
Conformance Testing in Systems with Semicontrollable Interfaces�

Mariusz A. Fecko1, M. Ümit Uyar2;y, Paul D. Amer1, Adarshpal S. Sethi1

1 Computer and Information Sciences Department
University of Delaware, Newark, DE

2 Electrical Engineering Department
City College of the City University of New York, NY

(S. Budkowski and E. Najm, eds, Protocol Engineering: Part 2, vol. 55(1-2) of Annals of
Telecommunications (special issue), Jan-Feb 2000)

Abstract

In a conformance testing environment, an implementation under test (IUT) communicates with multiple entities.
A tester may have differing degrees of control on the interactions between these entities and the IUT: directly
controllable, semicontrollable, or uncontrollable. Semicontrollable inputs most likely render portions of an IUT
untestable. In addition, multiple communicating entities may create race conditions during testing. This paper
presents a test generation methodology for the systems where the semicontrollable inputs can be generated in-
directly. The test sequences obtained from the converted graph fully utilize the semicontrollable inputs (where
possible) while avoiding the race conditions. Although, for the most general case, the graph conversion results
in an exponentially large number of nodes, practical considerations make the converted graph size feasible. This
approach is used to generate tests for MIL-STD 188-220B. By applying the proposed graph conversion and the
race condition elimination techniques, the number of testable state transitions increased from approximately 200
to over 700, which represents a coverage of 95% of the transitions defined in the specification.

Keywords: Conformance testing; Embedded testing; Test case generation; Communication protocol specification
and testing

1 Introduction

In the automated generation of conformance tests based on the formal description of a protocol [1, 5,
16, 20, 21, 29, 33, 34], one significant problem is taking into account a tester’s limited controllability on
generating inputs to an Implementation Under Test (IUT) [20, 28]. This limited control almost always
renders certain protocol features untestable.

In an embedded testing environment, a composite System Under Test (SUT) [20, 28] consists of two
parts: (1) an IUT embedded within the SUT (often referred to as thetest component[37]), and (2) all
entities within the SUT other than the IUT (referred to as thetest context[25, 35, 37]). A reasonable
assumption adopted by most researchers and practitioners about the test context is that it is fault-free and
therefore testing should focus on the IUT [35, 37]. The compliance of the IUT to its specification can
only be verified from the global system behavior by examining the SUT’s input and output events [13].

In a practical embedded testing environment [28], where an IUT communicates with the test context
consisting of multiple entities, a tester may have differing degrees of controllability on the interactions
between these entities and the IUT [19, 13]. It may not be possible for a tester to directly apply some of
the inputs defined in the finite-state machine (FSM) model of an IUT; similarly, a tester may be unable to

�This work is supported by ARO SPP administered by Battelle (DAAL03-91-C-0034), by ARO (DAAL03-91-G-0086), and
by ATIRP Consortium sponsored by the ARL under the FedLab Program (DAAL01-96-2-0002).

yDr. Uyar initiated this research while a Visiting Associate Professor at University of Delaware.

1

observe some of the outputs generated by the IUT. Those interactions that are not directly controllable are
most likely to introduce nondeterminism and/or race conditions during testing, leaving certain portions
of an IUT untestable.

Oftentimes, within an SUT, an IUT communicates with the test context’s entity(s)FSMi that is not
directly controllable (i.e., the tester cannot directly apply inputs toFSMi). Consider an inputai;j that
cannot be directly applied to the IUT by a tester, but can be generated as an output byFSMi. In some
cases, it may be possible to forceFSMi to generateai;j to the IUT. If the tester applies an appropriate
input to the IUT, which then generates an input toFSMi, which in turn generatesai;j as input back to
the IUT, some of the interfaces become semicontrollable (as opposed to uncontrollable).

In addition, in an embedded environment where an IUT interacts with multiple entities, race conditions
and/or nondeterminism can occur during testing. If an IUT moves into a state in which several inputs
from different interfaces are waiting to be processed, choosing which input is consumed first may be a
nondeterministic decision of the IUT.

Within the framework of embedded testing [28], uncontrollable events are discussed by Phalippou [26]
and Cavalli et al. [5]. Several approaches such as ferry clip [36] and astride responder [27] were suggested
to address the limited controllability over an IUT. However, such approaches require a tester-designed
entity within the SUT, which limits their applicability. Recently, Petrenko et al. [24, 25], Lima and
Cavalli [18], and Yevtushenko et al. [35] focus on embedded test generation based on fault models. For
large communication protocols, it may be difficult to find detailed fault classes.

As opposed to the fault model oriented methods, the approach used in this paper does not attempt to
guarantee full fault coverage. Instead, this paper provides a practical algorithmic technique for test gen-
eration that utilizes as many indirectly controllable inputs as possible without creating nondeterministic
behavior of the test system. A transition graph is built for test derivation without explicitly constructing a
composite global FSM for an SUT. For eachFSMi, only those transitions that can be used to test IUT’s
transitions are considered during the graph construction. This approach has a significant advantage, since
anFSMi’s state and transition space may be prohibitively large. For the worst case, all transitions of
all the FSMs communicating with the IUT may be involved into the composition. However, based on
the practical experience with several protocols [7, 2], for any given semicontrollable input, only a small
portion of a communicating FSM is required to generate the semicontrollable inputs. An analysis of a
system model size and the length of the test sequence with respect to the SUT parameters is presented.
By controlling the model size, this technique could be applied to large communications protocols.

A sketch of the algorithm to build the transition graph used in this paper was introduced in [11] (full
algorithm and formal analysis of its time complexity is available in [10]). This paper extends that work
by considering controllability of anFSMi associated with a semicontrollable interface. This paper
enhances the model by including the preambles and postambles to move the IUT and theFSMi together
into a desired state.

MIL-STD 188-220B Data Link Layer [7] and the IEEE 802.2 LLC Connection Component [2] are con-
sidered as real-life examples of protocols that possess either semicontrollable inputs. In MIL-STD 188-
220B [7], over 70% of the transitions cannot be directly controlled. The initial results of applying the
method introduced in this paper to MIL-STD 188-220B to generate conformance tests are promising:
the number of testable transitions increased to over 700 from approximately 200 for the Class A–Type 1
Service Datalink module [7, 8].

The test generation approach presented in this paper studies embedded testing for an environment with
a one-party lower tester. Extension of this work will cover the systems with multiple testers, which
requires addressing synchronization issues in multi-party testing [34].

2

IUT

SUT

(N)-layer

(N+1)-layer

FSM1

I

I

1

0

b c

N-PDUs

(N-1)-Service Provider

Lower
Tester

PCO/IAP

a d

Figure 1: Testing (N)-layer IUT with an (N+1)-layer semicontrollable interface.

This paper is organized as follows. Section 2 presents a formal definition of thecontrollability problem
and provides examples from real-life protocols. Some related work is discussed in Section 3. Section 4
defines a system model for a testing environment with multiple interfaces with different degrees of con-
trollability. Practical issues are introduced into this model in Section 5. In Section 6, the application
of the graph conversion algorithm and minimum cost test sequence generation techniques is presented.
Controlling FSMs associated with semicontrollable interfaces is discussed in Section 7.

2 Problem definition

Consider a testing environment shown in Figure 1. The SUT contains an IUT (test component), which
interacts withFSM1 (test context).FSM1, implemented inside the SUT, interacts with the IUT through
interfaceI1. SinceFSM1 represents a well-defined part of the SUT, it is reasonable to assume that the
specification forFSM1 is available. The points at which a testing system can apply inputs to and observe
outputs from the IUT are calledpoints of control and observation(PCOs) [13, 19]. Each of the IUT’s
interfaces is associated with a full-duplex PCO through which inputs and outputs can be exchanged.
If a PCO of an IUT is not accessible within an SUT, this PCO is called an Implementation Access
Point (IAP) [14, 37]. As introduced in [11], each input can be one of three different types: (1)directly
controllable: a tester can directly apply the input to the IUT through the PCO; (2)semicontrollable:
a tester cannot directly apply the input to the IUT through the PCO (or IAP). However, it is possible to
utilize one of the FSMs interacting with the IUT to supply this input indirectly; and (3)uncontrollable:
the input may be supplied through a PCO (or an IAP) without any explicit action of the tester. This
means that the input may be generated in the testing system without the tester’s control.

If a PCO (or IAP) has any semicontrollable inputs and does not have any uncontrollable inputs, we say
that its associated interface and the FSM are semicontrollable. If there are no semicontrollable or uncon-
trollable inputs, the interface and the FSM are called directly controllable. In this paper, we consider that
each interface has only one type of input: either directly controllable or semicontrollable. The analysis
can be easily adopted to the case where an interface has a combination of directly controllable and semi-
controllable inputs. The uncontrollable inputs are not considered in this paper. Typically, a lower tester
(LT) FSM [19, 13] has a directly controllable interface. A timer FSM, whose only inputs come from an
IUT (e.g., start, restart, and stop the timer), has a semicontrollable interface.

Consider the testing framework in Figure 1. Since the interfaceI1 is not exposed in the SUT, the tester
can neither directly apply inputs nor observe the outputs between the IUT and the (N+1)-layer. Therefore,

3

at best the interfaceI1 is semicontrollable, provided thatFSM1 can be utilized to supply inputs to the
IUT. On the other hand, the tester can apply inputs to the IUT directly at interfaceI0 by using an LT,
which exchanges N-PDUs with the IUT by using the (N-1)-Service Provider. The interfaceI0 is therefore
directly controllable through the (N-1)-Service Provider, whose erroneous behavior may or may not be
observed as an error of the IUT, whether or not the actual error in the IUT occurred.

To test an IUT’s transition from statevi to vj, the following steps must be taken: (1) put an IUT into state
vi, (2) apply required input and compare the output(s) generated with those defined in the specification,
and (3) (optionally) verify that the new state of the FSM isvj .

If the IUT’s transitions are triggered by the inputs from a semicontrollable interfaceI1, the tester must
use one of the directly controllable interfaces to force the IUT to generate outputs toI1. These out-
puts are applied toFSM1 at I1’s PCO. As response,FSM1 will send back inputs to the IUT through
semicontrollable interfaceI1. These inputs will trigger the desired transitions to be tested in the IUT.

This paper addresses the problem of generating realizable test sequences for a fault-free IUT communi-
cating with a fault-free context through multiple semicontrollable interfaces. By executing the generated
test sequences, we expect the errors in the IUT to be uncovered based on performing steps (1) through
(3) above for each transition in a test sequence. The problem of test generation as defined above will be
referred to as thecontrollability problem.

2.1 Practical examples

The controllability problem was motivated by two real protocols implementations in which certain tran-
sitions within an (N)-layer IUT can be tested only by utilizing an SUT’s (N+1)-layer. Moreover, there is
a danger of introducing race conditions to test sequences while utilizing an (N+1)-layer indirectly.

MIL-STD 188-220B [7] is a military standard for interoperability of command, control, communica-
tions, computers, and intelligence over Combat Net Radios. There are many transitions in 188-220B
that cause controllability problems during testing. Without these transitions, over 70% of the transitions
cannot be tested because many protocol states are unreachable, 70% of the transitions cannot be tested
because of these semicontrollable inputs. In this case, test coverage is seriously reduced. However,
by applying the technique introduced in this paper, almost all (>95%) transitions defined in the speci-
fication can be tested (the number of testable transitions rose to over 700 from approximately 200 for
the Class A–Type 1 Service Datalink module [7, 8]). The application of this paper’s methodology to
MIL-STD 188-220B is detailed in [9].

In the IEEE 802.2 LLC Type 2 Connection Component[2], the LLC layer IUT communicating with
a semicontrollable upper layer is considered. Suppose that, when an IUT is in statevp, the tester applies
from the lower tester a sequence of inputs that causesFSMi to supply inputai;j to the IUT. The tester
desires this input to be consumed at statevq. In general, a race condition will occur if this input from
FSMi is consumed by the IUT before the IUT reaches statevq. A valid test sequence should avoid these
conditions while traversing the IUT’s transitions. A detailed scenario that shows how race conditions
may occur in a test sequence for the 802.2 LLC’s IUT is presented in [11].

3 Related work

The controllability problem defined in Section 2 is related to a protocol and software engineering issue
of testing embedded systems [28, 31]. An IUT isembeddedin the SUT (Figure 1). The SUT is directly
accessible by a tester, whereas the IUT can be tested only as a component embedded in the SUT.

4

Rayner [28] discusses the concept of testing an IUT embedded in a multilayer SUT (with an upper
tester available above the SUT) for various OSI test methods [19] in which an (N)-layer IUT has only
two interfaces: one controllable with a lower tester, and one semicontrollable with the (N+1)-layer. A
similar model, but limited to a single layer embedded testing, is presented by Timohovich [31]. A test
sequence is derived based on a combined finite automaton, which is constructed using an IUT’s FSM and
a simplified description of the adjacent layers. A need to introduce mechanisms to control uncontrollable
events, a necessity to avoid nondeterminism in test sequences, and the limits imposed by test architecture
on the controllability and observability of an IUT are discussed in [5, 26]. Compared to the models
in [27, 31, 36], the test system considered in this paper (Figure 2) is a more general architecture, where
an IUT has interfaces with multiple (N)- and (N+1)-layer entities, and there is no upper tester available.

In the test system depicted in Figure 1,FSM1 is part of the protocol defined by the protocol standard.
Therefore, the tester cannot redefine the states and transitions ofFSM1 suitable to her needs. There are
several testing frameworks in which, as in Figure 1, the interface between an IUT andFSM1 resides
inside the SUT, butFSM1 is defined by the tester. One of these frameworks is the ferry clip testing
method [36], where the SUT contains an entity called a passive ferry clip to apply inputs to the IUT. In
such a test system, there exists a special-purpose protocol for exchanging PDUs between an active and a
passive ferry clip. Ferry clip testing cannot be directly used in the test system considered in this paper,
since the interfaces between the IUT and other entities inside the SUT are not accessible. A related
approach [27] uses the “astride responder” to supply inputs to the IUT at the interfaceI1. The astride
testing is not directly applicable to the system in Figure 1, because there is no tester-designed responder,
nor are extra communication channels available.

Recent research has focused on testing embedded components [18, 23, 24, 25, 35, 37]. Petrenko et al. [25]
provide a basic framework for “testing in context” based on the model of communicating FSMs. The
proposed solution consists in computing a so-called approximation of the specification in context, i.e.,
the FSM model of the component’s properties that can be controlled and observed through the context.
The IUT’s transfer and output faults are translated into faults of the composite FSM representing an SUT,
resulting in tests with guaranteed fault coverage and executability.

Lima and Cavalli [18] propose an approach based on combining the component and the context into a
composite machine. The composite machine’s transitions that are not affected by the component are
called redundant; the remaining transitions are calledsuspicious. In the case of a fault-free context,
the test sequences traversing only redundant transitions are superfluous. A method is introduced for
detecting redundant transitions and sufficient conditions for removing superfluous test cases are given.
An extension of this work presented by Yevtushenko et al. [35] contains a rigorous analysis of suspicious
transitions, where conditions are provided to detect all of the redundant transitions. The evaluation of
test suites for embedded system testing is provided by Zhu et al. [37].

These proposed approaches [18, 23, 24, 25, 35, 37] focus on defining fault models, generating complete
test suites (see [32] for a formal definition of a test suite’s completeness) and their evaluation with respect
to given fault models. However, in many complex protocols detailed fault classes are unknown or are
difficult to construct. A systematic approach to finding fault classes that is feasible for large protocols is
not given. It is well known that for a specification ofjSj states,jIj inputs, andjOj outputs, there exist
((jSj � jOj)jSj�jIj � 1) faulty implementations [29]. Therefore, building complete test suites, i.e., the
ones guaranteeing full coverage of all faults within the defined fault model [24], for a large number of
potential fault models is likely to be impractical due to a prohibitive growth of test suite size. It is unclear
how the fault-oriented approaches for testing in context scale with respect to a protocol’s size, as detailed
analysis of the algorithms’ running time and the generated test suite size are not provided.

The approach used in this paper does not attempt to guarantee full fault coverage, since such a goal is
unlikely to be achieved with limiting a test suite to a reasonable size. Instead, the emphasis is put on

5

IUT

SUT

(N)-layer

(N+1)-layer...FSM1 FSM2

FSMF

FSM
F-1

...I1 I2

IF-1

I F

I0

Test component:
-- IUT

Test context:
-- ...
-- ...

1FSM

1I
FFSM

FI

Figure 2: Testing IUT with multiple interfaces

providing the tester with a practical algorithmic technique that achieves a test purpose of utilizing as
many indirectly controllable inputs as possible without creating nondeterministic behavior of the test
system. Another contribution of the presented methodology is the consideration of race conditions and
their avoidance in test generation. In addition, special importance is given to carefully analyzing the
growth of a system model and the length of the test sequence with respect to the SUT parameters.
By keeping the test sequence length under control, the presented technique could be applied to large
communications protocols.

4 Building test system model taking into account controllability problem

In this paper, an FSM model, which is sufficient to model protocols with finite state space and determin-
istic behavior, is used to represent an implementation.

Consider a testing environment shown in Figure 2. The SUT contains an IUT (test component), which
interacts withF FSMs.FSM1; � � � ; FSMF , implemented inside the SUT, interact with the IUT through
semicontrollable interfacesI1; � � � ; IF , which, together withF FSMs, represent the test context. The goal
of test generation in this environment isto derive a set of tests exercising each transition in an IUT’s FSM
at least once.Specifically, given a graphG representing an IUT’s FSM, we want to find a minimum cost
tour ofG such that each transition is covered at least once.

A preliminary version of the model presented in this section was introduced in [11]. This model has been
extended here to handle the controllability of semicontrollableFSM1; � � � ; FSMF .

4.1 System model for IUT with semicontrollable interfaces

Given a graphG(V;E) representing an FSM model of an IUT with multiple semicontrollable interfaces,
let us define the following parameters:(1) jV j—number of nodes inG; (2) F—number of semicon-
trollable interfaces interacting with the IUT;(3) Ti � E—subset of edges inG triggered by the inputs
from thei-th semicontrollable interface;(4) bi—buffer size (max. number of inputs buffered) at thei-the
semicontrollable interfaceIi; (5)Ai—set of inputs triggering transitions inTi; (6)Oi—set of outputs of
the IUT that are consumed by the semicontrollableFSMi; (7) ci—number of different transition classes

6

Edge name Input from Output to Edge name Input from Output to
e1 LT ?x1 FSM1!o1;1 e6 LT ?x6 LT !y6
e2 LT ?x2 FSM2!o2;1 e7 LT ?x7 LT !y7
e3 FSM1?a1;1 LT !y3 e8 FSM1?a1;2 LT !y8
e4 FSM2?a2;1 FSM1!o1;2 e9 LT ?x9 LT !y9
e5 LT ?x5 FSM2!o2;2 e10 LT ?x10 LT !y10

Table 1: Inputs and outputs for the edges of Figure 3.A?x denotes receiving inputx from A. B!y
denotes sending outputy toB.

FSM FSM

IUT

e1

e3

e5

e6

B

A C

e2

1 2

SUT

 Lower
 Tester
 (LT)

e4

e7

e8 e9

I1 I2

e10

Figure 3: IUT interacting with two semicontrollable interfaces.

in the IUT triggered by inputs atIi. Two transitionst1 andt2 belong to the same transition classTi;j � Ti
iff they are both made fireable by the same inputai;j 2 Ai; (8) Ui;j � E—set of transitions in the IUT
with outputoi;j such that, in response tooi;j, an inputai;j 2 Ai is buffered atIi; (9) Wi;j � E—set of
transitions in the IUT with outputoi;j such that, in response tooi;j, no output is generated byFSMi.

Let Ai = fai;1; : : : ; ai;cig andOi = foi;1; : : : ; oi;mi
g. Let the sets ofTi andUi be defined as follows:

Ti
def
=

Sci
j=1 Ti;j, andUi

def
=

Sci
j=1 Ui;j . Note that there may be several outputs in setOi that force input

ai;j to be buffered atIi. For the sake of simplicity, letoi;j denote any output forcingai;j at Ii.

Based on the above definitions, the transitions triggered by the inputs from the semicontrollable interface
Ii are divided intoci classes, each corresponding to a distinct input that fires any transition within the
class. No single transition can belong to more than oneTi;j. Similarly, each transition can belong to only
oneUi;j. In general,Ti;j andUi;j may or may not be disjoint.

Example : Consider the IUT of Figure 3 which is interacting withFSM1 andFSM2 through semicontrollable
interfacesI1 andI2, respectively. The IUT’s FSM is described in Table 1. Transitione1, triggered by inputx1 from
an LT, generates outputo1;1 toFSM1. In response,FSM1 sends back inputa1;1 which triggers transitione3. (By
definition,ai;j is the expected response tooi;j .) Transitione2, which is triggered by the LT’s inputx2, outputso2;1
to FSM2, which responds with inputa2;1 triggeringe4. Whene4 is traversed, it outputso1;2 to FSM1, which
responds witha1;2 triggeringe8. Transitionse5, e6, e7, e9, ande10, can be triggered directly by the LT. Transitions
e6, e7, e9, ande10, generate outputs only to the LT, not to the semicontrollable interfaces.e5 generates outputo2;2
to FSM2, which does not send any input back to the IUT (which is observationally equivalent to sending a null
input to the IUT). For this example, we have:

� jV j = 3, which areA, B, andC; F = 2, which areI1 andI2; c1 = 2, c2 = 1

� T1;1 = fe3g, T1;2 = fe8g, T2;1 = fe4g, T1 = T1;1 [T1;2 = fe3; e8g, T2 = T2;1 = fe4g

� U1;1 = fe1g,U1;2 = fe4g,U2;1 = fe2g,U1 = U1;1 [U1;2 = fe1; e3g,U2 = U2;1 = fe2g

� W2;2 = fe5g; A1 = fa1;1; a1;2g,A2 = fa2;1g; O1 = fo1;1; o1;2g,O2 = fo2;1; o2;2g

7

4.2 Impact of buffer sizes on feasibility

Let us first assume that there is a separate FIFO buffer in a semicontrollable interfaceIi. During testing,
a buffer may be empty or store an arbitrary sequence of inputs to the IUT generated indirectly through
the i-th semicontrollable interface. Then the entire system can be modeled byG (which represents the
IUT’s FSM) and the variables!1; !2; : : : ; !F representing the test context. Each!i has a distinct value
for each permutation of inputs that thei-th buffer can hold.

If the buffer sizes at theF semicontrollable interfaces are infinite, each variable!i can have an infinite
number of values. In this case, even the reachability analysis (deciding whether a given state is reachable
from the initial state), which is an easier problem than finding a minimum cost traversal ofG, becomes
undecidable [12]. If the buffer sizes are finite, in which case!1; !2; : : : ; !F have finite domains, the
reachability analysis is PSPACE-complete for the most general case [12].

Given the difficulty of analyzingG andF variables, let us explore the possibility of modeling the system
as an FSM, represented byG0(V 0; E0) with the maximum number of nodesjV 0jmax equal tojV j �QF

i=1B(i), whereB(i) is the maximum possible number of states of thei-th buffer defined asB(i) =

(cbi+1i � 1)=(ci � 1) for ci > 1, andB(i) = 1 + bi for ci = 1. In general, if eachci = c > 1, and each
bi = b, then

jV 0jmax = jV j � O(cbF) (1)

Each vertex inV 0 is a tuple consisting of an original vertex inV and a set of values of variables
!1; !2; : : : ; !F (this set is called aconfiguration). As indicated by (1), the maximum number of nodes in
G0 grows exponentially with the number of semicontrollable interfacesF and the buffer sizeb. Clearly,
the conversion fromG toG0 is not feasible for the general case. However, for a constrained environment
(Section 5),G0 can be constructed efficiently, and test generation techniques can be applied to it.

5 Objectives for practical test system

This section shows through the detailed examples how a test sequence derived from the model of Sec-
tion 4 may become nondeterministic. To avoid nondeterminism in test sequences, two practical objectives
for a practical test system are introduced in Section 5.1. Diagnostic issues are discussed in Section 5.2.

5.1 Buffering inputs at semicontrollable interfaces during testing

The model of Section 4 utilizes FIFO-type buffers in semicontrollable interfaces. In practice, in addition
to (or instead of) FIFO buffers, semicontrollable interfaces may include interrupt-driven mechanisms
with multiple buffers in one interface. This freedom in implementing interfaces is mostly due to the
interface not being part of a protocol specification. Therefore, test sequences generated for an IUT with
only FIFO-type buffers become nondeterministic for IUTs using different interface implementations.

Example (cont’d): Consider the following potential test sequence for the IUT of Figure 3:

e7; e2; e4; e1; e8; e7; e5; e3; e9; e10; e6 (2)

As can be verified by Table 1, when the underlined portion of the above test sequence traversese4, input a1;2
will be buffered atI1. Subsequently, whene1 is executed with outputo1;1 to I1, the buffer atI1 should contain
[a1;2; a1;1] (i.e.,a1;2 in front of the buffer). The IUT is expected to be in stateB with e8 to be tested next. This
sequence is only realizable under the assumption that inputsa1;2 anda1;1 are stored atI1 in the FIFO order, i.e.,

8

[a1;2; a1;1]. In practice, however, this may not be the case for all implementations. Since the response time of a
semicontrollable interface is unknown, it is possible that, after traversinge4 ande1, the buffer atI1 will contain
[a1;1; a1;2]. Then, aftere1 is traversed,e8 cannot be triggered bya1;2, becausea1;1 improperly blocksa1;2 from
being available. Transitione8 will cause the IUT to fail because the model assumes one type of buffering, and the
implementation uses a different type. Clearly, the test sequence (2) is not realizable without FIFO-type buffers.

This nondeterminism in a test sequence due to multiple inputs at one interface can be eliminated if
a test sequence never creates a situation where more than one input will be stored in a given buffer
(i.e., bi = 1). Although each buffer’s the capacity may be arbitrarily large, the technique presented
in this paper preferably generates a test sequence with the objectiveObj1 : at any given time, each
semicontrollable buffer will store at most one input.In this case, the maximum number of nodes inG0

becomesjV 0jmax = jV j �
QF

i=1(ci + 1). If Obj1 cannot be achieved due to heavy interactions among
theFSMi (and possibly with uncontrollable inputs), the number of stored inputs will not be limited to
one by a test sequence, and therefore, the test sequence will most likely have nondeterminism.

In a practical testing environment,F , the number of semicontrollable interfaces, is expected to be small.
For most cases, the (N)-layer IUT interacts only with an (N+1)-layer implementation and several semi-
controllable timers. Typically, for each timer, the only output is the timeout, which definesci = 1.
Therefore, for smallF andci, the size ofG0 is only a small multiplicant ofG.

Let us now consider the number of inputs that can be buffered simultaneously at all of an IUT’s semicon-
trollable interfaces. A test sequence may cause several inputs being buffered at the same time at several
semicontrollable interfaces. IfObj1 is satisfied, each buffer stores at most one input during testing, and
the nondeterminism due to multiple inputs stored in a buffer is avoided. However, nondeterministic
behavior of the system during testing may still occur because of the IUT’s interactions with multiple
interfaces (each interface with at most one stored input).

Example (cont’d): Consider a potential test sequence (3) for the IUT of Figure 3. The test sequence was
generated for an IUT with buffer sizes of1 at I1 andI2:

e1; e2; e3; e4; e7; e8; e7; e5; e9; e10; e6 (3)

The test sequence of (3) avoids the nondeterminism due to multiple stored inputs in a given buffer shown pre-
viously in (2), since it stores at most one input at a given interface. However, the test sequence of (3) may still
be nondeterministic since the IUT is interacting with multiple interfaces simultaneously. Consider the underlined
portion of (3). Aftere1 is traversed, inputa1;1 is buffered atI1. Traversinge2 results ina2;1 being buffered atI2.
Sincea1;1 was generated earlier thana2;1, the test sequence expects transitione3 is expected to be triggered before
e4. In reality, due to the unknown response time of the interfaces,a2;1 may be applied to the IUT earlier than, later
than, or simultaneously witha1;1. In this case, the behavior of the overall system becomes nondeterministic under
a test sequence, thereby making the test sequence unrealizable.

To avoid this type of nondeterministic behavior of the IUT during testing, the model presented in Sec-
tion 4 will be used to generate tests with a second objectiveObj2: at any time, the test sequence will
cause only a single input to be stored in only one of the IUT’s semicontrollable interfaces.In other
words, whenObj2 can be achieved, only a single message is in transit when a test sequence is applied.
In this case, the maximum number of nodes inV 0 is jV 0jmax = jV j � (1 +

PF
i=1 ci).

The objectives ofObj1 andObj2 address the types of nondeterminism that will occur when an IUT
moves into a state where there are multiple inputs stored in multiple interfaces. A valid test sequence
which satisfiesObj1 andObj2 will not bring the IUT into a state with multiple inputs pending. Instead,
a valid test sequence should traverse the IUT transitions in such an order that avoids these situations.

This type of nondeterminism caused by multiple inputs is one of several types of nondeterministic be-
havior that can occur in a system with multiple communicating modules. The discussion of various types

9

of nondeterministic behavior, algorithms to detect them, and guidelines how to rewrite specifications to
avoid nondeterminism are discussed in [16] in the context of Formal Description Technique Estelle [4].

It is important to note that the minimum-length test sequences satisfyingObj1 andObj2 (i.e., at most one
input at only one semicontrollable interface utilized at any time) will likely be longer than the minimum-
length test sequences for the unrestricted case. However, tests satisfying these two objectives can be used
for testing implementations regardless of their interface structure, avoiding nondeterministic behavior of
the SUT during testing. Test generation is further discussed in Section 6.

5.2 Diagnostic issues during testing

As presented in Section 2, during testing an IUT may interact with several semicontrollable interfaces.
Testing is performed under the assumption that all FSM implementations other than the IUT conform to
their specifications. Otherwise, it is difficult to tell whether failure occurs in the IUT, or in the external
FSM implementation, or at the semicontrollable interface between them.

Example (cont’d): Consider the beginning of the test sequence (2) for the IUT of Figure 3:

e7; e2; e4; e1; :::

When this part of the test sequence is applied to the IUT, traversal ofe2 should causeFSM2 to send back input
a2;1. The IUT will move to stateC with a2;1 buffered atI2. Suppose that a faulty implementation incorrectly
containsa1;1 instead ofa2;1 at I2. Then in stateC transitione3 will be triggered bya1;1, and the IUT will remain
inC instead of moving toA aftere4’s traversal, even ife2, e3, ande4 are implemented correctly. The tester cannot
distinguish whethere2’s, e3’s, or e4’s implementation is faulty, orFSM2 is not conformant to its specification, or
the semicontrollable interfaceI2 malfunctioned. AlthoughFSM2 andI2 can be assumed fault-free as part of the
test context [35], a test verdict should be based on the test context’s correctness only when necessary.

This practical concern for problem diagnosis suggests the following testing guideline: “Test as many
transitions as possible without interactions at semicontrollable interfaces.” Transitions preferably should
be tested when there are no inputs buffered at the semicontrollable interfaces. As a result of this guideline,
a minimum cost test sequence generation can be formulated (under Section 5’s considerations) and solved
as a Rural Chinese Postman Problem [17], as discussed in Section 6.

6 Minimum-cost test generation

This section discusses test generation for the practical testing environment as described in Section 5. A
method to obtain a test sequence as a solution to the Rural Chinese Postman Problem [1, 17] on graph
G0(V 0; E0) is shown; this method is then applied to an example practical testing environment.

The graphG0 is built by the algorithm (referred to asCONVERT-SEMI-INThenceforth) presented and
analyzed in [10, 11]. The algorithm creates a new statev0 2 V 0 from two components: the original state
v 2 V , and the current configuration of buffers modeled by variables!1; !2; : : : ; !F . In this process,
all possible buffer configurations with up tobi inputs in bufferBi atIi are constructed by examining in a
breadth-first-search manner all outgoing edges ofv. One or more copies are created inE0 for each edge
e 2 E, based one’s class. In general, each edge inE belongs to one of the four classes [11] defined
based on the source and destination (FSMi or/andLT) of the edge’s input and output(s) as follows:

� Class 1:e is triggered by an input from and generates output(s) to an LT.

10

Step Edge name Input from Output to Step Edge name Input from Output to
! 1 e1.0 LT ?x1 FSM1!o1;1 8 e7.2 LT ?x7 LT !y7

2 e5.1 LT ?x5 FSM2!o2;2 ! 9 e8.2 FSM1?a1;2 LT !y8
! 3 e3.1 FSM1?a1;1 LT !y3 10 e7.0 LT ?x7 LT !y7
! 4 e6.0 LT ?x6 LT !y6 ! 11 e5.0 LT ?x5 FSM2!o2;2
! 5 e7.0 LT ?x7 LT !y7 ! 12 e9.0 LT ?x9 LT !y9
! 6 e2.0 LT ?x2 FSM2!o2;1 ! 13 e10.0 LT ?x10 FSM2!y10
! 7 e4.3 FSM2?a2;1 FSM1!o1;2 14 e6.0 LT ?x6 LT !y6

Table 2: Minimum-length test sequence for the IUT of Figure 3.

� Class 2:e is triggered by an input from an LT and generates an outputoq;l (buffered inBq to create
a new configuration) atIq.

� Class 3: e is triggered byap;k (extracted fromBp to create a new configuration) fromIp and
generates output(s) to an LT.

� Class 4:e is triggered by an inputap;k from Ip and generates an outputoq;l at Iq.

The algorithm’s running time is shown [10] to beO(c � F � jEj) if the objectives ofObj1 andObj2 can
be satisfied, andO(cbF � jEj) for c > 1 otherwise.

Each path ofG0, which consists of edges inE0, can be proven valid [10], i.e., for any of its composite
edgese0 2 E0 the following hold true: (1)e0 has no race conditions, (2) ife0 is triggered by a buffered
inputai;j, this input is consumed from the buffer, (3) the buffer that should storee0’s output is not full in
a given state, and (4) ife0 is fireable by inputai;j, this input is the first one buffered in the configuration
corresponding toe0’s start state. Therefore,G0 can be shown [10] to be aminimal valid representation
of the system defined byG and!1; � � � ; !F , which implies that each path ofG0 is a valid path ofG, and
that no invalid paths ofG are included inG0. A test sequence obtained fromG0 does not contain any race
conditions, as proven in [10] and illustrated through an example at the end of this section.

For graphsG(V;E) andG0(V 0; E0), a test sequence is derived by obtaining the following goal: “find a
minimum cost tour ofG0 in which each original edge fromG included inG0 is covered at least once.”
(Note that if an IUT’s transition cannot be covered within a given test context, the algorithm for graph
conversion will not include this transition inG0.) LetE0

c be the set of edges defined based on the practical
considerations (Section 5.2) as containing copies incident to nodes corresponding to configurations with
empty buffers (where possible). It is clear thatE0

c will include at least one copy of each edge inE.
Therefore, obtaining the above goal is equivalent to finding a minimum cost tour ofG0 that includes
each transition inE0

c, the set ofmandatoryedges, at least once, and each transition in(E0 � E0
c), the

set ofoptionaledges, zero or more times (so called Rural Chinese Postman Problem (RCPP) [17], with
an efficient solution presented by Aho et al. [1]). It can be shown thatE0

c as defined above is a weakly-
connected subset ofE0; therefore, a polynomial-time solution to RCPP formulated onG0 andE0

c exists.

Example (cont’d): Consider the graph of Figure 3. After conversion toG0 (Figure 4), each state is replaced
with at most four copies—each corresponding to the buffer configuration at a semicontrollable interface. Each
edgee is annotated ase:x, wherex = 0; 1; 2; 3, depending on the input buffered in thee:x’s start state, as shown
in Figure 4. Given graphsG andG0, the setsE andE0 are as follows:

E = fe1; e2; e3; e4; e5; e6; e7; e8; e9; e10g (4)

E0 = fe1:0; e2:0; e3:1; e4:3; e5:0; e5:1; e6:0; e7:0; e7:2; e8:2; e9:0; e10:0; e10:1g (5)

To build the set of mandatory edges to be included in a test sequence, we adopt the approach discussed in Sec-
tion 5.2. InG0, edgese5 ande7 appear multiple times. The solid edges in Figure 4 are the mandatory edges that
are incident to nodes that correspond to the case where both buffers are empty, i.e.,e5:0 ande7:0. The copies that

11

e1.0

B

A Ce6.0

no inputs buffered

C
e5.0

e7.0
B

AC

e2.0

e3.1

e4.3

B
e8.2

e7.2

e9.0

e5.1

Legend:

mandatory edge

e10.0 e10.1

a buffered1,1

a buffered2,1 a buffered1,2

optional edge

Figure 4: Graph transformation applied to the graph of Figure 3. Mandatory and optional edges appear
in solid and dashed lines, respectively.

can be traversed only when either buffer contains an input are shown in dashed line:e5:1 ande7:2. These are the
optional edges, which will be included in the test sequence only when necessary. In this example we have:

E0
c = fe1:0; e2:0; e3:1; e4:3; e5:0; e6:0; e7:0; e8:2; e10:0g (6)

Given setsE0 andE0
c defined by (5) and (6), the Aho et al. optimization technique gives the minimum length

test sequence forG0 shown in Table 2. Steps with(!) indicate that an edge is tested in this step. Note that, for
simplicity, the UIO sequences [20] for state verification are not included in this sequence.

7 Controlling FSMs associated with semicontrollable interfaces

The analysis presented thus far is focused on controlling an IUT where a semicontrollableFSMi inter-
acts with the IUT. In this system,FSMi generates a desired input to the IUT as a response to the IUT’s
stimulus without a tester’s explicit control.

This section enhances the model presented in Section 4 by including preambles and postambles to control
both the IUT andFSMi: bringingFSMi into a desired state by a preamble (Section 7.1), and bringing
FSMi from a given state into its initial state by a postamble (Section 7.2). The graph augmentation
with preambles and postambles needed to obtain a near-minimum cost test sequence is proposed in
Section 7.3. Section 7.4 discusses the validity of paths in the augmented graph. Finally, test coverage
and cost effectiveness of the proposed methodology is discussed in Section 7.5.

Note that this augmentation doesnot aim to test the the FSMs that are communicating with the IUT; the
purpose of the augmentation is to move a semicontrollable FSM into a state where a matching transition
(defined below) can be utilized to test the IUT.

Let �Gi(�Vi; �Ei) be the graph representing the semicontrollable interfaceIi with FSMi. Let �Ui;j be the
set of edges in�Ei that are triggered by inputoi;j from the IUT, and that generate outputai;j to the IUT.

12

Consider a transitionui;j = (u1i;j; u
2
i;j) 2 Ui;j in the IUT. The methodology presented in the paper up

to this point is applicable to a testing system where givenui;j, there is always a matching transition
�pi;j = (�p1i;j; �p

2
i;j) 2

�Ui;j in FSMi. This constraint implies that upon applying inputoi;j to FSMi, there
is always an outputai;j from FSMi. A trivial case where this holds true is anFSMi with each state
having an edge�pi;j. In practice, however,FSMi may be in a state where�pi;j is undefined, making the
controllability overIi more difficult.

One possible solution is to model an IUT combined with all semicontrollable interfaces as a single FSM.
This solution is infeasible, since it amounts to multiplying the IUT’s FSM andFSM1; : : : ; FSMF ,
resulting in a state explosion problem. Fortunately, it is possible to achieve controllability in such a
system by restricting the state space inFSMi that is reachable by the IUT. The goal of testing is to test
eachti;j = (t1i;j; t

2
i;j) 2 Ti;j in the IUT. For a giventi;j, we suggest the following test steps:

� the IUT is in any statev 2 V , andFSMi in its initial state�v0

� for a givenui;j, move the IUT from statev to stateu1i;j, andFSMi from state�v0 to state�p1i;j

� triggerui;j by applying its input from the lower tester.ui;j generatesoi;j to FSMi; transition�pi;j
consumesoi;j and outputsai;j to the IUT. Now the IUT is in stateu2i;j andFSMi in state�p2i;j

� move the IUT to statet1i;j (FSMi remains in state�p2i;j)

� buffered inputai;j triggersti;j, and the IUT moves to statet2i;j

� move the IUT fromt2i;j to statex 2 V , and moveFSMi from �p2i;j to its initial state�v0

The above sequence suggests that the tester keepFSMi in its initial state�v0 while the IUT is being tested;
only whenui;j is to be traversed, does the tester move theFSMi to state�p1i;j. After �pi;j is traversed, the
FSMi is brought back to�v0. This restriction will be referred to as thecontrollability restriction.

7.1 Bringing semicontrollable FSM to a desired state

Sabnani et al. [30] introduce an algorithmic procedure for checking the safety properties of communica-
tion protocols. The procedure takes a collection of communicating FSMs as input, and produces a com-
posite output FSM by doing incremental composition and reduction. The state space of the composite
FSM, which is observationally equivalent to the input FSMs, is reduced by several orders of magnitude.

Given �Gi for FSMi, let G�
i (V

�
i ; E

�
i) be the graph obtained by combiningG for the IUT and �Gi as

given by Sabnani et al. [30]. LetPIUT , �Pi, andP �
i , be the sets of paths of graphsG, �Gi, andG�

i ,
respectively. GivenG�

i (V
�
i ; E

�
i) and the initial vertex�v0 2 �Vi, let pri;j(v; u1i;j ; �p

1
i;j) 2 P �

i , where
v 2 V , ui;j = (u1i;j ; u

2
�;j) 2 Ui;j [Wi;j, and�pi;j = (�p1i;j; �p

2
i;j) 2

�Ui;j , be a shortest path originating in
(v; �v0) 2 V �

i such that

(v; �v0)
pri;j
; (u1i;j ; �p

1
i;j) (7)

pri;j will be called a preambleof stateu1i;j. For example, Figure 5 illustratespri;j(v; u1i;j ; �p
1
i;j)

and pri;j(v; u
1
i;j ; �q

1
i;j), which are two preambles defined for stateu1i;j in the IUT. The preamble

pri;j(v; u
1
i;j ; �p

1
i;j) consists of a path fromv to u1i;j in the IUT, and the corresponding path from�v0 to

�p1i;j in theFSMi. Similarly, the preamblepri;j(y; u1i;j ; �q
1
i;j) is a combination of a path fromy to u1i;j in

the IUT, and the corresponding path from�v0 to �q1i;j in theFSMi. All possible such preambles must be
considered to minimize the total test sequence cost, as described later in this section.

13

FSM i

v0

_

q i,j

_ 2
_
q i,j

1

p i,j

_
1 pi,j

_ 2

IUT! a i,j

IUT? o i,j

IUT! a

i,jIUT? o

i,j

IUT

t t

z

x

i,j i,j
1 2

y

v

u u 2
i,j i,j
1

 FSM ! oi,j

FSM? a i,j

i

LT? xu

LT! yt

Legend:

edge
path

preamble path
postamble path

I i

Figure 5: Two preambles (pri;j(v; u1i;j ; �p
1
i;j) and pri;j(v; u

1
i;j ; �q

1
i;j)) for u1i;j, and two postambles

(poi;j(t2i;j; �p
2
i;j) andpoi;j(t2i;j ; �q

2
i;j)) for t2i;j.

LetPi;j , the set of all preambles associated withUi;j andWi;j, be defined as follows:

Pi;j = fpri;j : (9v 2 V)(9ui;j 2 Ui;j [Wi;j)(9�pi;j 2 �Ui;j) pri;j = pri;j(v; u
1
i;j ; �p

1
i;j)g (8)

It is clear thatjPi;j j = O(jV j � jUi;j [Wi;jj � j �Ui;j j). To find the set of shortest paths for all(v; �v0) 2 V �
i

to other nodes in�Gi takesO(jV j(jV �
i j lg jV

�
i j+ jE�

i j)) time [6].

Recall from Section 5 that at any time a single input may be buffered in only one of the IUT’s semicon-
trollable interfaces. The algorithm presented in [30] ensures that in stateu1i;j (and in state�p1i;j in FSMi)
no inputs are buffered atIi. This implies that after traversing anypr(v; u1i;j ; �p

1
i;j) followed byui;j 2 Ui;j,

only inputai;j is buffered atIi (or no input ifui;j 2 Wi;j). The IUT is in stateu2i;j andFSMi in state
�p2i;j. Therefore, traversing a preamble as defined in (7) will not generate any extra inputs buffered atIi,
which will enable the application of the algorithmCONVERT-SEMI-INT.

After traversingpr(v; u1i;j ; �p
1
i;j) followed byui;j 2 Ui;j, FSMi remains in state�p2i;j until ai;j is con-

sumed atIi by a transitionti;j = (t1i;j ; t
2
i;j) 2 Ti;j. After ti;j is triggered,FSMi must be brought back

to state�v0. The postamble to bringFSMi back to its initial state is discussed next.

7.2 Bringing semicontrollable FSM back to initial state

GivenG�
i (V

�
i ; E

�
i) and the collection of setsTi;j , let poi;j(t2i;j; �p

2
i;j) 2 P �

i , whereti;j = (t1i;j ; t
2
i;j) 2 Ti;j

and�pi;j = (�p1i;j; �p
2
i;j) 2

�Ui;j, be a shortest path ofG�
i such that

(t2i;j; �p
2
i;j)

poi;j
; (v; �v0); v 2 V (9)

poi;j will be called apostambleof an edge statet2i;j. For example, Figure 5 depicts two postambles
defined for statet2i;j in the IUT. The postamblepoi;j(t2i;j ; �p

2
i;j) consists of a path fromt2i;j to x in the

IUT, and the corresponding path from�p2i;j to �v0 in FSMi. Similarly, the postamblepoi;j(t2i;j ; �q
2
i;j) is a

combination of a path fromt2i;j to z in the IUT, and the corresponding path from�q2i;j to �v0 in FSMi.

For a giventi;j, there may be multiple states inFSMi in which oi;j can be consumed andai;j output to
the IUT. Depending on which preamble is used to bring the IUT intou1i;j, a matching postamble must

14

be utilized to bringFSMi back to�v0. For example, in Figure 5, the preamblepri;j(v; u1i;j ; �p
1
i;j) requires

the postamblepoi;j(t2i;j; �p
2
i;j) to bring theFSMi from �p2i;j to �v0 (which causes the IUT to end up in state

x). The other postamble shown in Figure 5,poi;j(t
2
i;j; �q

2
i;j), cannot be used in this case. Similarly, the

preamblepri;j(v; u1i;j ; �q
1
i;j) requires the postamblepoi;j(t2i;j ; �q

2
i;j) and prohibits the use ofpoi;j(t2i;j ; �p

2
i;j).

In the case ofwi;j = (w1
i;j; w

2
i;j) 2Wi;j, the postamble defined by (9) starts from the statew2

i;j , i.e.,

(w2
i;j; �p

2
i;j)

poi;j
; (v; �v0); v 2 V (10)

LetQi;j, the set of all postambles associated withTi;j andWi;j, be defined as follows:

Qi;j = fpoi;j : (9ti;j 2 Ti;j [Wi;j)(9�pi;j 2 �Ui;j) poi;j = poi;j(t
2
i;j; �p

2
i;j)g (11)

In the above,jQi;j j = O(jTi;j [Wi;jj � j �Ui;jj), which requires at mostO(jV j(jV �
i j lg jV

�
i j+ jE�

i j)) time
to compute [6].

7.3 Augmenting graph with preambles and postambles

To obtain a near-minimum cost test sequence, all possible preambles and their matching postambles
must be considered, i.e., an augmentation must be defined to include all the preamblespri;j and all the
postamblespoi;j, for a given�pi;j = (�p1i;j ; �p

2
i;j) 2

�Ui;j in FSMi. Let �pi;j be chosen by minimizing an
objective functionfi;j : �Ui;j !R+ (whereR+ is the set of non-negative real numbers), which computes
the average length of a preamble ending at�p1i;j, and a postamble starting at�p2i;j in FSMi.:

fi;j(�pi;j) = 0:5 � (

P
v2V

P
ui;j2Ui;j[Wi;j

jpri;j(v; u
1
i;j ; �p

1
i;j)j

jV j � (jUi;jj+ jWi;jj)
+

P
ti;j2Ti;j[Wi;j

jpoi;j(t
2
i;j; �p

2
i;j)j

jTi;jj+ jWi;jj
) (12)

Let us augment graphG with preambles (prior to conversion toG0 by the algorithmCONVERT-SEMI-
INT) for the edges inUi;j andWi;j as follows:

1. 8ui;j 2 Ui;j [Wi;j split u1i;j into u1;Ii;j andu1;IIi;j

2. 8pri;j(v; u1i;j ; �p
1
i;j) 2 Pi;j create an edge(v; u1;IIi;j)

3. replaceui;j = (u1i;j ; u
2
i;j) with ui;j = (u1;IIi;j ; u2i;j)

4. all incoming (outgoing) edges ofu1i;j become incoming (outgoing) edges ofu1;Ii;j

Using postambles, we continue the augmentation ofG for the edges inTi;j as follows (to augmentG
with postambles for the edges inWi;j, replaceti;j with wi;j):

1. 8ti;j 2 Ti;j split t2i;j into t2;Ii;j andt2;IIi;j

2. 8poi;j(t2i;j ; �p
2
i;j) 2 Qi;j create an edge(t2;IIi;j ; v)

3. replaceti;j = (t1i;j ; t
2
i;j) with ti;j = (t1i;j; t

2;II
i;j)

4. all incoming (outgoing) edges oft2i;j become incoming (outgoing) edges oft2;Ii;j

As mentioned earlier, the running time of the combined algorithms for finding setsPi;j andQi;j for all
transition classes in all interfaces is given by [6] asO(

PF
i=1(jV j(jV

�
i j lg jV

�
i j+ jE�

i j).

15

ED
q1

q
4 q

3
q

2

K

M

L

p2

p3

p5

p1

p4

1q : IUT? o / IUT! a 1,1 1,1

4
q : IUT? o / IUT! a 1,2 1,2

q : IUT? o / IUT! a 3 1,1 1,1

2q : IUT? o / IUT! a 1,2 1,2

_U = { q , q }
U = { q , q }

1,1

1,2

1 3

2 4

_

1
p : IUT? o / IUT! a

2,1 2,1

2

p : IUT? o / IUT! a
2,1 2,1

U = { p , p }2,1 1 2

_3
p : IUT? o / null

2,2

4

p : IUT? o / null

2,2

5 2,2p : IUT? o / null U = { p , p , p }2,2 3 4

_
5

(a) FSM 1 (b) FSM 2

Figure 6: The FSM for theFSM1 (a) and theFSM2 (b) in the system of Figure 3.

preamble start state end state IUT edges FSM2 edges
pr2;1(A;B;K), pr2;2(A;B;K) (A;K) (B;K) e7 ;
pr2;1(B;B;K), pr2;2(B;B;K) (B;K) (B;K) ; ;
pr2;1(C;B;K), pr2;2(C;B;K) (C;K) (B;K) e6; e7 ;
pr2;1(A;B;L), pr2;2(A;B;L) (A;K) (B;L) e7; e5; e9 p3
pr2;1(B;B;L), pr2;2(B;B;L) (B;K) (B;L) e5; e9 p3
pr2;1(C;B;L), pr2;2(C;B;L) (C;K) (B;L) e9; e5; e9 p3
pr2;2(A;B;M) (A;K) (B;M) e7; e5; e9; e5; e9 p3; p4
pr2;2(B;B;M) (B;K) (B;M) e5; e9; e5; e9 p3; p4
pr2;2(C;B;M) (C;K) (B;M) e9; e5; e9; e5; e9 p3; p4
postamble start state end state IUT edges FSMi edges
po2;1(A;L) (A;L) (C;K) e7; e8; e7; e5; e9; e5 p4; p5
po2;1(A;M) (A;M) (C;K) e7; e8; e7; e5 p5
po2;2(C;L) (C;L) (C;K) e9; e5; e9; e5 p4; p5
po2;2(C;M) (C;M) (C;K) e9; e5 p5
po2;2(C;K) (C;K) (C;K) ; ;

Table 3: Preambles and postambles for the FSMs of Figure 6.

7.4 Checking validity of preambles and postambles

As proven in [10], all paths in graphG0 are valid. Augmenting graphG with preambles and postam-
bles results in adding a new class of edges toG—the concatenated edges consisting of preambles’ and
postambles’ composite edges. The algorithmCONVERT-SEMI-INTshould be modified accordingly to
account for the existence of concatenated edges. In particular, to avoid introducing invalid paths intoG0,
it must be verified that each concatenated edge to be included inG0 is a valid path.

All preambles associated withUi;j are necessarily valid paths inG0. A test sequence satisfying the
objectives ofObj1 andObj2 requires that, at any given time, only one input can be buffered atIi. Since
each preamble associated withUi;j is followed inG0 by an edge inUi;j, whose traversal causesai;j to be
buffered atIi, the algorithm makes sure that each such preamble starts and ends in states corresponding
to the configurations with empty buffers. Therefore, there is no buffered input that can disrupt the
preamble’s traversal. Similarly, each postamble associated withTi;j is always valid inG0. However, both
preambles and postambles associated withWi;j may or may not be valid inG0 and should be checked
for validity by the algorithmCONVERT-SEMI-INT.

Example (cont’d): Consider the testing environment depicted in Figure 3. TheFSM1 andFSM2 are shown in
Figure 6. Suppose that the IUT’s transitione5, which outputso2;2 toFSM2, triggersFSM2’s transitionsp3, p4, or
p5. Among theFSM2’s transitions, the ones in�U2;1 generate outputs to the IUT. For the IUT’s edges inU1;1 and

16

e2

(a)

(b)

A

A

I

II

B

BI

II

C
Legend:

mandatory edge
optional edge
preamble path
postamble path

e4

e1

e7
e8

e6

e5

e3

e9

AII

e5.1

e3.1

e4.3

a buffered1,1no inputs buffered

pr (A,B,L)2,1

pr (C,B,L)2,1

pr (B,B,L)2,1

po (A,M)2,1

BIII

pr (A,B,M)2,2

pr (B,B,M)2,2

pr (C,B,M)2,2

I

CII

po (C,K)2,2

e2.0

AI

B

BI

II

C

e1.0

e7.0

e6.0

e5.0

e9.0

BIII

I

C I

CII

BI

BIII

CII

CI

e10

e10.0

e10.1

X

a buffered2,1 a buffered1,2

X

X

Figure 7: (a) Augmenting graphG with preambles and postambles; (b)G0 obtained from the augmented
G by using the algorithmCONVERT-SEMI-INT.

17

U1;2 there is always a matching transition in theFSM1. However, for the IUT’s edges inU2;1, the two matching
transitions are defined only for statesK andL. Therefore, utilizing transitions in�U2;1 and �U2;2 requires the use of
preambles and postambles. Table 3 shows the preambles and postambles for the testing system of Figure 3. For
this system,U2;1 = fe2g, T2;1 = fe4g,W2;2 = fe5g, �U2;1 = fp1; p2g, and �U2;2 = fp3; p4; p5g.

To augment graphG, we first compute the value of the objective functionf2;1 (defined by (12)) forp1 andp2:
f2;1(p1) = 4:5 andf2;1(p2) = 4:33. Sincep2 produces slightly shorter preambles and postambles, it will be
used for augmentation ofG. Similarly, we computef2;2 for p3, p4, andp5: f2;2(p3) = 3:5, f2;2(p4) = 3:33,
andf2;2(p5) = 3:33. Let us pickp5 to augmentG. By applying the technique presented in Section 7.3, we first
augmentG with preambles and postambles (Figure 7 (a)), and then convertG toG0 (Figure 7 (b)) by the algorithm
CONVERT-SEMI-INT. The preamblepr2;2(B;B;M), which consists of edgese5, e9, e5, ande9, is a valid path
with respect to the configuration with all buffers empty. However, it is an invalid path with respect to configurations
with a1;2 (or a1;1) buffered atI1, or a2;1 buffered atI2. For example, the preamble’s edgee9 is invalid whena1;1
is buffered atI1, since in stateC transitione3 will automatically trigger instead ofe9 being triggered by a lower
tester’s inputx9. (Edges that would have been included inG0 by the algorithmCONVERT-SEMI-INThad the
preambles and postambles not been checked for validity, are shown in Figure 7 (b) as crossed with “X.”)

Finally, we find a rural Postman tour ofG0:

e1:0; e10:1; e3:1; e6:0; pr2;1(A;B;L)| {z }
e7;e5;e9

; e2:0; e4:3; po2;1(A;M)
| {z }

e7;e8;e7;e5

; e9:0; (13)

pr2;2(B;B;M)
| {z }

e5;e9;e5;e9

; e5:0; po2;2(C;K)
| {z }

;

; e6:0; e7:0; pr2;2(B;B;M)
| {z }

e5;e9;e5;e9

; e5:0; po2;2(C;K)
| {z }

;

; e6:0 (14)

After replacing the preambles and the postambles with their composite edges, and dropping the suffixes of regular
edges, the following near-minimum cost (Section 7.5) test sequence is obtained:

e1; e10; e3; e6; e7; e5; e9; e2; e4; e7; e8; e7; e5; e9; e5; e9; e5; e9; e5; e6; e7; e5; e9; e5; e9; e5; e6

7.5 Test coverage and cost effectiveness

In general, without limiting the number of possible state transitions inFSMi during testing, finding
a cost-effective test sequence for the IUT becomes infeasible: the number of potential test scenarios
involving the IUT and allFSMi’s is prohibitively large. Even when the objective ofObj2 (defined in
Section 5.1) can be met, deriving a tour based on a part of a composite machine satisfying a requirement
of a single message in transit would involve the testing of the entire state space of the semicontrollable
FSMs. To avoid this inefficiency in test sequences, the so-calledcontrollability restrictiondefined at the
beginning of Section 7 suggests thatFSMi must be kept in its initial state and brought into a desired
state only when needed, yielding test sequences of feasible length. The proposed approach is particularly
efficient in the case where the state space of the semicontrollable FSMs is large, since there may be many
transitions of the text context that are not needed to test the desired transitions of the IUT.

However, it may be argued that the controllability restriction does not make all IUT transitions testable. In
particular, to bringFSMi into a desired state may involve edges in�Gi that require interactions between
FSMi and interfaces other than the IUT. Based on the controllability restriction on theFSMi’s state
space, such edges will not be traversed during testing. If avoiding such edges inFSMi is impossible,
a matchingui;j transition in the IUT will be untestable. In spite of this restriction, initial research has
shown [11] that this approach substantially increases the test coverage for several protocols. Examples
are MIL-STD 188-220B and the IEEE 802.2 LLC Type 2 Connection Component.

With the controllability restriction and the augmentation ofG with preambles and postambles (prior to
convertingG to G0), some of the possible interactions between the IUT andFSMi are not modeled
in G0. Since matching transitions are typically defined in most of the states ofFSMi, this divergence
of G0 from a minimal system representation is expected to be insignificant (for example, in 188-220B

18

Data Link Layer, every state in the Intranet LayerFSMi has a matching transition for a number of
semicontrollable inputs). Therefore, a minimum cost tour derived fromG0 (Section 6) can be claimed as
a near-minimum cost test sequence ofG.

8 Conclusion

In an embedded testing environment, where an IUT communicates with multiple entities, a tester may
have differing degrees of control on the interactions between these entities and the IUT: directly con-
trollable, semicontrollable, or uncontrollable. Semicontrollable and uncontrollable interactions severely
reduce the testable portions of an SUT. In addition, race conditions may arise during testing due to
multiple communicating interfaces.

While nothing can be done regarding uncontrollable interactions, semicontrollable inputs can be utilized
to improve test coverage. This paper provides a practical algorithmic technique for test generation that
utilizes as many indirectly controllable inputs as possible without creating nondeterministic behavior of
the test system. Although, for the most general case, the graph conversion results in an exponentially
large number of nodes, practical considerations can make the converted graph size feasible. The algo-
rithm builds a transition graph for test derivation without explicitly constructing a composite global FSM
modeling an SUT. This approach has a significant advantage, since anFSMi’s state and transition space
may be large. For eachFSMi, only those transitions that can be used to test an IUT’s transitions are
considered during the graph construction.

This methodology has been applied to generate tests for MIL-STD 188-220B. By using the graph con-
version and the race condition elimination approaches presented in this paper, the number of testable
state transitions increased from approximately 200 to over 700, which represents an increase in a test
coverage from 30% to 95% of the transitions defined in the 188-220B specification.

The extension of this work is planned to cover the embedded systems with multiple testers, which re-
quires addressing synchronization issues in multi-party testing [34]. Also, more efficient algorithms for
finding preambles and postambles that do not build a reduced composite machine will be investigated.

References

[1] A HO, A. V., DAHBURA, A. T., LEE, D., AND UYAR, M. U. An optimization technique for protocol conformance
test generation based on UIO sequences and rural Chinese postman tours.IEEE Trans. Commun. 39, 11 (Nov. 1991),
1604–1615.

[2] ANSI/IEEE. ISO/IEC International Standard 8802-2, Dec. 1994.

[3] BUDKOWSKI, S., CAVALLI , A., AND NAJM, E., Eds. Proc. IFIP Joint Int’l Conf. FORTE/PSTV(Paris, France, Nov.
1998), Boston, MA: Kluwer Academic Publ.

[4] BUDKOWSKI, S., AND DEMBINSKI, P. An introduction to Estelle: A specification language for distributed systems.
Comput. Networks ISDN Syst. 14, 1 (1991), 3–24.

[5] CAVALLI , A. R., FAVREAU, J. P.,AND PHALLIPPOU, M. Standardization of formal methods in conformance testing of
communication protocols.Comput. Networks ISDN Syst. 29, 1 (1996), 3–14.

[6] CORMEN, T. H., LEISERSON, C. E., AND RIVEST, E. L. Introduction to Algorithms. McGraw-Hill, New York, NY,
1992.

p
.

[7] DOD. Military Standard—Interoperability Standard for Digital Message Device Subsystems (MIL-STD 188-220B), Jan.
1998.

[8] FECKO, M. A., AMER, P. D., SETHI, A. S., UYAR, M. U., DZIK , T., MENELL, R., AND MCMAHON, M. Formal
design and testing of MIL-STD 188-220A based on Estelle. InProc. IEEE Milit. Commun. Conf. (MILCOM)(Monterey,
CA, Nov. 1997).

19

[9] FECKO, M. A., UYAR, M. U., AMER, P. D.,AND SETHI, A. S. Using semicontrollable interfaces in testing Army com-
munications protocols: Application to MIL-STD 188-220B. InProc. IEEE Milit. Commun. Conf. (MILCOM)(Atlantic
City, NJ, Nov. 1999).

[10] FECKO, M. A., UYAR, M. U., SETHI, A. S., AND AMER, P. D. Embedded testing in systems with semicontrollable
interfaces. Tech. Rep. TR-98-18, CIS Dept., Univ. of Delaware, Newark, DE, 1998.

[11] FECKO, M. A., UYAR, M. U., SETHI, A. S., AND AMER, P. D. Issues in conformance testing: Multiple semicontrol-
lable interfaces. In Budkowski et al. [3], pp. 111–126.

[12] HOPCROFT, J. E.,AND ULLMAN , J. D. Introduction to Automata Theory, Languages, and Computation. Addison-
Wesley, 1979.

[13] ISO, INFORMATION TECHNOLOGY—OSI. ISO International Standard 9646: Conformance Testing Methodology and
Framework. Geneva, Switzerland, 1991.

[14] JTC1/SC21/WG1/PROJECT54.1.Framework: Formal Methods in Conformance Testing, Feb. 1995.

[15] KIM , M., KANG, S., AND HONG, K., Eds. Proc. IFIP Int’l Work. Test. Communicat. Syst. (IWTCS)(Cheju Island,
Korea, Sept. 1997), Boston, MA: Kluwer Academic Publ.

[16] LEE, D. Y., AND LEE, J. Y. A well-defined Estelle specification for the automatic test generation.IEEE Trans. Comput.
40, 4 (Apr. 1991).

[17] LENSTRA, J. K., AND RINNOOY KAN, A. H. G. On general routing problems.Networks 6(1976), 273–280.

[18] L IMA JR., L. P.,AND CAVALLI , A. R. A pragmatic approach to generating test sequence for embedded systems. In Kim
et al. [15].

[19] L INN, R. J. Conformance testing for OSI protocols.Comput. Networks ISDN Syst. 18, 3 (1990), 203–219.

[20] L INN, R. J., AND UYAR, M. U. Conformance Testing Methodologies and Architectures for OSI Protocols. IEEE
Comput. Soc. Press, Los Alamitos, CA, 1994.

p
.

[21] MILLER, R. E.,AND PAUL , S. Structural analysis of protocol specifications and generation of maximal fault coverage
conformance test sequences.IEEE/ACM Trans. Network. 2, 5 (Oct. 1994), 457–470.

[22] PETRENKO, A., AND YEVTUSHENKO, N., Eds.Proc. IFIP Int’l Work. Test. Communicat. Syst. (IWTCS)(Tomsk, Russia,
Sept. 1998), Boston, MA: Kluwer Academic Publ.

[23] PETRENKO, A. F., AND YEVTUSHENKO, N. Fault detection in embedded components. In Kim et al. [15].

[24] PETRENKO, A. F., YEVTUSHENKO, N., AND V. BOCHMANN, G. Fault models for testing in context. InProc. IFIP
Joint Int’l Conf. FORTE/PSTV(Kaiserslautern, Germany, Oct. 1996).

[25] PETRENKO, A. F., YEVTUSHENKO, N., V. BOCHMANN, G.,AND DSSOULI, R. Testing in context: Framework and test
derivation.Comput. Commun. 19, 14 (1996), 1236–1249.

[26] PHALIPPOU, M. The limited power of testing. InProc. IFIP Int’l Work. Protocol Test Syst. (IWPTS)(1992), Amsterdam:
North-Holland.

[27] RAFIQ, O., AND CASTANET, R. From conformance testing to interoperability testing. InProc. IFIP Int’l Work. Protocol
Test Syst. (IWPTS)(Washington, DC, 1990), pp. 371–385.

[28] RAYNER, D. OSI conformance testing.Comput. Networks ISDN Syst. 14, 1 (1987), 79–98.

[29] SABNANI , K. K., AND DAHBURA, A. T. A protocol test generation procedure.Comput. Networks ISDN Syst. 15(1988),
285–297.

[30] SABNANI , K. K., UYAR, M. U., AND LAPONE, A. M. An algorithmic procedure for checking safety properties of
communication protocols.IEEE Trans. Commun. 37, 9 (Sept. 1989), 940–948.

[31] TIMOHOVICH, E. An approach to protocol entity model development for embedded testing.Automatic Control Comput.
Sci. 27, 3 (1993), 34–41.

[32] TRETMANS, J. Conformance testing with labelled transitions systems: Implementation relations and test generation.
Comput. Networks ISDN Syst. 29, 1 (1996), 49–79.

[33] URAL, H. Formal methods for test sequence generation.Comput. Commun. 15, 5 (June 1992), 311–325.

[34] WU, W.-J., CHEN, W.-H., AND TANG, C. Y. Synchronizable test sequence for multi-party protocol conformance
testing.Comput. Commun. 21(1998), 1177–1183.

[35] YEVTUSHENKO, N., CAVALLI , A. R., AND LIMA JR., L. P. Test suite minimization for testing in context. In Petrenko
and Yevtushenko [22], pp. 127–145.

[36] ZENG, H. X., CHANSON, S. T., AND SMITH , B. R. On ferry clip approaches in protocol testing.Comput. Networks
ISDN Syst. 17, 2 (1989), 77–88.

[37] ZHU, J., VUONG, S. T.,AND CHANSON, S. T. Evaluation of test coverage for embedded system testing. In Petrenko
and Yevtushenko [22], pp. 111–126.

20

