
NTP Precision Time
Synchronization

alautun, Maya glyph

From pogo, Walt Kelly

5-Jul-08 1

David L. Mills
University of Delaware
http://www.eecis.udel.edu/~mills
mailto:mills@udel.edu

Precision time performance issues

Improved clock filter algorithm reduces network jitter

Operating system kernel modifications achieve time resolution of 1 ns
and frequency resolution of .001 PPM using NTP and PPS sources.

With kernel modifications, residual errors are reducec to less than 2 μs
RMS with PPS source and less than 20 μs over a 100-Mb LAN.

New optional interleaved on-wire protocol minimizes errors due to
output queueing latencies.

5-Jul-08 2

output queueing latencies.

With this protocol and hardware timestamps in the NIC, residual errors
over a LAN can be reduced to the order of PPS signal.

Using external oscillator or NIC oscillator as clock source, residual
errors can be reduced to the order of IEEE 1588 PTP.

Optional precision timing sources using GPS, LORAN-C and cesium
clocks.

Part 1 – quick fixes

Assess errors due to kernel latencies

Reduce sawtooth errors due to software frequency discipline

Reduce network jitter using the clock filter

Minimize latencies in the operating system and network

5-Jul-08 3

Errors due to kernel latencies

(b) Latency Distribution for (a)(a) Latency for Call

5-Jul-08 4

These graphs were constructed using a Digital Alpha and OSF/1 V3.2
with precision time kernel modifications

(a) Measured latency for gettimeofday() call

– spikes are due to timer interrupt routine

(b) Probability distribution for (a) measured over about ten minutes

– Note peaks near 1 ms due timer interrupt routine, others may be due to
cache reloads, context switches and time slicing

– Biggest surprise is very long tail to large fractions of a second

(b) Latency Distribution for (a)(a) Latency for getimeofday() Call

A

B

C t

Frequency Error ϕ

+S

θ

Adjustment Rate R − ϕ

Sawtooth errors due to software frequency discipline

Adjustment Interval σ

ε −S

5-Jul-08 5

Unix adjtime() slews frequency at net rate R− ϕ PPM beginning at A

Slew continues to B, depending on the programmed frequency offset S

Offset continues to C with frequency offset due to error ϕ

If ε ≤ x, then R ≥ ϕ + S and

For ε = 100 μs, ϕ = 200 PPM, S = 200 PPM, this requires R ≥ 400 PPM
and σ ≤ 1 s

These are almost completely eliminated using kernel discipline

x
R

⎟
⎠

⎞
⎜
⎝

⎛
ϕ−

+
ϕ

≤σ 11

Cumulative distribution function of network latencies

5-Jul-08 6

This cumulative distribution function is from the same day as the time
offset slide

– The rightmost curve represents raw offsets received over the network.

– The left curve represents the offsets after the clock filter algorithm.

CDF in log-log coordinates – long term

10
−3

10
−2

10
−1

10
0

P
[
O
f
f
s
e
t

<

y
]

5-Jul-08 7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

−5

10
−4

Offset (ms)

These data are from other sources

– The interesting observation is that these lines are almost straight, but with
different slope.

– The awesome fact is they keep going….

Latencies in the operating system and network

We want T3 and T4 timestamps for accurate network timing

– If output wait is small, T3a is good approximation to T3

– T can’t be included in message after cryptosum is calculated, but can be

Cryptosum

T3b
Timestamp

Network

T3a
Timestamp

T4
Timestamp

Input Wait

T4a
Timestamp

Cryptosum
and Protocol
Processing

Time
Output Wait

T3
Timestamp

5-Jul-08 8

– T3a can’t be included in message after cryptosum is calculated, but can be
sent in next message; if not, use T3b as best approximation to T3

– T4a is captured at soft-queue interrupt time, so is a fairly good estimator for
T4.

Largest error is usually cryptosum and output wait

– With software timestamping, T3 is captured upon return from the send-
packet routine, typically 200 μs after T3a.

– With interleaved protocol, T3 is transmitted in the next packet.

– See http://www.eecis.udel.edu/~mills/onwire.html and related briefing.

Measured latencies with software interleaved timestamping

The interleaved protcool captures T3b before the message digest and
T3 after the send-packet routine. The difference varies from 16 μs for a
dual-core, 2.8 GHz Pentium 4 running FreeBSD 5.1 to 1100 μs for a
Sun Blade 1500 running Solaris 10.

On two identical Pentium machines in symmetric mode, the measured
output delay T3b to T3 is 16 μs and interleaved delay 2x T3 to T4a is 90-
300 μs . Four switch hops at 100 Mb accounts for 40 μs, which leaves

5-Jul-08 9

25-130 μs at each end for input delay. The RMS jitter is 30-50 μs.

On two identical UltraSPARC machines running Solaris 10 in
symmetric mode, the measured output delay T3b to T3 is 160 μs and
interleaved delay 2x T3 to T4a is 390 μs. Four switch hops accounts for
40 μs, which leaves about 175 μs at each end for input delay. The RMS
jitter is 40-60 μs.

A natural conclusion is that most of the jitter is contributed by the
network and input delay.

So, how well does it work?

We measure the max, mean and standard deviation over one day

– The mean is an estimator of the offset produced by the clock discipline,
which is essentially a lowpass filter.

– The standard deviation is a estimator for jitter produced by the clock filter.

Following are three scenarios with modern machines and Ethernets

– The best we can do using the precision time kernel and a PPS signal from a
GPS receiver. Expect residual errors in the order of 2 μs dominated by
hardware and operating system jitter.

5-Jul-08 10

hardware and operating system jitter.

– The best we can do using a workstation synchronized to a primary server
over a fast LAN using optimum poll interval of 15 s. Expect residual errors in
the order of 20 μs dominated by network jitter.

– The best we can do using a workstation synchronized to a primary server
over a fast LAN using typical poll interval of 64 s. Expect errors in the order
of 200 μs dominated by oscillato rwander.

Next order of business is the interleaved on-wire protocol and hardware
timestamping. The goal is improving network perfomance to PPS level.

Time characteristis with PPS kernel discipline

5-Jul-08 11

Machine is Pentium II 300 MHz running FreeBSD 6.1 and synchronized
to a GPS receiver via a PPS signal and parallel port

– Precision nanokernel PPS discipline

– NTP4 is configured at fixed poll interval 4 (16 s)

– Behavior appears largely determined by hardware/kernel latencies

Time offset CDF with PPS kernel discipline

5-Jul-08 12

Same configuration as previous slide

– Note log-log coordinates

– Offset statistics: max 5.749 μs, mean -0.039 μs, stdev 1.357 μs

Frequency characteristis with PPS kernel discipline

5-Jul-08 13

Same configuration as previous slide

– Comparison with the time offset characteristics suggest the dominant error
contribution is latency jitter rather than frequency discipline.

– Compare with later data on a typical machine over a fast LAN

Time characteristis with fast LAN and poll 16 s

5-Jul-08 14

Machine is UltraSPARC II running Solaris 10 and synchronized to a
primary server connected to GPS receiver via a PPS signal

– NTP4 is configured at fixed poll interval 4 (16 s)

– Behavior appears largely determined by 100 Mb Ethernet latencies

Time offset CDF with fast LAN and poll 16 s

5-Jul-08 15

Same configuration as previous slide

– Note log-log coordinates

– Offset statistics: max 57.000 μs mean -0.833 μs stdev 16.078 μs

– About ten times worse than PPS signal

Frequency characteristis with fast LAN and poll 16 s

5-Jul-08 16

Same configuration as previous slide

– Comparison with the time offset characteristics suggest the dominant error
contribution is latency jitter rather than frequency discipline.

– Compare with earlier data with a PPS signal

Time characteristis with fast LAN and poll 64 s

5-Jul-08 17

Machine is Pentium 2.8 GHz running FreeBSD 6.1 and synchronized to
a CDMA receiver on a 100 Mb switched Ethernet

– CDMA receiver claimed accuracy is 10 μs

– NTP4 is configured at fixed poll interval 6 (64 s)

– Behavior appears largely determined by oscillator wander

Frequency characteristis with fast LAN and poll 64 s

5-Jul-08 18

These data are from the same day as the time offset slide

– The curve approximates the integral of the time offset data

– This clearly confirms the errors are primarily due to frequency wander

– Accuracy improves as the poll interval is reduced, but not below 16 s due
increased frequency wander

Not so-quick fixes

Autokey public key cryptography

– Avoids errors due to cyrptographic computations

– See briefing and specification

Precision time nanokernel

– Improves time and frequency resolution

– Avoids sawtooth error

Improved driver interface

5-Jul-08 19

Improved driver interface

– Includes median filter

– Adds PPS driver

External oscillator/NIC oscillator

– With interleaved protocol, performance equivalent to IEEE 1588

– LORAN C receiver and precision clock source

Server rolls a random 32-bit seed as the initial key ID

Session
Key
List

Source
Address

Key ID

Next
Key ID

Dest
Address

MD5 Hash (Session Key)

Avoid inline public-key algorithms: the Autokey protocol

Last Session Key

Server Key

RSA
Encrypt

Server Private Key

5-Jul-08 20

Server generates a session key list using repeated MD5 hashes

Server encrypts the last key using RSA and its private key to produce
the initial server key and provides it and its public key to all clients

Server uses the session key list in reverse order, so that clients can
verify the hash of each key used matches the previous key

Clients can verify that repeated hashes will eventually match the
decrypted initial server key

Kernel modifications for nanosecond resolution

Nanokernel package of routines compiled with the operating system
kernel

Represents time in nanoseconds and fraction, frequency in
nanoseconds per second and fraction

Implements nanosecond system clock variable with either microsecond
or nanosecond kernel native time variables

Uses native 64-bit arithmetic for 64-bit architectures, double-precision

5-Jul-08 21

Uses native 64-bit arithmetic for 64-bit architectures, double-precision
32-bit macro package for 32-bit architectures

Includes two new system calls ntp_gettime() and ntp_adjtime()

Includes new system clock read routine with nanosecond interpolation
using process cycle counter (PCC)

Supports run-time tick specification and mode control

Guaranteed monotonic for single and multiple CPU systems

NTP clock discipline with nanokernel assist

Type II, adaptive-parameter, hybrid phase/frequency-lock loop

Vd

Vc Phase/Freq
Prediction

Clock
Filter

Clock
Adjust

Phase
Detector

VFO

Vs

θr+

θc−
NTP

Loop Filter

x

y

NTP
Daemon

Kernel1 GHz

PPS

5-Jul-08 22

Type II, adaptive-parameter, hybrid phase/frequency-lock loop
disciplines variable frequency oscillator (VFO) phase and frequency

NTP daemon computes phase error Vd = θr − θo between source and
VFO, then grooms samples to produce time update Vs

Loop filter computes phase x and frequency y corrections and provides
new adjustments Vc at 1-s intervals

VFO frequency adjusted at each hardware tick interrupt

y

Nanokernel phase/frequency prediction

PLL/FLL discipline predicts phase x and frequency y at averaging
intervals from 1 s to over one day.

PLL/FLL
Discipline

PPS
Discipline

PPS
Interrupt

NTP
Update

x

y

x

Switch
x

y

Vs

5-Jul-08 23

intervals from 1 s to over one day.

PPS discipline predicts x and y at averaging intervals from 4 s to 128 s,
depending on nominal Allan intercept.

On overflow of the clock second, new values for time θ and frequency
φ offset are calculated.

Phase adjustment αθ + φ is added to system clock for α < 1 at every
tick interrupt, then θ is reduced by (1 – α)θ.

Switch

yFLL

Check and
Groom

PLL Freq
Integrate

FLL Freq
Average

NTP phase and frequency discipline

yPLL

x

y

x is the phase correction initially set at the update value.

NTP
Update

Vs

5-Jul-08 24

x is the phase correction initially set at the update value.

yFLL is the frequency prediction computed as the average of past
update differences.

yPLL is the frequency prediction computed as the integral of past update
values.

The switch controlled by the API selects which of yFLL or yPLL are used.

PPS phase and frequency discipline

Phase and frequency disciplined separately - phase from system clock
second offset, frequency from processor cycle counter (PCC)

Check and
Groom

Frequency
Discrim

Frequency
Average

y

PPS
Interrupt

x

Check and
Groom

Median
Filter

Latch

Latch

Second
Offset

Scaled PCC 1 GHz

Range
Gate

5-Jul-08 25

second offset, frequency from processor cycle counter (PCC)

Frequency discriminator rejects noise and invalid signals

Median filter rejects sample outlyers and provides error statistic

Check and groom rejects popcorn spikes and clamps outlyers

Phase offsets exponentially averaged with variable time constant

Frequency offsets averaged over variable interval

Nanosecond clock

1024
 Add

z

System Clock

Timer

PCC

1024 Hz

433 MHz

Add Interpolation
Scale
1 GHz

Time of Day

5-Jul-08 26

y
x

z +
τ

=
Second

τ
−= x

xx

Phase x and frequency y are updated by the PLL/FLL or PPS loop.

At the second overflow increment z is calculated and x reduced by the
time constant.

The increment is amortized over the second at each tick interrupt.

Time between ticks is interpolated from the PCC scaled to 1 GHz.

1 Hz

Reference clock drivers

Clock
Drivers

Peer

Reference
Driver

Filter 1

PPS
Driver

Filter 2

Filter 3

Selection
and

Clustering
Algorithms

Combining
Algorithm

Loop Filter

VFO

Clock Adj. Proc.System
Process

Peer
Processes

5-Jul-08 27

Reference clock drivers work just like NTP peers.

– Active drivers produce timecode message in response to poll message.

– Passive drivers provide timecode registers that can be read by poll routine.

PPS driver augments prefer peer for precision time.

– Offset only within the second; seconds numbering must be provided by
reference driver or NTP peer.

– PPS believed only if prefer peer correct and within 128 ms.

Reference clock driver interface

Receive

Driver

Median
Filter

Parse
Timecode

Poll System Clock
Timestamp Clock Filter

Driver Timestamp

PPS (optional)

5-Jul-08 28

Driver timecode is read either by timecode message interrupt or poll
routine.

– Timecode and associated data are parsed according to specific format.

– Offset is computed between driver timestamp and system clock timestamp.

– Offsets accumulate in median filter shift register until processed and sent to
clock filter..

Optional PPS signal (PPS driver only) provides offset in second.

Minimize effects of serial port hardware and driver jitter

5-Jul-08 29

Graph shows raw jitter of millisecond timecode and 9600-bps serial port

– Additional latencies from 1.5 ms to 8.3 ms on SPARC IPC due to software
driver and operating system; rare latency peaks over 20 ms

– Latencies can be minimized by capturing timestamps close to the hardware

– Jitter is reduced using median/trimmed-mean filter of 60 samples

– Using on-second format and filter, residual jitter is less than 50 μs

Precision time and frequency sources

KSI/Odetics TPRO IRIG-B SBus interface

– Provides direct-reading microsecond clock in BCD format

– Synchronized to GPS receiver using IRIG-B signal

– Supported both as an NTP driver and as kernel system clock

– Stabilizes time to 1 μs and frequency to 0.1 PPM

Precision oven-stabilized system clock

– SBus memory-mapped interface

5-Jul-08 30

– SBus memory-mapped interface

– Provides direct-reading microsecond clock in Unix timeval format

– Supported as kernel system clock

– Stabilizes time via radio or NTP and frequency to .005 PPM

PPS discipline

– Driver or kernel interface via modem control line

– Stabilizes frequency to .001 PPM relative to external 1-PPS source

– Stabilizes time within 1 μs with seconds numbered by NTP

±1

f/n
f f

f/n

0-999,999 μs0-999,999 μs
ReadRead

Hardware clock discipline

Latch

Counter

VCXO Prescaler

Latch

Counter

TCXO DDS

5-Jul-08 31

I/O Bus

Analog (a) and digital (b) frequency discipline methods

– Analog method uses voltage-controlled low-frequency oscillator.

– Digital method uses direct digital synthesis and high-frquency oscillator.

Either method could be used in a NIC or bus peripheral

DAC Latch

a

Latch

b

Gadget Box PPS interface

5-Jul-08 32

Used to interface PPS signals from GPS receiver or cesium oscillator

– Pulse generator and level converter from rising or falling PPS signal edge

– Simulates serial port character or stimulates modem control lead

Also used to demodulate timecode broadcast by CHU Canada

– Narrowband filter, 300-baud modem and level converter

– The NTP software includes an audio driver that does the same thing

LORAN-C timing receiver

Inexpensive second-generation bus peripheral for IBM 386-class PC

5-Jul-08 33

Inexpensive second-generation bus peripheral for IBM 386-class PC
with oven-stabilized external master clock oscillator

– Includes 100-kHz analog receiver with D/A and A/D converters

– Functions as precision oscillator with frequency disciplined to selected
LORAN-C chain within 200 ns of UTC(LORAN) and 10-10 stability

– PC control program (in portable C) simultaneously tracks up to six stations
from the same LORAN-C chain

Intended to be used with NTP to resolve inherent LORAN-C timing
ambiguity

Further information

NTP home page http://www.ntp.org

– Current NTP Version 3 and 4 software and documentation

– FAQ and links to other sources and interesting places

David L. Mills home page http://www.eecis.udel.edu/~mills

– Papers, reports and memoranda in PostScript and PDF formats

– Briefings in HTML, PostScript, PowerPoint and PDF formats

– Collaboration resources hardware, software and documentation

5-Jul-08 34

– Collaboration resources hardware, software and documentation

– Songs, photo galleries and after-dinner speech scripts

Udel FTP server: ftp://ftp.udel.edu/pub/ntp

– Current NTP Version software, documentation and support

– Collaboration resources and junkbox

Related projects http://www.eecis.udel.edu/~mills/status.htm

– Current research project descriptions and briefings

