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Abstract—This paper utilizes belief networks to implement fault
localization in communication systems taking into account com-
prehensive information about the system behavior. Most previ-
ous work on this subject performs fault localization based solely
on the information about malfunctioning system components (i.e.,
negative symptoms). In this paper, we show that positive informa-
tion, i.e., the lack of any disorder in some system components, may
be used to improve the accuracy of this process. The technique
presented in this paper allows lost and spurious symptoms to be
incorporated in the analysis. We show through simulation that
in a noisy network environment the analysis of lost and spurious
symptoms increases the robustness of fault localization with belief
networks. We also demonstrate that belief networks yield high ac-
curacy even for approximate probability input data and therefore
are a promising model for non-deterministic fault localization.1

Index Terms—Fault localization, belief networks

I. I NTRODUCTION

FAULT localization in communication systems is a pro-
cess of isolating root causes of a system disorder based

on the observed indications of the disorder (symptoms). In
the past, fault localization focused on diagnosing low-level re-
source availability-related problems such as a broken cable or
an inactive interface. Recently, the scope of fault localization
has been expanded to include the diagnosis of performance
problems in higher layers of the communication system, such
as the transport and application layers [1], [2]. For this pur-
pose, non-deterministic reasoning needs to be incorporated in
the fault localization process [3].

This paper utilizes belief networks [4] to perform fault local-
ization in communication systems whose failure propagation
model may be described by bipartite causality or dependency
graphs. As explained in Section II, bipartite graphs may be
used to describe a wide range of fault localization problems.

The paper expands on our previous research on applying be-
lief networks techniques to fault localization [5] (Section IV) by
taking into account comprehensive information about the sys-
tem behavior. Most previous work on this subject [6], [7] per-
forms fault localization based solely on the information about
malfunctioning system components (i.e., negative symptoms).
In this paper, we show that positive information, i.e., the lack
of any disorder in some system components, may be used to
improve the accuracy of fault localization (Section V).
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In real-life communication systems, an observation of net-
work state is frequently disturbed by the presence of lost and/or
spurious symptoms (usually referred to as observation noise).
Although many researchers have suggested [6], [8] that fault lo-
calization should be resilient to the existence of spurious and/or
lost alarms, we are aware of only one technique [8] that in-
corporates lost and spurious symptoms into deterministic fault
localization. In this paper, we propose a technique that al-
lows lost and spurious symptoms to be incorporated in the non-
deterministic analysis (Section VI). We prove that reasoning
with positive and noisy observations does not increase a the-
oretical complexity bound of the algorithms introduced in [5].
We also show through simulation that in a noisy network envi-
ronment the analysis of lost and spurious symptoms increases
the robustness of fault localization with belief networks (Sec-
tion VII). Moreover, we demonstrate that belief networks yield
high accuracy even for approximate probability input data and
therefore are a promising model for non-deterministic fault lo-
calization (Section VIII).

II. B IPARTITE MODELS OF NETWORK FAULTS

Fault localization in communication systems distinguishes
different types of events. Faults – root problems of system
disorder – are those events that need to be handled directly to
eliminate the undesirable system behavior. A failure is a dis-
crepancy between the observed and expected system states or
behaviors. It results from a fault and may not be directly cor-
rected. When a failure is detected by the management system,
an alarm is generated. Alarms delivered to the management
console are called symptoms. In this paper, we denote byF
the set of all faults that may occur in the considered system.
We useS to denote the set of all possible symptoms, andSO
to denote the set of all observed symptoms. All network events
(including faults and symptoms) will be denoted byE . In gen-
eral,F ∩ S 6= ∅.

In a communication system, failures propagate among sys-
tem components. A failure of a system entity that occurs in
layerL on hostH may affect a dependent entity in layerL+1
on hostH (and recursively, in all layers above). This failure
propagation pattern is referred to as vertical propagation. A
failure of a system entity that occurs in layerL on hostH may
also affect a system entity in layerL on hostH ′ that communi-
cates with hostH (horizontal propagation). Fault management
systems model fault propagation by representing either causal
relationships among network events [7], [8], or dependencies
among communication system entities [1], [6], [9].

In the past, researchers focusing on fault localization fre-
quently assumed a deterministic fault propagation model, in



which one can predict with certainty whether a failure of an
entity will cause a failure of a dependent entity [7], [8]. The
deterministic model is usually sufficient to model availability-
related faults (such as a broken cable or an inactive interface),
since their impact on other network components is easily pre-
dictable. Recently, more attention has been devoted to diagnos-
ing performance related failures in higher layers of the protocol
stack including the transport and application layers [1], [2], [3].
In this application, the deterministic model is not sufficient be-
cause the impact of performance-related failures in one entity
on dependent entities is not easy to predict. Also, the depen-
dencies among system entities change so frequently that they
may not be deterministically captured by the fault-propagation
model. Non-determinism is introduced into the fault propaga-
tion model by labeling graph edges with probabilities.

Since relationships among system entities tend to be very
complex, so is the fault propagation model that captures them.
Reasoning about faults with such complex models has been
shown to be NP-hard [6]. To deal with the complexity, re-
searchers develop heuristics that allow the problem to be sim-
plified. One simplification involves reducing a complex graph
to a bipartite graph by computing its transitive closure using se-
rial and parallel reduction operators.2 Such a simplification has
been applied in the popular codebook approach [8].
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Fig. 1. A bipartite causality graph

The fault localization problem may be also simplified by di-
viding it into smaller sub-problems, each focusing on a sub-
graph of the original model, which typically represents a level
of abstraction. In this approach, a solution to one sub-problem
is fed as input to another, typically lower-level, sub-problem.
For some of these sub-problems, the fault propagation model
may be represented by a bipartite graph. As an example, con-
sider layer 2 or 3 topology in which communication between
end-hosts is achieved through a network of bridges or routers. A
failure of a host-to-host link in a given layer may cause a failure
of an end-to-end service provided between two end-hosts along
the path that includes the malfunctioning host-to-host link. To
diagnose the end-to-end service problem, one needs to identify
the faulty host-to-host link. We refer to this problem as the
problem of end-to-end service failure diagnosis [3], [10]. End-
to-end service failure diagnosis uses a bipartite graph, whose
parentless nodes represent host-to-host failures (root problems),
and childless nodes represent the resultant end-to-end service
failures (symptoms). To build such a graph, the knowledge of
network topology and current routing information are required.

2Note that, such a reduction is, in general, an NP-complete problem on its
own. Frequently, an assumption is made with respect to the graph shape that
allows the reduction process to be completed in polynomial time.

In our work on fault localization [5], [10], we have been us-
ing the latter approach to simplifying the fault localization task,
because it allows the system to respond easily to the system
configuration changes. On the other hand, when the original
fault propagation model is reduced to a bipartite graph, every
configuration change necessitates repeating the reduction.

In the following sections, we present an algorithm that uti-
lizes belief networks to calculate the most probable explana-
tion of the observed set of symptoms. The algorithm allows
the solution to be built in an event-driven fashion based on both
positive and negative information about the system state. The
technique is resilient to the inaccuracies in the symptom data
(such as lost and spurious symptoms). In addition, as shown in
Section VIII, the technique does not require the accurate knowl-
edge of symptom-given-fault probability distributions.

III. B ELIEF NETWORK CONCEPTS

A belief network[11], [4] is a directed acyclic graph [11]
(DAG), in which each node represents a random variable over
a multivalued domain. We will use terms “node” and “random
variable” interchangeably, and denote them byVi. The set of all
nodes is denoted byV . The domain of random variableVi will
be denoted by symbolDi. The set of directed edgesE repre-
sents causal relationships among the variables, and the strengths
of these influences are specified by conditional probabilities.
Formally, a belief network is a pair(G,P ), whereG is a DAG,
P={Pi}, andPi is the conditional probability matrix associ-
ated with a random variableVi. Let Par(Vi)={Vi1 , . . . , Vin}
be the set of all parents ofVi. Pi is a (|Par(Vi)|+1)-
dimensional matrix of size|Di|×|Di1 |×. . .×|Din |, where
Pi(vi, vi1 , . . . , vin)=P (Vi=vi|Vi1=vi1 , . . . , Vin=vin). We will
denote byA={V1=v1,. . . ,Vn=vn} an assignment of values to
variables in setV , where eachvj∈Dj . We will usevAj to denote
the value of variableVj ∈ V in assignmentA. Given a subset
of random variablesUk={Vk1 , . . . , Vkm}⊆V , we will denote
by UAk ={Vk1=v

A
k1
, . . . , Vkm=vAkm} an assignment of values to

variables in setUk that is consistent with assignmentA. An
evidence sete is an assignmentUAo , whereUo⊆V is a set of
variables whose values are known, and for eachVoj∈Uo, vAoj is
its observed value.

Belief networks are used to make four basic queries given
evidence sete: (1) belief assessment, (2) most probable expla-
nation, (3) maximum a posteriori hypothesis, and (4) maximum
expected utility [11]. The first two queries are of particular in-
terest in the presented research. Thebelief assessmenttask is
to computebel(Vi=vi)=P (Vi=vi|e) for one or more variables
Vi. Themost probable explanation(MPE) task is to find an as-
signmentAmax that best explains the observed evidencee, i.e.,
P (Amax)=maxAΠn

i=1P (Vi=vAi |Par(Vi)A) [11]. It is known
that these tasks are NP-hard in general belief networks [12].
Moreover, some approximation schemes have been proven to
be NP-hard [13]. A belief-updating algorithm, polynomial with
respect to|V |, is available forpolytrees, i.e., directed graphs
without undirected cycles [4]. However, in unconstrained poly-
trees, the propagation algorithm still has an exponential bound
with respect to the number of a node’s neighbors.

In this paper, we focus on a class of belief networks repre-
senting a simplified model of conditional probabilities called



noisy-OR gates[4]. The simplified model contains binary-
valued random variables. The noisy-OR model associates an
inhibitory factor with every cause of a single effect. When some
causes are present, the effect is absent only if all inhibitors cor-
responding to these causes are activated. The model assumes
that all inhibitory mechanisms are independent [4]. This as-
sumption of independence is ubiquitous in probabilistic fault
localization approaches reported in the literature [6], [14]. It
indicates that all alternative causes of the same effect are in-
dependent. This simplification helps avoid exponential time
and memory otherwise needed to process and store conditional
probability matrices associated with random variables in the be-
lief network. Furthermore, belief assessment in polytrees with
the noisy-OR model has polynomial complexity, which makes
it attractive to use with our problem as an approximation.

Noisy-OR model may be insufficient for some fault localiza-
tion problems. In some cases, a model may be more suitable
that introduces the AND relationship between event causes, or
the inverse causal relationships among events. Such models are
easily incorporated into the belief network algorithms and al-
low the Bayesian inference to be equally efficient. However,
this paper focuses on the noisy-OR model as the most frequent
model in fault localization.

The noisy-OR fault propagation model may be built based
on the knowledge of the dependencies between system com-
ponents and their associated faults and symptoms. Techniques
of building a fault propagation model based on this informa-
tion were proposed in [14] and [5]. Building fault propagation
models may be automated by applying belief network learning
methods [15]. These methods being very complex, the design
of such automated techniques remains an open problem.

IV. I TERATIVE BELIEF PROPAGATION IN FAULT DIAGNOSIS

In this section, we introduce a fault localization algorithm
based on iterative propagation in belief networks. Recall from
Section III that in singly-connected networks (polytrees) rep-
resenting the noisy-OR-gate model of conditional probability
distribution, Bayesian inference (belief updating) may be com-
puted in polynomial time using the algorithm presented in [4].
However, a bipartite fault propagation model usually contains
undirected loops and therefore, is not singly-connected.

Networks with loops violate certain independence assump-
tions based on which the local computation equations were de-
rived for polytrees. Nevertheless, successful applications of the
iterative algorithm to calculating queries in loopy belief net-
works have been reported [16]. We adapt iterative belief prop-
agation for calculating the most probable explanation of the set
of observed symptoms [5].

A. Iterative belief propagation concepts

Iterative belief propagation utilizes a message passing
schema in which network nodes exchangeλ andπ messages
(Fig. 2). MessageλX(vj) that nodeX sends to its parentVj
for every validVj ’s valuevj , denotes a posterior probability of
the entire body of evidence in the sub-graph obtained by remov-
ing link Vj→X that containsX, given thatVj = vj . Message
πUi(x) that nodeX sends to its childUi for every valid value

of X, x, denotes probability thatX = x given the entire body
of evidence in the sub-graph containingX created by removing
edgeX→Ui. In a noisy-OR polytree, let us denote byqXUi the

X

UnUiU1
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λUn
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πX(vm)

πU1
(x) πUi

(x) πUn
(x)

λ(x) ?, π(x) ?
bel(x) ?

Fig. 2. Message passing in Pearl’s belief propagation

probability of activating the inhibitor controlling linkX→Ui.
Every random variable assumes values from{0, 1}, where 1 de-
notes occurrence of the corresponding event and 0 means that
the event did not occur. The probability thatUi occurs givenX
occurs iscXUi = 1 − qXUi . Based on the messages received
from its neighbors, nodeX computesλ(x), π(x), andbel(x) as
follows [4]:

λ(x) =
n∏
i=1

λUi(x)

π(x) =
{
α
∏m
j=1(1− cVjXπjX) if x = 1

α(1−
∏m
j=1(1− cVjXπjX)) if x = 0

bel(x) = αλ(x)π(x)

In the above equations,πjX = πX(vj) for vj = 1, andα
is a normalizing constant. Letβ represent any constant. The
messagesλX(vj) andπUi(x) are computed using the following
equations [4]:

λX(vj) =β
(
λ(1)− qvjVjX(λ(1)− λ(0))

∏
k 6=j

(1−cVkXπkX)
)

πUi(x) =α
∏
k 6=i

λUk(x)π(x)

In the initialization phase, for all observed nodesX, λ(x) is
set to 1 ifx is the observed value ofX. For other values ofx,
λ(x) is set to 0. For all unobserved nodesλ(x) is set to 1 for
all values ofx. Parentless nodes have theirπ(x) set to the prior
probabilities.

The belief propagation algorithm in polytrees starts from
the evidence node and propagates the changed belief along the
graph edges by computingbel(x), λX(vi)’s andπX(ui)’s in ev-
ery visited node. The complete description of the iterative algo-
rithm for polytrees including expressions forλX(vj), πUi(x),
andbel(x) along with some illustrative examples may be found
in [4]. In noisy-OR gate belief networks, functionsλX(vj),
πUi(x), andbel(x) may be evaluated in linear time with respect
to the number of nodeX ’s neighbors. In reported applications
of iterative belief updating to loopy graphs, several iterations
are performed in which the entire graph is searched according
to some pre-defined ordering [16], [17].



B. Application of belief propagation to fault localization

In the domain of fault localization, observations of network
disorder (symptoms) are considered as belief network evidence.
Symptom observation is represented by assigning the corre-
sponding belief network node to 1, which means that the symp-
tom did occur. Belief network nodes whose corresponding
symptoms were not observed are left unassigned (i.e., their
λ(0)=λ(1)=1). The fault localization task is to find an assign-
mentFAmax . For fi∈F , assignmentfi=1 indicates that fault
fi occurred, andfi=0 indicates that faultfi did not occur. The
fault localization algorithm introduced in [5] starts with a be-
lief network whose all evidence nodes are unassigned. Then,
the algorithm proceeds iteratively, after every symptom obser-
vation applying one iteration of belief updating that starts from
the observed evidence node and visits all belief network nodes
in a breadth-first order. Note that, contrary to other approaches
to fault localization [6], [14], [18], which delay symptom anal-
ysis until all symptoms are collected, Algorithm 1 does not re-
quire all symptoms to be observed before their analysis may be
started. On the contrary, it analyzes a symptom independently
of other symptom observations. The knowledge resulting from
analyzing a symptom is stored for the next iterations in the be-
lief network nodes in the form ofλ andπ messages, allowing
Algorithm 1 to utilize time more efficiently. Moreover, for ev-
ery fault the algorithm continuously provides the probability of
its occurrence given the symptoms observed so far.

At the end of the analysis cycle, i.e., after sufficient num-
ber of symptoms have been received, sufficient amount of time
elapses, or system administrator decides so, the algorithm cre-
ates a complete, possibly multi-fault, hypothesis. In fault selec-
tion phase, several belief propagation iterations are performed.
In each iteration, the most probable fault is chosen and its cor-
responding node is assigned to 1. Then, belief propagation is
initiated from this node. This process continues until all symp-
toms are explained or until there are no faults with sufficiently
high probability of their occurrences. Observe that an inher-
ent property of Algorithm 1 is the capability to isolate multiple
simultaneous faults even if their symptoms overlap. Formally,
the fault localization algorithm is defined as follows.

Algorithm 1—MPE through iterative belief updating:

Inference iteration starting from nodeYi:
let o be the breadth-first order starting fromYi
for all nodesX along orderingo do

if X is not an unobserved path node then
for all X ’s parents,Vj and for allvj ∈ {0, 1}

computeλX(vj)
for all X ’s children,Ui and for allx ∈ {0, 1}

computeπUi(x)
Symptom analysis phase:

for every symptomSi ∈ SO do
markSi as observed to have value of 1
run inference iteration starting fromSi

for every nodeVi, vi ∈ {0, 1} computebel(vi)
Fault selection phase:

while∃ link nodeVj for whichbel(1)>0.5
andSO 6=∅ do
takeVj with the greatestbel(1)

remove allSi such thatVj may causeSi fromSO
markVj as observed to have value of 1
run inference iteration starting fromVj
for every nodeVi, vi ∈ {0, 1} computebel(vi)

The worst-case computational complexity of Algorithm 1 is
O(|SO|max(|F|dF , |S|dS)) ⊆ O(|S| max(|F| dF , |S| dS)),
wheredF is the maximum out-degree of a fault node, anddS is
the maximum in-degree of a symptom node. In [5], we applied
Algorithm 1 to the problem of end-to-end service failure diag-
nosis, and proved that the algorithm’s complexity in a network
composed ofn nodes (such as routers, bridges, or switches) is
O(n5). Algorithm 1 was evaluated through simulation on a ran-
domly generated set of spanning tree networks, and compared
to the accurate, but exponential, bucket-tree elimination algo-
rithm [11]. Algorithm 1 proved to significantly outperform the
optimal algorithm in terms of its running time while preserv-
ing almost optimal accuracy (using Algorithm 1 we are able to
detect 1-2% fewer faults than with the optimal algorithm).

This paper discusses difficulties involved in applying Algo-
rithm 1 to a real-life network environment and presents solu-
tions that allow the accuracy and robustness of iterative belief
updating in such an environment to be improved. The solutions
presented in this paper preserve the computational complexity
of Algorithm 1.

V. A NALYSIS OF POSITIVE INFORMATION

Algorithm 1 presented in Section IV calculates the most
probable fault hypothesis based on the observed indications of
network disorder. It does not take into account that some pos-
sible indications of network disorder have not been observed.
As many researchers point out [8], [19], the fact that many of
its possible symptoms have not been observed should decrease
our confidence in the fault occurrence. In the realm of fault
localization, an observation of network disorder is called aneg-
ative symptom. The lack of such an observation, or observation
otherwise are consideredpositive symptoms. The inclusion of
positive symptoms into the fault localization process may allow
a more accurate fault hypothesis to be created.

In a belief network, a positive symptom is represented by as-
signing 0 to the symptom’s corresponding belief network node.
In the extreme case, all belief network nodes which represent
symptoms could be assigned 0 if their corresponding alarms
were not observed, and they could be assigned 1 if their cor-
responding alarms were observed. This approach is valid if all
potential alarms included in the fault propagation model areob-
servable. However, whether or not a potential alarm is observ-
able may depend on a current configuration of the management
system, which may change the set of observable alarms accord-
ing to current management system objectives. Thus, a more
general approach should allow some of the potential alarms
to be unobservable, and it should allow the set of observable
alarms to be easily modified.

As an example, consider the problem of end-to-end service
failure diagnosis. To detect end-to-end service failures, the
management system may utilize one or more monitoring nodes
which monitor the availability and quality of end-to-end con-
nections between a monitoring node and a chosen set of other
network nodes. If such a scenario is applied, the observable



set of alarms includes those triggered by failures of end-to-end
services between a monitoring node and any node belonging to
the set of chosen nodes. The set of chosen nodes and the set of
monitoring nodes may change during system operation.

LetSO be the set of all observable alarms. The ratio|SO|/|S|
will be calledobservability ratio(OR). We will denote bySN
andSP the sets of all negative and positive symptoms, respec-
tively, whereSN ∪ SP = SO. Note, that in Algorithm 1 we
assumed thatSN = SO, andSP = ∅.

To include the analysis of positive symptoms in the fault lo-
calization process, we enhance Algorithm 1 as follows. Ini-
tially, all observable alarms are considered positive symptoms,
and their corresponding belief network nodes are assigned
0. The observation of a negative symptom is represented by
changing the assignment of the corresponding belief network
node to 1.

Algorithm 2—MPE including positive symptoms:

Initialization phase:
for every symptomSi ∈ SP do

markSi as observed to have value of 0
run inference iteration starting fromSi

as defined in Algorithm 1
Symptom analysis phase:

run symptom analysis phase of Algorithm 1
substitutingSN for SO

Fault selection phase:
run fault selection phase of Algorithm 1

substitutingSN for SO
The worst-case computational complexity of Algorithm 2 is
O(|SO|max(|F|dF , |S|dS)), which is consistent with the com-
putational complexity of Algorithm 1. However, the actual run-
time of Algorithm 2 may be significantly higher than that of
Algorithm 1, because|SN | (=|SO| in Algorithm 1) is typically
much smaller than|SO| used in Algorithm 2. The run-time of
Algorithm 2 may be reduced by making two observations.

1) For an unobservable symptom nodeX, and for any parent
node ofX, Vj , λX(Vj=1)=λX(Vj=0)=λ(X=1)=1.
SinceλX(vj) does not depend on the received values of
functionsπX(vk), nodeX does not propagate evidence
between its parents. As a result, the iterative belief updat-
ing need not continue past an encountered unobservable
symptom node.

2) For a positive symptom nodeX, and for any parent node
of X, Vj :

λX(vj) = βq
vj
VjX

∏
k 6=j

(1−cVkXπkX)

Since β is any constant, assignment
β=α=1/(λX(Vj=1) + λX(Vj=0)) leads to the
following equation.

λX(vj) =
{

1/(1 + qVjX) if vj = 0
qVjX/(1 + qVjX) if vj = 1

SinceλX(vj) does not depend on the received values of
functionsπX(vk), nodeX does not propagate evidence
between its parents. As a result, the iterative belief up-
dating need not continue past a positive symptom node.

Note that, initially, the belief network contains solely unob-
servable and positive symptom nodes. Thus, the initialization

phase may be reduced to calculatingλX(vj)’s for all symp-
tom nodes, and then computingλ andλX values in the belief
network nodes which correspond to faults. Moreover, the set
of observable alarms may be easily modified during the fault
localization process by redefining the values of functionλ of
nodes whose observability status has changed.

In Section VII we describe the application of Algorithm 2 to
the problem of diagnosing end-to-end service failures, and eval-
uate benefits resulting from the inclusion of positive symptoms
in the fault localization process.

VI. D EALING WITH NOISY OBSERVATIONS

In real-life communication systems, an observation of net-
work state is frequently disturbed by the presence of lost and/or
spurious symptoms (usually referred to as observation noise).

In a management system, alarms may be lost as a result
of using an unreliable communication mechanism to transfer
alarms from their origin to the management node. For example,
since SNMP protocol [20] exploits an unreliable transport layer
protocol (UDP), SNMP traps [20] issued by an SNMP agent
are not guaranteed to be delivered to the destination. Man-
agement/monitoring agents on network devices monitor val-
ues of various performance metrics, and issue alerts when the
monitored metrics violate pre-set threshold values. Too liberal
threshold values may prevent an existing problem from being
reported, thereby causing the alarm loss. Given the popular-
ity of unreliable management protocols such as SNMP and the
difficulty of calculating the correct threshold values, the proba-
bility of an alarm loss is not negligible. When the fault localiza-
tion algorithm relies on positive information to create the most
likely fault hypothesis, alarm loss, if ignored by the algorithm,
could lead to an incorrect solution.

Another frequent disturbance in an observation of network
state is due to spurious alarms, which are caused by intermittent
network faults or by overly restrictive threshold values. Inter-
mittent faults are the ones that result in observable symptoms,
but no longer exist at the time of the symptoms’ correlation.
As with all fault types, the symptom patterns triggered by the
intermittent faults and their probability of occurrence may be
identified through the analysis of historical data such as alarm
log files. When such identification is possible, the interrelation
among spurious symptoms may be taken into account. In this
case, the intermittent faults can be modeled similar to ordinary
faults. Therefore, no change of either the bipartite fault prop-
agation model, or the fault localization algorithm is needed.
Oftentimes, in particular for spurious alarms due to overly re-
strictive detection mechanisms, the determination of spurious
symptoms interdependence may be impossible. The method
proposed in this section focuses on symptoms for which inter-
dependence information may not be learned.

We address the problem of lost and spurious alarms by aug-
menting the bipartite belief network model presented in Sec-
tion II. To model loss, we introduce unobservable failure nodes
e1, . . ., em as replacement for symptom nodess1, . . ., sm,
respectively. Then, we add directed edgesei→si, i=1 . . .m.
With every directed edgeei→si we associate the probability
of causal relationship betweenei andsi equal to1−ploss(si),
whereploss(si) is the probability that alarm indicating failure



ei is lost. The values ofploss(si) may be obtained, for example,
by analyzing packet loss rate in the network used to transport
symptomsi from its origin to the management station.

To model spurious symptoms, we introduce nodess∗j ,
j=1 . . .m. Then, we add directed edgess∗j→sj , where
j=1 . . .m. With everys∗j we associate prior beliefpspurious(sj)
that represents the cumulative probability of events (other
than persistent faults) that trigger alarmsj . The value of
pspurious(sj) may be learned by analysing historical alarm log
files. Every directed edges∗j→sj is labeled with1−ploss(sj).

f1 f2
fn-1 fn

e1 e2 em-1 em...

...
p(e1|f1)

p(em|fn)

p(f1) p(fn)

s1 s2 sm-1 sm

s1
* s2

*
sm-1

* sm
*

1-ploss(s1) pspurious(sm)

...

...
1-ploss(sm-1)

Fig. 3. A belief network modeling lost and spurious symptoms
(BN (SO, ploss, pspurious))

The resultant belief network, which will be denoted by
BN (SO, ploss, pspurious), is presented in Fig. 3. Observe that,
whenploss(si)=0, edgesei→si (for i=1 . . .m) are redundant,
and nodesei andsi may be considered identical (ei=si). Also,
whenpspurious(sj)=0, nodess∗j are redundant and may be re-
duced (s∗j=sj). Thus,BN (SN , 0, 0) is equivalent to the bi-
partite belief network described in Section IV (used in Algo-
rithm 1), andBN (SO, 0, 0) is equivalent to the model used
in Section V. When the existence of either lost or spuri-
ous (but not both) alarms may be neglected, one should use
BN (SO, 0, pspurious) orBN (SO, ploss, 0), respectively.

When the augmented belief network,BN (SO, ploss,
pspurious), is used as a fault propagation model, fault localiza-
tion may be performed using Algorithm 2 defined in Section V.
In Section VII, we present an application of solutions intro-
duced in this section to the problem of end-to-end service fail-
ure diagnosis. We also evaluate the impact of incorporating lost
and spurious alarms on the accuracy of the fault localization
process in a noisy environment.

VII. S IMULATION STUDY

In this section, we describe the simulation study performed
to evaluate the techniques presented in Sections IV, V, and VI.
Algorithms 1 and 2 were implemented in Java. As a real-life ap-
plication domain we chose end-to-end service failure diagnosis.
Recall from Section II that the diagnosis of end-to-end service
failures aims at isolating host-to-host services that caused the
observed end-to-end service failures. In end-to-end service fail-
ure diagnosis, the set of all host-to-host service failures, the set
of all end-to-end service failures, and the set of all symptoms

are denoted byF , E , andS, respectively.F contains only fail-
ures of services provided by host-to-host links that belong to
some end-to-end route. The dependencies between end-to-end
services and host-to-host services are determined using routing
information. There exists a bijective mapping ofE ontoS.

The simulation study presented in this paper uses tree-shaped
network topologies, which result, for example, from the usage
of the Spanning Tree Protocol [21] as the data-link layer routing
protocol. The usage of tree-shaped topologies greatly simpli-
fies their random generation, while not having any significant
impact on the accuracy of the results presented in this section.
We focus on diagnosing performance problems, e.g., excessive
delay or high loss rate, which necessitates the usage of a non-
deterministic fault model and fault localization algorithm.

We designed the simulation described in this section accord-
ing to the following model. LetOR represent the alarm observ-
ability ratio, i.e.,OR = |SO|/|S|. LetLR represent alarm loss
rate, i.e., the ratio of the number of generated alarms that were
lost to the number of all generated alarms. LetSSR represent
spurious alarm rate, i.e., the ratio of the number of spurious
alarms to the number of all observable alarms. The three ratios
OR, LR, andSSR are parameters of the simulation model.

Given the simulation model with parametersOR, LR, and
SSR, for a given network topology sizen, wheren represents
the number of intermediate network nodes, such as bridges or
switches, we designKn simulation cases as follows:
• We create a random tree-shapedn-node networkNi

(1≤i≤Kn). We denoteF , E , andS for networkNi asFi,
Ei, andSi, respectively. For every link inNi, we create
onefj∈Fi. Note that in ann-node tree-shaped network
there aren−1 links, i.e.,|Fi|=n−1. For every end-to-end
path inNi, we create oneel∈Ei and onesl∈Si. Note that
|Ei|=|Si|∈O(n2).

• We randomly generate prior fault probability distribution
pf : Fi→[0.001, 0.01]; pf (fj)s are uniformly distributed
over the range[0.001, 0.01]. We randomly generate con-
ditional probability distributionpfe: (Fi×Ei)→[0, 1), de-
fined as the probability thatel occurs givenfj occurs.
For all fj∈Fi and el∈Ei such that the path correspond-
ing toel includes the link corresponding tofj , pfe(fj , el)s
are uniformly distributed over the range(0, 1); otherwise,
pfe(fj , el)=0.

• We randomly generate the set of observable alarms
SiO⊆Si such that on average|SiO||Si| =OR.

• Given network Ni, we build its belief network
modelBN i(SiO, ploss, pspurious). We chooseploss=LR
(pspurious=SSR) to perform fault localization that in-
cludes alarm loss (spurious alarms) in the analysis. We
use ploss=0 (pspurious=0) to perform fault localization
that disregards lost (spurious) symptoms. To utilize Al-
gorithm 1 we initializeBN i(SiO, ploss, pspurious) as de-
scribed in Section IV; to utilize Algorithm 2 we initialize
BN i(SiO, ploss, pspurious) as described in Section V.

For i-th simulation case (1≤i ≤Kn), we createMS simula-
tion scenarios as follows.

1) Using pf we randomly generate the set of faulty
links in network Ni, FkiC (1≤k≤MS), and create
probability distributionpke : Ei→[0, 1], wherepke(ej)=
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P{ej occurs|all faults inFkiC occur}.
2) Using pke we randomly generate the set of eventsEkiC

resulting from faults inFkiC , and build SkiC⊆Si, the
set of alarms corresponding to events inEkiC . We set
SkiG=SkiC∩SiO.

3) We randomly generate the set of spurious

alarms SkiS⊆SiO such that |S
k
iS |
|Sk
iO
|=SSR. We set

SkiG+S=SkiG∪SiS .
4) We createSkiG−L – the set of generated alarms that are

not lost by the communication system – by randomly re-

moving alarms fromSkiG+S so that on average
|SkiG−L|
|Sk
iG+S |

=

1−LR.
5) We setSkiN=SkiG−L; SkiN constitutes the set of negative

symptoms observed in the simulation scenariok.
6) Using either Algorithm 1 or Algorithm 2 we compute
FkiD⊆Fi, the most likely explanation of symptoms in
SkiN . We calculatedetection rate(DRki ) and false posi-
tive rate(FPRki ) defined using the following equations.

DRki =
|FkiD ∩ FkiC |
|FkiC |

FPRki =
|FkiD \ FkiC |
|FkiD|

For i-th simulation case we calculate the mean detec-
tion rate DRi= 1

MS

∑MS

k=1 DRki and mean false positive rate

FPRi= 1
MS

∑MS

k=1 FPRki . Then, we calculate the expected val-
ues of detection rate and false positive rate denoted by DR(n),
and FPR(n), respectively. In our study, we usedKn=100, and
MS=100 or 200 depending on the variability of DRki . We var-
iedn from 5 to 45.

To evaluate the impact of including positive symptoms into
the fault localization process, we setLR=0, andSSR=0 in
the simulation model. Correspondingly, we usedBN (SO, 0, 0)
as the fault propagation model. We compared Algorithms 1
and 2 using observability ratios 1.0, 0.5, and 0.2. As shown in
Fig. 4 and 5, the inclusion of positive symptoms in the fault lo-
calization process allows the detection and false positive rates
to be substantially improved. The improvement is bigger for
lower observability ratios; with high observability ratios (e.g.,
OR=1), the number of negative symptoms is typically large
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enough to allow quite accurate fault localization without con-
sidering positive symptoms. However, such high symptom ob-
servability is unlikely in real-life systems. One may also ob-
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serve that the accuracy of both algorithms depends on the ob-
servability ratio; higherOR means more information about
faults, and, in consequence, higher accuracy.

In the next set of experiments, we isolated the impact of
symptom loss on the accuracy of fault localization process. We
setSSR=0 in the simulation model. Loss rate was set to either
0.01 or 0.1. We compared the accuracy of Algorithm 2 us-
ing belief networksBN (SO, LR, 0) andBN (SO, 0, 0), vary-
ingOR between 0.2 and 0.5. Fig. 6 and 7 show that, by includ-
ing loss rate in the analysis, the detection (false positive) rate
may be increased (decreased) by up to 10%. Moreover, given
constantOR, this gain is insensitive to the value ofLR.

The impact of including spurious symptoms in the fault local-
ization process was evaluated by applying Algorithm 2 to fault
propagation modelsBN (SO, 0, SSR) andBN (SO, 0, 0) using
LR=0, andOR=0.5. We variedSSR between 0.01 and 0.1.
As shown in Fig. 8, the inclusion of spurious symptoms in the
fault localization process in small networks decreases detection
rate. This is explained by the fact that in small networks (in par-
ticular, with small observability ratios), only a few symptoms
are available to the fault localization process. When the possi-
bility of spurious symptoms is taken into account, and the num-
ber of symptoms is small, the algorithm concludes that there is
no sufficient evidential support for the existence of faults, and
considers most of these symptoms spurious. WhenSSR=0.1,
for small networks, the probability that all observed symptoms
are spurious is frequently higher than the probability of fault
occurrence. Therefore, the algorithm refuses to identify a fault
thereby achieving very low detection rate. One can conclude
that small networks need to be better instrumented (i.e., have
higherOR) to allow fault localization to benefit from the anal-
ysis of spurious symptoms. In larger networks, the inclusion of
spurious symptoms does not cause a decrease in the detection
rate; in fact, as shown in Fig. 8, it allows the detection rate to
be improved. Fig. 9 presents the impact of including spurious
symptoms on the false positive rate. It shows that regardless
of the network size, by taking spurious symptoms into account,
the false positive rate of the fault localization process may be
significantly decreased.
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VIII. I MPACT OF PROBABILITY ESTIMATION ERRORS

One of the drawbacks of applying non-deterministic reason-
ing to the fault localization problem is the necessity to de-
termine the probabilities assigned to nodes and edges in the
fault propagation model. Researchers frequently state that these
probabilities may be assigned by a human expert [6]. This pro-
cess being error prone, it is likely that the probabilities assigned
by the expert will differ from those describing the real system.
In actuality, the expert assigns discrete confidence levels rather
than the exact probabilities.

In this section, we analyze the impact of such probability es-
timation on the accuracy of Algorithm 1. For this purpose, we
designed simulation experiments as described in Section VII.
However, in the belief network, exact probabilities are replaced
by c confidence levels;i-th confidence level (i=1 . . . c) is rep-
resented by probabilityi−1

c + 1
2c . Thus, probabilityp in the real

system is estimated as probabilitybpccc + 1
2c .

Fig. 10 and 11 compare the detection rate of Algorithm 1
having exact knowledge of the probability distribution with the
detection rate achieved using one, two, and three confidence
levels for various observability ratios. Similar comparison of
false positive rates is shown in Fig. 12 and 13. It can be ob-
served that probability estimation with three confidence lev-
els allows fault localization to be almost as accurate as with
the knowledge of exact probabilities. This observation has an
important implication: it allows the expert to use a small set
of meaningful qualitative probability assignments such asun-
likely, possible, andlikely, which correspond to confidence lev-
els 1, 2, and 3, respectively.

Belief networks are therefore a promising model for non-
deterministic fault localization, yielding high accuracy even for
approximate probability input data.

IX. RELATED WORK

In the past, various event correlation techniques were pro-
posed including rule-based systems [22], [23], model-based
reasoning systems [24], [25], model traversing techniques [26],
case-based systems [27], fault propagation models [6], [7], and
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Fig. 11. Detection rate of Algorithm 1 with exact and approximate knowledge
of the probability distribution forOR=0.2.

the code-book approach [8]. These approaches differ with re-
spect to their knowledge representation, scalability, adaptabil-
ity to configuration changes, ability to deal with lost and spuri-
ous symptoms, ability to solve novel problem, etc. Most of the
above approaches use deterministic reasoning.

In the area of non-deterministic fault diagnosis, several ap-
proaches have been proposed. Katzela et al. [6] introduced an
O(N3) algorithm that finds the most probable explanation of
a set of symptoms in anN -node dependency graph. The ap-
proach presented in [6] does not allow lost or spurious symp-
toms and relies on time-windows to collect alarms. In multi-
layer fault diagnosis, specifying time-windows may be very dif-
ficult. The solution presented in this paper addresses all the
above issues achieving comparable computational complexity.

Kliger et al. [14] propose a probabilistic model to be used
with the codebook approach. Unfortunately, they do not present
the non-deterministic decoding schema. We believe that the
approach of Algorithms 1 and 2 can be used for this purpose.

The literature on event correlation reports on the applica-
tions of belief networks to fault diagnosis. However, the ap-
proaches are limited to rather narrow applications. Deng et
al. [28] present a polynomial time algorithm for updating be-
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lief in a restricted Bayesian network used as a model for fault
diagnosis in linear light-wave networks. In [29] belief networks
were applied to troubleshoot printing services. The belief net-
work used for this purpose is tree-shaped, which enables ex-
act inference using, e.g., Pearl’s algorithms. Wang et al. [30]
applied Bayesian theory to identifying faulty links in commu-
nication networks. They propose an approximation ofmaxi-
mum a posterioriquery to find a link responsible for a failure
of end-to-end connectivity between a management station and
a group of other stations, given prior link failure probabilities.
They do not include the representation of conditional probabil-
ities, which makes the approach not suitable for the diagnosis
of other than availability-related problems.

Other approaches to dealing with uncertainty in network fault
diagnosis include an application of Dempster-Shafer theory to
detect break faults in communications networks [31]. Similarly
to [30], this technique is tailored specifically to diagnosing con-
nectivity problems in networks with known and static topolo-
gies. This solution would not be sufficient for the purpose of di-
agnosing performance problems, or when the knowledge of the
network topology is uncertain or incomplete. Statistical data
analysis methods were used for non-deterministic fault diag-



nosis in bipartite-graphs in [18]. The solution was proposed
to detect link failures in wireless and/or battlefield networks
based on the observed set of broken end-to-end connections.
The technique focuses on dealing with unknown and constantly
changing network topologies, and it is not able to deal with lost
or spurious symptoms. In addition, all symptoms have to be
known before the fault localization process may be started.

The algorithm proposed in this paper performs probabilistic
fault diagnosis in communication systems whose fault propaga-
tion may be modeled by bipartite graphs. The model of uncer-
tainty is suitable for diagnosing various types of faults, includ-
ing performance-related ones. The algorithm is event-driven,
i.e., it allows a symptom to be analyzed as soon as it is re-
ceived. Therefore, it has the ability to perform fault diagno-
sis faster than window-based algorithms [6], [14], [30], [31],
[18]. In our work on fault localization we also proposed an
incremental, event-driven algorithm based on bipartite causal-
ity graphs [10]. The algorithm has slightly lower complexity
than the algorithms presented in this paper; however, currently
it does not support positive, lost, or spurious symptoms.

X. CONCLUSIONS ANDFUTURE WORK

This paper utilizes belief networks to perform fault local-
ization in communication systems taking into account compre-
hensive information about the system behavior. Most previous
work on this subject performs fault localization based solely
on the information about malfunctioning system components
(i.e., negative symptoms). In this paper, we show that positive
information, i.e., the lack of any disorder in some system com-
ponents, may be used to improve the accuracy of the process.
The technique presented in this paper allows lost and spurious
symptoms to be incorporated in the analysis. We show through
simulation that in a noisy network environment the analysis of
lost and spurious symptoms increases the robustness of fault
localization with belief networks. We also demonstrate that be-
lief networks yield high accuracy even for approximate proba-
bility input data and therefore are a promising model for non-
deterministic fault localization.

In our future research we plan to generalize the solution pre-
sented in this paper to fault localization with belief networks
of arbitrary shape. We will also investigate the impact of pos-
itive lost and spurious symptoms on other non-deterministic
fault localization techniques such as Incremental Hypothesis
Update [10].3
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