fault scenarios are becoming more and
more frequent. In multi-fault experiment, it is rather difficult to detect all actual faults,
which leads to partially correct solutions and the decreasing accuracy of Algorithm 2.

Figure 5 presents the relationship between false positive rate and the graph size. The
false positive rate for a particular graph size is calculated as a mean of average false
positive rates for particular graphs of that size. As depicted in Figure 5, the false pos-
itive rate of Algorithm 1 is 1-2% lower than that of Algorithm 2. For small networks,
Algorithm 3 has false positive rate comparable to Algorithm 1. However, as graphs
get bigger, the false positive rate of Algorithm 3 grows sharply suggesting that Algo-
rithm 3 has a tendency to propose too big a set of faults as a final hypothesis than is
actually needed to explain all symptoms.

Figures 6, 7, and 8 present the dependency of the correlation time on the graph size in
the presence of 1, 2, and 4 network faults, respectively. Although in the tested graph
size range, Algorithm 1 exhibited the best accuracy, the difference between the accu-
racy of Algorithm 1 and that of other algorithms is too small to justify the substantially
worsened performance. Algorithm 2 proved to be the most efficient one while preserv-
ing very good accuracy. The correlation time of the order of several seconds (Figure 9),
even for large networks and multi-fault scenarios, is encouraging.

To make the evaluation of algorithms presented in Section 5 complete, one also needs
to compare them with respect to other features. We believe that the following factors
should be taken into account in this evaluation: (1) potential for dealing with lost
and spurious symptoms, (2) ability to work in the event-driven environment and (3)
usability for prediction and test planning. Comparison of algorithms with respect to
these factors is presented in Table 1. All algorithms presented in Section 5 have a
potential for working in the environment in which lost and spurious symptoms occur.
A solution that addresses the problem of lost and spurious symptoms for Algorithm 2
is described in [32]. All presented algorithms, except Algorithm 1, are iterative and
allow an event-driven building of fault hypotheses. Algorithms 1 and 2 may be used
to check the existence of unobserved symptoms, to calculate the system components
affected by fault or to improve testing procedures.
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7 Related work

In the past, various event correlation techniques were proposed including rule-based
systems [22, 34], model-based reasoning systems [15, 24], model traversing tech-
niques [16], case-based systems [21], fault propagation models [12, 18], and the code-
book approach [35]. Most of the above approaches utilize deterministic reasoning.
This paper focuses on non-deterministic event correlation which is unavoidable in fault
diagnosis related to quality of service degradation particularly in upper protocol layers.

Katzela et al. [18] proposed anO(N3) algorithm that finds the most probable expla-
nation of a set of symptoms in anN -node dependency graph. The algorithm utilizes
the maximum mutual dependency heuristics which is not suitable for diagnosing end-
to-end service failures, because in end-to-end services model, all host-to-host services
are independent of one another. In addition to the above problem, the approach pre-
sented in [18] does not allow lost or spurious symptoms and the correlation may not
be performed in event-driven fashion. Kliger et al. [19] propose a probabilistic model
to be used with the codebook approach but they do not present the non-deterministic
decoding schema. The approach of Algorithms 2 and 3 can be used for this pur-
pose. Statistical data analysis methods are used for non-deterministic fault diagnosis
in bipartite-graphs in [10]. The technique detects link failures in wireless and/or bat-
tlefield networks based on the observed set of broken end-to-end connections.

Previous applications of belief networks to fault diagnosis are limited to rather narrow
applications. Deng et al. [9] present a polynomial algorithm for updating belief in a
restricted Bayesian network used as a model for fault diagnosis in linear light-wave
networks. In [13] tree-shaped belief networks are applied to troubleshoot printing
services. Wang et al. [33] applies Bayesian theory to identifying faulty links in com-
munication networks. Their approach does not include conditional probabilities, and
therefore is suitable for the diagnosis of availability related problems only.

In our previous work on fault localization, we proposed an incremental algorithm for
diagnosing faults whose propagation pattern may be modeled by bipartite graphs [31].
The algorithm has lower computational complexity than the algorithms proposed in
this paper but is not suitable for other fault management tasks such as the prediction of
affected services or test planning.

The system model used in this paper constitutes a refinement of the layered model
proposed in [11]. The hierarchical modeling uncertainty with belief networks is con-
sistent with other work on constructing diagnostic models [29]. Unlike in [29], our
model allows representation of different types of influences caused by one component
on its dependent components.

8 Conclusions and future work

In this paper, we present and evaluate several fault localization algorithms using fault
propagation models represented by bipartite graphs. We show that not only are exact



algorithms theoretically unacceptable because of their exponential complexity bound,
they are not usable in practice even for relatively small networks either. Algorithms
based on iterative message propagation (Algorithms 2 and 3) allow us to find a solution
in an event-driven fashion and have very promising acuracy and performance.

In this paper, we implicitly assume that the set of observed symptoms is accurate. In
reality, spurious symptoms may occur, which do not indicate any abnormal condition,
or symptoms may be lost. Moreover, the reasoning is performed based only on the
negative information, i.e., observed end-to-end service failures. We do not take into
account positive information that some end-to-end services did not fail. Modifications
to Algorithm 2 that address these problems are described in [32]. In our simulation
study, we consider the case in which the conditional probability distribution repre-
sented by a belief network is known accurately. The study described in [32] indicates
that Algorithm 2 offers very good performance even for approximate values of condi-
tional probabilities in the belief network model.

The algorithms presented in this paper were evaluated on a restricted class of network
topologies. While we find no reason to believe that in arbitrary network topologies
the performance or accuracy of these algorithms would be substantially different, we
think that the algorithms should also be evaluated on arbitrary topologies resembling
real-life networks. It is of particular interest to investigate means of exploiting domain
semantics of real-life networks to improve the scalability of the algorithms.

In this paper, we consider the situation in which the routing information necessary to
build a dependency model for end-to-end services is available. However, to obtain this
information may be time consuming and require substantial amount of resources. In
future research, we would like to investigate diagnosing end-to-end service failures
without access to the accurate routing information.2
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