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Abstract—This paper utilizes belief networks to implement fault In real-life communication systems, an observation of net-
localization in communication systems taking into account com- work state is frequently disturbed by the presence of lost and/or
prehensive information about the system behavior. Most previ- gy g5 symptoms (usually referred to as observation noise).
ous work on this subject performs fault localization based solely Alth h h h ted [6]. 8] that fault |
on the information about malfunctioning system components (i.e., _OUQ many researc_?rs ave SqueS ed[6], [8] : atfaultio-
negative symptoms). In this paper, we show that positive informa- Calization should be resilient to the existence of spurious and/or
tion, i.e., the lack of any disorder in some system components, may lost alarms, we are aware of only one technique [8] that in-
be used to improve the accuracy of this process. The technique corporates lost and spurious symptoms into deterministic fault
presented in this paper allows lost and spurious symptoms to be localization. In this paper, we propose a technique that al-

incorporated in the analysis. We show through simulation that I lost and . t tobe i ted in th
in a noisy network environment the analysis of lost and spurious Ows lost and spurious symptoms to be incorporated in the non-

symptoms increases the robustness of fault localization with belief deterministic analysis (Section VI). We prove that reasoning
networks. We also demonstrate that belief networks yield high ac- with positive and noisy observations does not increase a the-

curacy even for approximate probability input data and therefore  oretical complexity bound of the algorithms introduced in [5].

are a promising model for non-deterministic fault localization! We also show through simulation that in a noisy network envi-
Index Terms—Fault localization, belief networks ronment the analysis of lost and spurious symptoms increases

the robustness of fault localization with belief networks (Sec-

|. INTRODUCTION tion VII). Moreover, we demonstrate that belief networks yield

AULT localization in communication systems is a pro—hr:gh ?ccuracy even f_or_ approglrr?te probdabnny |_n_pu_t iata} almd
cess of isolating root causes of a system disorder basteﬁ.re ore are a promising model for non-deterministic fault lo-
on the observed indications of the disorder (symptoms). i ization (Section VIII).
the past, fa_ult I_o_calization focused on diagnosing low-level re- Il. BIPARTITE MODELS OF NETWORK FAULTS
source availability-related problems such as a broken cable or o L N

an inactive interface. Recently, the scope of fault localizatio Fault localization in communication systems distinguishes
has been expanded to include the diagnosis of performar‘fﬂ%erem types of events. Faults — root problems of system
problems in higher layers of the communication system, sug order — are those events that need to be handled directly to

as the transport and application layers [1], [2]. For this pu?—Imlnate Lhe undesgablcte) systegn b(;hawor. Adfallure is a dis-
pose, non-deterministic reasoning needs to be incorporatecgri pancy etween the observed and expecte sys'tem states or
the fault localization process [3]. ehaviors. It results from a fault and may not be directly cor-

This paper utilizes belief networks [4] to perform fault localf€Cted- When a failure is detected by the management system,

ization in communication systems whose failure propagati&‘? alarm is generated. Alarms de"Yefed to the management
model may be described by bipartite causality or dependerft§/'SC!€ are called symptoms. In this paper, we denoté by

graphs. As explained in Section II, bipartite graphs may ﬁge set of all faults that may occur in.the considered system.
used to describe a wide range of fault localization problems. VW& USeS to denote the set of all possible symptoms, &ad

The paper expands on our previous research on applying denote the set of all observed symptoms. All network events

lief networks techniques to fault localization [5] (Section V) byincluding faults and symptoms) will be denoted &yIn gen-

taking into account comprehensive information about the S)%r-?l’fﬁ S# q)__ . tail
tem behavior. Most previous work on this subject [6], [7] per- n & communication system, failures propagate among sys-

forms fault localization based solely on the information abo gm components. A failure of a system entity that occurs in

malfunctioning system components (i.e., negative symptom yerL on hosti may 'affect.a dependent entity in Ia.y.éﬁ-.l
In this paper, we show that positive information, i.e., the lac hostd (and recursively, in all layers above). This failure

of any disorder in some system components, may be usecff_ pagaftlon pattern IS refﬁrred to as vlertlcal Erorizgatlon. A
improve the accuracy of fault localization (Section V). allure of a system e”“th _at oceurs in a;abllon oSUi may
also affect a system entity in lay&ron hostH’ that communi-
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which one can predict with certainty whether a failure of an In our work on fault localization [5], [10], we have been us-
entity will cause a failure of a dependent entity [7], [8]. Théng the latter approach to simplifying the fault localization task,
deterministic model is usually sufficient to model availabilitybecause it allows the system to respond easily to the system
related faults (such as a broken cable or an inactive interface)nfiguration changes. On the other hand, when the original
since their impact on other network components is easily prieult propagation model is reduced to a bipartite graph, every
dictable. Recently, more attention has been devoted to diagnosafiguration change necessitates repeating the reduction.

ing performance related failures in higher layers of the protocol In the following sections, we present an algorithm that uti-
stack including the transport and application layers [1], [2], [3lizes belief networks to calculate the most probable explana-
In this application, the deterministic model is not sufficient baion of the observed set of symptoms. The algorithm allows
cause the impact of performance-related failures in one entihe solution to be built in an event-driven fashion based on both
on dependent entities is not easy to predict. Also, the dep@ositive and negative information about the system state. The
dencies among system entities change so frequently that theghnique is resilient to the inaccuracies in the symptom data
may not be deterministically captured by the fault-propagatidsuch as lost and spurious symptoms). In addition, as shown in
model. Non-determinism is introduced into the fault propag&ection VIII, the technique does not require the accurate knowl-

tion model by labeling graph edges with probabilities. edge of symptom-given-fault probability distributions.
Since relationships among system entities tend to be very
complex, so is the fault propagation model that captures them. I1l. BELIEF NETWORK CONCEPTS

Reasoning about faults with such complex models has beem belief network[11], [4] is a directed acyclic graph [11]
shown to be NP-hard [6]. To deal with the complexity, re(DAG), in which each node represents a random variable over
searchers develop heuristics that allow the problem to be sigimultivalued domain. We will use terms “node” and “random
plified. One simplification involves reducing a complex grapbariable” interchangeably, and denote thenibyThe set of all

to a bipartite graph by computing its transitive closure using sgodes is denoted by. The domain of random variablé will

rial and parallel reduction operatofsSuch a simplification has pe denoted by symbdD;. The set of directed edgés repre-

been applied in the popular codebook approach [8]. sents causal relationships among the variables, and the strengths
of these influences are specified by conditional probabilities.
9 e nun @ 9 Formally, a belief network is a pai;, P), whereG is a DAG,
P={P;}, and P, is the conditional probability matrix associ-

ated with a random variablg,. Let Par(V;)={V;,,..., Vi }
be the set of all parents of;. P, is a (|Par(V;)|+1)-
P(siIfy) dimensional matrix of sizeD;|x|D;,|x...x|D; |, where

Pi(vi, Viyyeo- 7Uin):P(‘/i:Ui|Vi1:Ui17 ceey Vz‘n:%‘n)- We will
@ @ nEn denote byA={V;=v;,...,V,,=v, } an assignment of values to

p(snlf.)

p(f) p(f-) variables in eV, where each; € D;. We will usev?* to denote

Fig. 1. A bipartite causality graph the value of vqr|ablé/} € V'in assignmeni. Given a subset
of random variabled/, ={V;,, ..., V%, }CV, we will denote

The fault localization problem may be also simplified by dipy U;fZ{Vklzvé s Vkm:UkAm} an assignment of values to

viding it into smaller sub-problems, each focusing on a subariables in set/;, that is consistent with assignmedt An
graph of the original model, which typically represents a levgljidence set is an assignment/A, whereU,CV is a set of

of abstraction. In this approach, a solution to one sub-problefriables whose values are known, and for SHcle U, vzt is

is fed as input to another, typically lower-level, sub-problenys gbserved value. ' !

For some of these sub-problems, the fault propagation modeBelief networks are used to make four basic queries given
may be represented by a bipartite graph. As an example, cefidence set: (1) belief assessment, (2) most probable expla-
sider layer 2 or 3 topology in which communication betweenation, (3) maximum a posteriori hypothesis, and (4) maximum
end-hosts is achieved through a network of bridges or routersefpected utility [11]. The first two queries are of particular in-
failure of a host-to-host link in a given layer may cause a failut@rest in the presented research. Dedief assessmetask is

of an end-to-end service provided between two end-hosts a'QBQ:omputebel(V;:vi):P(V;:vi|e) for one or more variables
the path that includes the malfunctioning host-to-host link. Tg;. Themost probable explanatiofMPE) task is to find an as-

diagnose the end-to-end service problem, one needs to idengiyhmentA,.,., that best explains the observed evideacee.,

the faulty host-to-host link. We refer to this problem as the(A4,.. )=max 4 7, P(Vi=v*| Par(V;)*) [11]. Itis known
problem of end-to-end service failure diagnosis [3], [10]. Endhat these tasks are NP-hard in general belief networks [12].
to-end service failure diagnosis uses a bipartite graph, whaggreover, some approximation schemes have been proven to
parentless nodes represent host-to-host failures (root problerag)NP-hard [13]. A belief-updating algorithm, polynomial with
and childless nodes represent the resultant end-to-end seryéggect toV|, is available forpolytrees i.e., directed graphs
failures (symptoms). To build such a graph, the knowledge @ithout undirected cycles [4]. However, in unconstrained poly-
network topology and current routing information are requiregtees, the propagation algorithm still has an exponential bound

) o with respect to the number of a node’s neighbors.
Note that, such a reduction is, in general, an NP-complete problem on its

own. Frequently, an assumption is made with respect to the graph shape th{.—;\lln_thIS pa_per,_v_ve focus on a clas_s_ of belief net_\’\_/qus repre-
allows the reduction process to be completed in polynomial time. senting a simplified model of conditional probabilities called



noisy-OR gateg4]. The simplified model contains binary-of X, z, denotes probability thaX’ = x given the entire body
valued random variables. The noisy-OR model associatesdarevidence in the sub-graph containigcreated by removing
inhibitory factor with every cause of a single effect. When somedgeX — U;. In a noisy-OR polytree, let us denote yy;, the
causes are present, the effect is absent only if all inhibitors cor-
responding to these causes are activated. The model assumes
that all inhibitory mechanisms are independent [4]. This as-
sumption of independence is ubiquitous in probabilistic fault
localization approaches reported in the literature [6], [14]. It
indicates that all alternative causes of the same effect are in-
dependent. This simplification helps avoid exponential time
and memory otherwise needed to process and store conditional
probability matrices associated with random variables in the be-
lief network. Furthermore, belief assessment in polytrees with
the noisy-OR model has polynomial complexity, which makes
it attractive to use with our problem as an approximation. S
Noisy-OR model may be insufficient for some fault localiza- t
tion problems. In some cases, a model may be more suitablg 2. Message passing in Pearl's belief propagation

that introduces the AND relationship between event causes, or B o o o
the inverse causal relationships among events. Such modelgpbability of activating the inhibitor controlling link’ — U;.

easily incorporated into the belief network algorithms and dFVery random variable assumes values fi@il }, where 1 de-

low the Bayesian inference to be equally efficient. HowevefOtes occurrence of the corresponding event and 0 means that

this paper focuses on the noisy-OR model as the most frequi}it €vent did not occur. The probability tHatoccurs giveny

model in fault localization. occurs iscxy, = 1 — gxy,. Based on the messages received
The noisy-OR fault propagation model may be built basdfP™ its neighbors, nod& computes\(z), 7(x), andbel(x) as

on the knowledge of the dependencies between system cdfilows [4]:

ponents and their associated faults and symptoms. Techniques "

of building a fault propagation model based on this informa-  A(#) = [ [ Av. ()

tion were proposed in [14] and [5]. Building fault propagation i=1

0

AX) 2, TU(X) ?
bel(x) ?

models may be automated by applying belief network learning (2) = ol (1= ey xmix) ifz=1
methods [15]. These methods being very complex, the design a(l — H;”:l(l —cy,xTix)) fxz=0
of such automated techniques remains an open problem. bel(z) = aA(z)m(z)

In the above equations;jx = 7x(v;) forv; = 1, anda

IV. I TERATIVE BELIEF PROPAGATION IN FAULT DIAGNOSIS o o normalizing constant. Let represent any constant. The
In this section, we introduce a fault localization algorithnmessagegx(vj) andry, () are computed using the following

based on iterative propagation in belief networks. Recall frogguations [4]:

Section Il that in singly-connected networks (polytrees) rep- v

resenting the noisy-OR-gate model of conditional probability ~ Ax (v;) :5(>\(1) — a4y x (A1) = \(0)) H(lfckaWkX)>

distribution, Bayesian inference (belief updating) may be com- k#j
puted in polynomial time using the algorithm presented in [4]. (z) =« H Au, (z)7(z)
However, a bipartite fault propagation model usually contains ' ki

undirected loops and therefore, is not singly-connected.

Networks with loops violate certain independence assumI
tions based on which the local computation equations were
rived for polytrees. Nevertheless, successful applications of
iterative algorithm to calculating queries in loopy belief ne

works have been reported [16]. We adapt iterative belief proB The belief propagation algorithm in polytrees starts from

agation for calculating the most probable explanation of the set’ "~ .
of observed symptoms [5]. tﬁe evidence node and propagates the changed belief along the

graph edges by computibgl(x), Ax (v;)'s andm x (u;)’s in ev-

) ) ] ery visited node. The complete description of the iterative algo-

A. lterative belief propagation concepts rithm for polytrees including expressions fak (v;), v, (),
Iterative belief propagation utilizes a message passiagdbel(x) along with some illustrative examples may be found

schema in which network nodes exchangand messages in [4]. In noisy-OR gate belief networks, functionss (v;),

(Fig. 2). Message\x (v;) that nodeX sends to its parerit; 7y, (x), andbel(z) may be evaluated in linear time with respect

for every validV;'s valuew;, denotes a posterior probability ofto the number of nod&’s neighbors. In reported applications

the entire body of evidence in the sub-graph obtained by rema#-iterative belief updating to loopy graphs, several iterations

ing link V; — X that containsX, given thatV; = v;. Message are performed in which the entire graph is searched according

7y, (z) that nodeX sends to its child; for every valid value to some pre-defined ordering [16], [17].

| the initialization phase, for all observed nod&s \(x) is
et to 1 ifz is the observed value of . For other values af,

%1) is set to 0. For all unobserved node&r) is set to 1 for
t‘?l values ofz. Parentless nodes have theirr) set to the prior
robabilities.



B. Application of belief propagation to fault localization remove allS; such thatl; may causes; from So

In the domain of fault localization, observations of network markV; as observed to have value of 1

disorder (symptoms) are considered as belief network evidence. ;gpécl;er;er?gg ét/e.zr?l(;n {%talr?ré%:;%ﬁée 1(v5)
Sympt_om ob_servation is representeo! by assigning the COMChe worst-case comp;l’Jta;tionaf complexity of Alzgorithm lis
sponding belief network node to 1, which means that the Sym@Z\So\maxﬂﬂdf 1S|ds)) € O(|S| max(|F| dr, |S| ds))

tom did occur. Belief network nodes whose correspondl%eredf is the maximum out-degree of a fault node, aiads

symptoms were not observed are left unassigned (i.e., tht%'é maximum in-degree of a symptom node. In [5], we applied
A(0)=X(1)=1). The fault localization task is to find an assign- ' ’

ment s For f,eF, assignmenf,=1 indicates that fault Algorithm 1 to the problem of end-to-end service failure diag-

. . nosis, and proved that the algorithm’s complexity in a network
fi occurred, and;=0 indicates that faulf; did not occur. The P 9 P y

L : : 4 : composed of nodes (such as routers, bridges, or switches) is
fault localization algorithm introduced in [5] starts with a be-O(n5) Algorithm 1 was evaluated through simulation on a ran-
lief network whose all evidence nodes are unassigned. Th%n '

X . . ml nerat t of spanning tree networks, an mpar
the algorithm proceeds iteratively, after every symptom obs omly generated set of sp g tree networks, and compared

§G the accurate, but exponential, bucket-tree elimination algo-
vation applying one iteration of belief updating that starts from ' P ' 9

the observed evidence node and visits all belief network noo['thm [11]. Algorithm 1 proved to significantly outperform the

in a breadth-first order. Note that, contrary to other approachoe[ztlmaI algorithm in terms of its running time while preserv-

o . Ing almost optimal accuracy (using Algorithm 1 we are able to
to fault localization [6], [14], [18], which delay symptom anal detect 1-2% fewer faults than with the optimal algorithm).

ysis until all symptoms are collected, Algorithm 1 does not re- This paper discusses difficulties involved in applying Algo-

quire all symptoms to be qbserved before their aqalysis maylri‘g/m 1 to a real-life network environment and presents solu-
started. On the contrary, it analyzes a symptom mdependerﬁ ns that allow the accuracy and robustness of iterative belief

of other symptom observations. The knowledge resulting frOUE)dating in such an environment to be improved. The solutions
analyzing a symptom is stored for the next iterations in the be-

lief network nodes in the form ok ands messages, allowing resent_ed in this paper preserve the computational complexity
; N - ' of Algorithm 1.

Algorithm 1 to utilize time more efficiently. Moreover, for ev-

ery fault the algorithm continuously provides the probability of

its occurrence given the symptoms observed so far. . ) ]
At the end of the analysis cycle, i.e., after sufficient num- Algorithm 1 presented in Section IV calculates the most

ber of symptoms have been received, sufficient amount of tifRE?bable fault hypothesis based on the observed indications of

elapses, or system administrator decides so, the algorithm d¥gtwork disorder. It does not take into account that some pos-

ates a complete, possibly multi-fault, hypothesis. In fault seledlble indications of netwqu disorder have not been observed.

tion phase, several belief propagation iterations are perform&§, many researchers point out [8], [19], the fact that many of

In each iteration, the most probable fault is chosen and its ciift POSSible symptoms have not been observed should decrease

responding node is assigned to 1. Then, belief propagatiorPk¥ gonf_ldence in the fqult occurrence. In the'realm of fault

initiated from this node. This process continues until all symjRc@lization, an observation of network disorder is calletg-

toms are explained or until there are no faults with sufficientfive SymptomThe lack of such an observation, or observation

high probability of their occurrences. Observe that an inheitherwise are considergubsitive symptomsThe inclusion of

ent property of Algorithm 1 is the capability to isolate multiplé’os't'Ve symptoms into the fault_locallzatlon process may allow

simultaneous faults even if their symptoms overlap. Formalf§,more accurate fault hypothesis to be created.

the fault localization algorithm is defined as follows. In a belief network, a positive symptom is represented by as-
Algorithm 1—MPE through iterative belief updating: signing 0 to the symptom’s corresponding belief network node.

V. ANALYSIS OF POSITIVE INFORMATION

Inference iteration starting from nodé:
let o be the breadth-first order starting frofir
for all nodesX along orderingo do
if X is not an unobserved path node then
for all X's parents,V; and for allv; € {0,1}
computer x (v;)
for all X’s children,U; and for allz € {0, 1}
computery, ()
Symptom analysis phase:
for every symptons; € Sp do
mark S; as observed to have value of 1
run inference iteration starting fror;
for every nodé/;, v; € {0,1} computeel(v;)
Fault selection phase:
while 3 link nodeV; for whichbel(1)>0.5
and Sp=#() do
takeV; with the greateskel(1)

In the extreme case, all belief network nodes which represent
symptoms could be assigned O if their corresponding alarms
were not observed, and they could be assigned 1 if their cor-
responding alarms were observed. This approach is valid if all
potential alarms included in the fault propagation modebére
servable However, whether or not a potential alarm is observ-
able may depend on a current configuration of the management
system, which may change the set of observable alarms accord-
ing to current management system objectives. Thus, a more
general approach should allow some of the potential alarms
to be unobservable, and it should allow the set of observable
alarms to be easily modified.

As an example, consider the problem of end-to-end service
failure diagnosis. To detect end-to-end service failures, the
management system may utilize one or more monitoring nodes
which monitor the availability and quality of end-to-end con-
nections between a monitoring node and a chosen set of other
network nodes. If such a scenario is applied, the observable



set of alarms includes those triggered by failures of end-to-epbase may be reduced to calculatihg (v,)’s for all symp-

services between a monitoring node and any node belongingdm nodes, and then computingand A x values in the belief

the set of chosen nodes. The set of chosen nodes and the saebfork nodes which correspond to faults. Moreover, the set

monitoring nodes may change during system operation. of observable alarms may be easily modified during the fault
LetSp be the set of all observable alarms. The réflo|/|S| localization process by redefining the values of functlonf

will be calledobservability ratio(OR). We will denote bySy  nodes whose observability status has changed.

andSp the sets of all negative and positive symptoms, respec-In Section VIl we describe the application of Algorithm 2 to

tively, whereSy U Sp = Sp. Note, that in Algorithm 1 we the problem of diagnosing end-to-end service failures, and eval-

assumed thafy = Sp, andSp = 0. uate benefits resulting from the inclusion of positive symptoms
To include the analysis of positive symptoms in the fault ldn the fault localization process.

calization process, we enhance Algorithm 1 as follows. Ini-

tially, all observable alarms are considered positive symptoms, V1. DEALING WITH NOISY OBSERVATIONS

and their corresponding belief network nodes are assigneqy o4 jife communication systems, an observation of net-

0. The observation of a negative symptom is represented oy, state is frequently disturbed by the presence of lost and/or

changing the assignment of the corresponding belief netwatk o5 symptoms (usually referred to as observation noise).

nogle to,lh' > MPE includ . _ In a management system, alarms may be lost as a result
gorthm 2— including positive symptoms: of using an unreliable communication mechanism to transfer

Initialization phase: alarms from their origin to the management node. For example,
for every symptons; € Sp do since SNMP protocol [20] exploits an unreliable transport layer
mark.S; as observed to have value of 0 protocol (UDP), SNMP traps [20] issued by an SNMP agent

run inference iteration starting fror; are not guaranteed to be delivered to the destination. Man-

as defined in Algorithm 1 agement/monitoring agents on network devices monitor val-

Symptom analysis phase: ues of various performance metrics, and issue alerts when the
run symptom analysis phase of Algorithm 1 monitored metrics violate pre-set threshold values. Too liberal
substitutingSy for Sp threshold values may prevent an existing problem from being

Fault selection phase: reported, thereby causing the alarm loss. Given the popular-
run fault selection phase of Algorithm 1 ity of unreliable management protocols such as SNMP and the
substitutingSy for Sp difficulty of calculating the correct threshold values, the proba-

jDility of an alarm loss is not negligible. When the fault localiza-
O(|So| max(|F|d, |S|ds)), which is consistent with the Com_tion algorithm relies on positive information to create the most

putational complexity of Algorithm 1. However, the actual run!K€lY fault hypothesis, alarm loss, if ignored by the algorithm,

time of Algorithm 2 may be significantly higher than that oFOUId lead to an incorrect solutior). .
Algorithm 1, becaus&Sy | (=|So| in Algorithm 1) is typically Another frequent disturbance in an observation of network

much smaller thaSe| used in Algorithm 2. The run-time of state is due to spurious alarms, which are caused by intermittent
Algorithm 2 may be ?educed by making tw6 observations network faults or by overly restrictive threshold values. Inter-

1) For an unobservable symptom naieand for any parent mittent faults areithe ones t.hat result in observatfle sympt_oms,
but no longer exist at the time of the symptoms’ correlation.
node of X, V;, Ax(V;=1)=Ax(V;=0)=A\(X=1)=1. ) X
. : with all fault types, the symptom patterns triggered by the
Since\x (v;) does not depend on the received values 0 . . .
: . intermittent faults and their probability of occurrence may be
functionsmx (vg), nodeX does not propagate evidence - X 7
. . ; . entified through the analysis of historical data such as alarm
between its parents. As a result, the iterative belief updat-_",. . IO ) : )
. . files. When such identification is possible, the interrelation
ing need not continue past an encountered unobserva : : X
among spurious symptoms may be taken into account. In this
symptom node.

2) For a positive symptom nod&, and for any parent node case, the intermittent faults can be modeled similar to ordinary

The worst-case computational complexity of Algorithm 2

i faults. Therefore, no change of either the bipartite fault prop-
of X, Vj: ) o ; .
- agation model, or the fault localization algorithm is needed.
Ax (vj) = 511\0/_’7»)( H(lfckaWkX) Oftentimes, in particular for spurious alarms due to overly re-
) ) ki ) strictive detection mechanisms, the determination of spurious
Since 5 is any  constant, assignmenisymptoms interdependence may be impossible. The method
f=a=1/(Ax(V;=1) + Ax(V;=0)) leads to the proposed in this section focuses on symptoms for which inter-
following equation. dependence information may not be learned.
Ax (v;) = { 1/(1+qv;x) ?f v; =0 We address the problem of lost and spurious alarms by aug-
I qv,x/(1+qv,x) ifo;=1 menting the bipartite belief network model presented in Sec-
Since\x (v;) does not depend on the received values @ibn 1. To model loss, we introduce unobservable failure nodes
functionsmx (v), nodeX does not propagate evidence:, ..., e,, as replacement for symptom nodes ..., Sy,

between its parents. As a result, the iterative belief upespectively. Then, we add directed edges:s;, i=1...m.
dating need not continue past a positive symptom nodewith every directed edge;—s; we associate the probability

Note that, initially, the belief network contains solely unobef causal relationship between ands; equal tol—pjoss(s;),
servable and positive symptom nodes. Thus, the initializatiorherep,.ss(s;) is the probability that alarm indicating failure



e; is lost. The values g5 (s;) may be obtained, for example,are denoted byF, £, andS, respectivelyF contains only fail-
by analyzing packet loss rate in the network used to transpares of services provided by host-to-host links that belong to

symptoms; from its origin to the management station.

To model spurious symptoms, we introduce nodgs
j=l...m. Then, we add directed edge§—s;, where
j=L...m. With everys} we associate prior beligfpurious(s;)

some end-to-end route. The dependencies between end-to-end
services and host-to-host services are determined using routing
information. There exists a bijective mapping&bntoS.

The simulation study presented in this paper uses tree-shaped

that represents the cumulative probability of events (otheetwork topologies, which result, for example, from the usage

than persistent faults) that trigger alarsy. The value of

of the Spanning Tree Protocol [21] as the data-link layer routing

Pspurious (7) May be learned by analysing historical alarm logrotocol. The usage of tree-shaped topologies greatly simpli-

files. Every directed edgg—nsj is labeled withl —pioss ().

Fig. 3.
(BN(SO > Ploss) pspurious))

The resultant belief network, which will be denoted by
BN (S0, Pioss, Pspurious ), IS presented in Fig. 3. Observe that,

whenpess(s:)=0, edgese; —s; (for i=1...m) are redundant,
and nodeg; ands; may be considered identical;Es;). Also,

whenpspurious(s;)=0, nodess} are redundant and may be re-

duced §;=s;). Thus, BN(Sn,0,0) is equivalent to the bi-

partite belief network described in Section IV (used in Algo- e
rithm 1), and BN (Sp,0,0) is equivalent to the model used

in Section V. When the existence of either lost or spuri-
ous (but not both) alarms may be neglected, one should use

BN (S0, 0, pspurious) OF BN (So, pioss, 0), respectively.
When the augmented belief networkBN (So, piosss

Pspurious ), 1S Used as a fault propagation model, fault localiza-
tion may be performed using Algorithm 2 defined in Section V.
In Section VII, we present an application of solutions intro-
duced in this section to the problem of end-to-end service fail-»
ure diagnosis. We also evaluate the impact of incorporating lost
and spurious alarms on the accuracy of the fault localizatione

process in a noisy environment.

VIl. SIMULATION STUDY

fies their random generation, while not having any significant
impact on the accuracy of the results presented in this section.
We focus on diagnosing performance problems, e.g., excessive
delay or high loss rate, which necessitates the usage of a non-
deterministic fault model and fault localization algorithm.

We designed the simulation described in this section accord-
ing to the following model. Le© R represent the alarm observ-
ability ratio, i.e.,OR = |Sp|/|S|. Let LR represent alarm loss
rate, i.e., the ratio of the number of generated alarms that were
lost to the number of all generated alarms. K&tR represent
spurious alarm rate, i.e., the ratio of the number of spurious
alarms to the number of all observable alarms. The three ratios
OR, LR, andSSR are parameters of the simulation model.

Given the simulation model with parameteps?, LR, and
SSR, for a given network topology size, wheren represents
the number of intermediate network nodes, such as bridges or

A belief network modeling lost and spurious symptom$Witches, we desigk’,, simulation cases as follows:

« We create a random tree-shapeehode network\;
(1<i<K,). We denoteF, £, andS for network \; asF;,

&;, andS;, respectively. For every link iV;, we create
one f;€F;. Note that in am-node tree-shaped network
there arex—1 links, i.e.,| F;|=n—1. For every end-to-end
path in;, we create one;c&; and ones;€S;. Note that
We randomly generate prior fault probability distribution
py. Fi—[0.001,0.01]; ps(f;)s are uniformly distributed
over the rangg0.001,0.01]. We randomly generate con-
ditional probability distributiorp.: (F;x&;)—[0, 1), de-
fined as the probability that, occurs givenf; occurs.
For all f;eF; ande;€&; such that the path correspond-
ing toe; includes the link corresponding 19, pr.(f;, e:)s
are uniformly distributed over the range, 1); otherwise,
pre(fj.e))=0.

We randomly generate the set of observable alarms
S;0CS; such that on averag‘%%l‘ =0OR.

Given network A;, we build its belief network
model BNZ'(SiO;plossapspurious)- We Choosqjloss:LR
(Pspurious=SSR) to perform fault localization that in-
cludes alarm loss (spurious alarms) in the analysis. We
USE Dioss=0 (Dspurious=0) to perform fault localization

In this section, we describe the simulation study performed
to evaluate the techniques presented in Sections IV, V, and VI.
Algorithms 1 and 2 were implemented in Java. As a real-life ap-
plication domain we chose end-to-end service failure diagnosis.

that disregards lost (spurious) symptoms. To utilize Al-
gorithm 1 we initialize BN;(S;0, Plosss Pspurious) as de-
scribed in Section 1V; to utilize Algorithm 2 we initialize
BN i(Si0, Ploss: Pspurious) @s described in Section V.

Recall from Section Il that the diagnosis of end-to-end serviceFor i-th simulation casel<: <K, ), we createl/s simula-
failures aims at isolating host-to-host services that caused tlan scenarios as follows.
observed end-to-end service failures. In end-to-end service fail-l) Using p; we randomly generate the set of faulty

ure diagnosis, the set of all host-to-host service failures, the set
of all end-to-end service failures, and the set of all symptoms

links in network A;, FE, (1<k<Ms), and create
probability distributionp?: &;—[0,1], wherep®(e;)=
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Fig. 4. Detection rate obtained with Algorithms 1 (disregarding positive sympig. 5.  False positive rate obtained with Algorithms 1 (disregarding posi-
toms) and 2 (including positive symptoms) for different observability ratiosve symptoms) and 2 (including positive symptoms) for different observability
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4) We createSt, ; — the set of generated alarms that are gm((ggy LR, 83 s
not lost by the communication system — by randomly re- 075 [ grR=gs.LR=008, SSR=0 — ]
OR=05,LR= 0.1, SSR=0 -—----
moving alarms frons%, , ¢ so that on averag “" L o L , , OR=02LR= 01,SSR=0 .
1—-LR. iots] 5 10 15 20 25 30 35 40

Network size
5) We setSk, =Sk, | ; Sk constitutes the set of negative _ _ , , _ _
b din th lati & Fig. 6. Detection rate obtained with Algorithm 2 using fault propagation mod-
Symptoms observe in the simula lon scen tio els BN (So, LR, 0) and BN/ (So, 0, 0) within statistically computed confi-
6) Using either Algorithm 1 or Algorithm 2 we computedence intervals.
FF,CF,;, the most likely explanation of symptoms in

Sky. We calculatedetection ratg(DRY) andfalse posi- 0.2 = - - - - - - -
tive rate(FPH“) defined using the foIIowing equations.  o.18 | BN(OR, LR, 0) ro— -
| Fh| FE Fip \ Ficl o5 S =0
DR} = FP 016 P 5 1 SSR=0 — |
l ‘ ‘ Hﬁ ‘fk| 0.14 R -2, 1,SSR=0 ------ ]
For i-th simulation case we calculate the mean deted '

tion rate DR=+ "4 DR¥ and mean false positive rate2

FPF{_F Z,i” FPF{“ Then, we calculate the expected val2
ues of detection rate and false positive rate denoted bynpR 008 |-
and FPRn), respectively. In our study, we uséd,=100, and "~ o.06 |
Ms=100 or 200 depending on the variability of DR We var- o, |
iedn from 5 to 45.

To evaluate the impact of including positive symptoms into R
the fault localization process, we seR=0, and SSR=0 in °% 10 15 20 25 30 35 40
the simulation model. Correspondingly, we uggll (So, 0, 0) Network size
as the fault propagation model. We compared AlgorithmsFlg. 7.  False positive rate obtained with Algorithm 2 using fault propaga-
and 2 using observability ratios 1.0, 0.5, and 0.2. As shown i@ﬂfmgﬂi'esﬁﬁﬁfgs’ LR, 0) andBN(So, 0, 0) within stafistically computed
Fig. 4 and 5, the inclusion of positive symptoms in the fault lo-
calization process allows the detection and false positive rates
to be substantially improved. The improvement is bigger f@nough to allow quite accurate fault localization without con-
lower observability ratios; with high observability ratios (e.gsidering positive symptoms. However, such high symptom ob-
OR=1), the number of negative symptoms is typically largservability is unlikely in real-life systems. One may also ob-
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Fig. 8. Detection rate obtained with Algorithm 2 using fault propagation modrig. 9.  False positive rate obtained with Algorithm 2 using fault propaga-
elsBN (Sp,0,SSR) andBN (So, 0, 0) within statistically computed confi- tion modelsBN (Sp, 0, SSR) and BN (So, 0,0) within statistically com-
dence intervals. puted confidence intervals.

serve that the accuracy of both algorithms depends on the ob-VIII. | MPACT OF PROBABILITY ESTIMATION ERRORS

SerVab”ity ratiO; h|gherOR means more information about One Of the drawbacks Of app|y|ng non_deterministic reason-
faults, and, in consequence, higher accuracy. ing to the fault localization problem is the necessity to de-
In the next set of experiments, we isolated the impact @frmine the probabilities assigned to nodes and edges in the
symptom loss on the accuracy of fault localization process. Wult propagation model. Researchers frequently state that these
setS.SR=0in the simulation model. Loss rate was set to eithgrobabilities may be assigned by a human expert [6]. This pro-
0.01 or 0.1. We compared the accuracy of Algorithm 2 useess being error prone, it is likely that the probabilities assigned
ing belief networksBA (So, LR,0) and BN (So,0,0), vary- by the expert will differ from those describing the real system.
ing OR between 0.2 and 0.5. Fig. 6 and 7 show that, by inclu¢h actuality, the expert assigns discrete confidence levels rather
ing loss rate in the analysis, the detection (false positive) ratean the exact probabilities.
may be increased (decreased) by up to 10%. Moreover, givenn this section, we analyze the impact of such probability es-
constanO R, this gain is insensitive to the value pfz. timation on the accuracy of Algorithm 1. For this purpose, we
The impact of including spurious symptoms in the fault locadesigned simulation experiments as described in Section VII.
ization process was evaluated by applying Algorithm 2 to fauttowever, in the belief network, exact probabilities are replaced
propagation modelBN (Sp, 0, SSR) andBAN (Sp,0,0) using by ¢ confidence levelsi-th confidence leveliEl . . . c) is rep-
LR=0, andOR=0.5. We variedSSR between 0.01 and 0.1.resented by probabilit\}';—lJr%. Thus, probabilityp in the real
As shown in Fig. 8, the inclusion of spurious symptoms in thgstem is estimated as probabim‘%&JJri.
fault localization process in small networks decreases detectiorFig. 10 and 11 compare the detection rate of Algorithm 1
rate. This is explained by the fact that in small networks (in pafaving exact knowledge of the probability distribution with the
ticular, with small observability ratios), only a few symptomsjetection rate achieved using one, two, and three confidence
are available to the fault localization process. When the posgivels for various observability ratios. Similar comparison of
bility of spurious symptoms is taken into account, and the nufgise positive rates is shown in Fig. 12 and 13. It can be ob-
ber of symptoms is smalll, the algorithm concludes that theredgrved that probability estimation with three confidence lev-
no sufficient evidential support for the existence of faults, ands allows fault localization to be almost as accurate as with
considers most of these symptoms spurious. WHER=0.1, the knowledge of exact probabilities. This observation has an
for small networks, the probability that all observed symptomgportant implication: it allows the expert to use a small set
are spurious is frequently higher than the probability of fauf meaningful qualitative probability assignments suchuas
occurrence. Therefore, the algorithm refuses to identify a fayléely, possible andlikely, which correspond to confidence lev-
thereby achieving very low detection rate. One can concludgs 1, 2, and 3, respectively.
that small networks need to be better instrumented (i.e., hav%e”ef networks are therefore a promising model for non-
higherOR) to allow fault localization to benefit from the anal-geterministic fault localization, yielding high accuracy even for
ysis of spurious symptoms. In larger networks, the inclusion ghproximate probability input data.
spurious symptoms does not cause a decrease in the detection
rate; in fact, as shown in Fig. 8, it allows the detection rate to
be improved. Fig. 9 presents the impact of including spurious
symptoms on the false positive rate. It shows that regardlesdn the past, various event correlation techniques were pro-
of the network size, by taking spurious symptoms into accoumsed including rule-based systems [22], [23], model-based
the false positive rate of the fault localization process may beasoning systems [24], [25], model traversing techniques [26],
significantly decreased. case-based systems [27], fault propagation models [6], [7], and

IX. RELATED WORK
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the code-book approach [8]. These approaches differ with tf in a restricted Bayesian network used as a model for fault
spect to their knowledge representation, scalability, adaptakilagnosis in linear light-wave networks. In [29] belief networks
ity to configuration changes, ability to deal with lost and spurivere applied to troubleshoot printing services. The belief net-
ous symptoms, ability to solve novel problem, etc. Most of thgork used for this purpose is tree-shaped, which enables ex-
above approaches use deterministic reasoning. act inference using, e.g., Pearl’s algorithms. Wang et al. [30]
In the area of non-deterministic fault diagnosis, several agpplied Bayesian theory to identifying faulty links in commu-
proaches have been proposed. Katzela et al. [6] introducedréeation networks. They propose an approximationratxi-
O(N3) algorithm that finds the most probable explanation afium a posteriorguery to find a link responsible for a failure
a set of symptoms in aiV-node dependency graph. The apef end-to-end connectivity between a management station and
proach presented in [6] does not allow lost or spurious syma-group of other stations, given prior link failure probabilities.
toms and relies on time-windows to collect alarms. In multifhey do not include the representation of conditional probabil-
layer fault diagnosis, specifying time-windows may be very diities, which makes the approach not suitable for the diagnosis
ficult. The solution presented in this paper addresses all thieother than availability-related problems.
above issues achieving comparable computational complexity. Other approaches to dealing with uncertainty in network fault
Kliger et al. [14] propose a probabilistic model to be usediagnosis include an application of Dempster-Shafer theory to
with the codebook approach. Unfortunately, they do not presef#tect break faults in communications networks [31]. Similarly
the non-deterministic decoding schema. We believe that tlee[30], this technique is tailored specifically to diagnosing con-
approach of Algorithms 1 and 2 can be used for this purposenectivity problems in networks with known and static topolo-
The literature on event correlation reports on the applicgies. This solution would not be sufficient for the purpose of di-
tions of belief networks to fault diagnosis. However, the amgnosing performance problems, or when the knowledge of the
proaches are limited to rather narrow applications. Deng métwork topology is uncertain or incomplete. Statistical data
al. [28] present a polynomial time algorithm for updating beanalysis methods were used for non-deterministic fault diag-



nosis in bipartite-graphs in [18]. The solution was proposegh]
to detect link failures in wireless and/or battlefield network

The technique focuses on dealing with unknown and constantjy
changing network topologies, and it is not able to deal with lost
or spurious symptoms. In addition, all symptoms have to bg,
known before the fault localization process may be started.
The algorithm proposed in this paper performs probabilisti%]
fault diagnosis in communication systems whose fault propaga-
tion may be modeled by bipartite graphs. The model of uncery
tainty is suitable for diagnosing various types of faults, includ-
ing performance-related ones. The algorithm is event-drivefy,
i.e., it allows a symptom to be analyzed as soon as it is re-
ceived. Therefore, it has the ability to perform fault diagnqyy;
sis faster than window-based algorithms [6], [14], [30], [31],
[18]. In our work on fault localization we also proposed an
incremental, event-driven algorithm based on bipartite causHEl
ity graphs [10]. The algorithm has slightly lower complexity3
than the algorithms presented in this paper; however, currently
it does not support positive, lost, or spurious symptoms. [14]

(15]
X. CONCLUSIONS AND FUTURE WORK

This paper utilizes belief networks to perform fault locallt®!
ization in communication systems taking into account compre-
hensive information about the system behavior. Most previoUsz.]
work on this subject performs fault localization based solely
on the information about malfunctioning system compone
(i.e., negative symptoms). In this paper, we show that positive
information, i.e., the lack of any disorder in some system co

ponents, may be used to improve the accuracy of the process. /
%RJ, J. D. Case, K. McCloghrie, M. T. Rose, and S. Waldbusgemtocol

The technique presented in this paper allows lost and spuri
symptoms to be incorporated in the analysis. We show througf?
simulation that in a noisy network environment the analysis
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based on the observed set of broken end-to-end connections.
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In our future research we plan to generalize the solution pl%§
sented in this paper to fault localization with belief networkg€]
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itive lost and spurious symptoms on other non-determinisii’]
fault localization techniques such as Incremental Hypothegjs;
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