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Sources of error in network timekeeping

o Short-range distribution induced errors

• Software latencies due to cache misses, context switches, page faults and 
process scheduling

• Hardware latencies due to interrupts, network collisions, nonmaskable 
interrupts and timer/clock resolution

• Asymmetric network propagation paths to and from the server

o Suspected long-range distribution induced errors

• Network propagation path delay and jitter.

• Jitter induced by wander in the system clock oscillator

o We need to prove/disprove whether long-range effects are in play.
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Jitter witn a serial port hardware and driver

o Graph shows raw jitter of millisecond timecode and 9600-bps serial 
port. Samples are uniformly distributed over the character interval.

• Additional latencies from 1.5 ms to 8.3 ms on SPARC IPC due to software 
driver and operating system; rare latency peaks over 20 ms

• Using on-second format and median filter, residual jitter is less than 50 µs
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Jitter with a PPS signal and Digital Alpha 433

o Graph shows raw jitter of PPS timecode and parallel port due to 
interrupt latencies.

• While not proven, the distribution looks very much like exponential.

• Standard deviation 51.3 ns
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Jitter with a modem and ACTS service

o Measurements use 2400-bps telephone modem and NIST Automated 
Computer Time Service (ACTS). Calls are placed at 16,384-s intervals.

• Jitter is due primarily due to digital processing in the modem.

• It is not clear what the distribution is, but it could include LRD.
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o The most accurate offset θ0 is measured at the lowest delay δ0 (apex of 
the wedge scattergram).

o The correct time θ must lie within the wedge θ0 ± (δ − δ0)/2.

o The δ0 is estimated as the minimum of the last eight delay 
measurements and (θ0 ,δ0) becomes the peer update.

o Each peer update can be used only once and must be more recent 
than the previous update.
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Clock filter performance
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o Left figure shows raw time offsets measured for a typical path over a 
24-hour period (mean error 724 µs, median error 192 µs)

o Right graph shows filtered time offsets over the same period (mean 
error 192 µs, median error 112 µs).

o The mean error has been reduced by 11.5 dB; the median error by 18.3 
dB. This is impressive performance.
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Asymmetric path delays

o We like to think that the delays on the outbound and inbound network 
paths are the same, or at least drawn from the same distribution.

o Such is not the case in several instances, one of which is shown in the 
wedge scattergram on the next slide.

• The occasion arises with a slow PPP line while downloading a large file.

• The download direction utilization is essentially 100 percent, while the other 
direction carries only ACKs and is only minimally utilized.

• The delay distribution on the download direction depends on the packet 
length distribution, which is SRD.

• The delay distribution on the other direction depends on the network jitter, 
which may or may not be LRD.
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Huff&puff wedge scattergram
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Raw roundtrip delay distribution function from survey

Cumulative distribution function of absolute roundtrip delays

– 38,722 Internet servers surveyed running NTP Version 2 and 3

– Delays: median 118 ms, mean 186 ms, maximum 1.9 s(!)

– Asymmetric delays can cause errors up to one-half the delay
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Self-similar distributions

o Consider the (continuous) process X = (Xt, -∞ < t < ∞)

o If Xat and aH(Xt) have identical finite distributions for a > 0, then X is 
self-similar with parameter H.

o We need to apply this concept to a time series. Let X = (Xt, t = 0, 1, …) 
with given mean µ, variance σ2 and autocorrelation function r(k), k ≥ 0.

o It’s convienent to express this as r(k) = k-βL(k) as k →∞ and 0 < β < 1.

o We assume L(k) varies slowly near infinity and can be assumed a 
constant like 1.
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Definition of self-similar distribution

o For m = 1, 2, … let X (m) = (Xk 
(m) , k = 1, 2, …), where m is a scale factor.

o Each Xk 
(m) represents a subinterval of m samples, and the subintervals are non-

overlapping: Xk 
(m) = 1 / m (X (m)

(k – 1) m , + … + X (m)
km – 1), k > 0.

o For instance, m = 2 subintervals are (0,1), (2,3), …; m = 3 subintervals are (0, 1, 

2), (3, 4, 5), …

o A process is (exactly) self-similar with parameter H = 1 – β / 2 if, for all m = 1, 2, 

…, var[X (m)] = σ2m – β and r(m)(k) = r(k) = 1 / 2 [(k + 1)2H – 2k2H + (k – 1)2H], k > 

0, where r(m) represents the autocorrelation function of X (m).

o A process is (asymptotically) second-order self-similar if r(m)(k) -> r(k) as m→∞.

o Plot r(k) = k-β = k1 – 2H  in log-log coordinates as a straight line with

• β = -1 for H = 0.5, representing short-range dependent (SRD) distribution,

• -1 < β < 0 for 0.5 < H < 1, representing long-range dependent (LRD) distribution,

• β = 1 for H = 1, representing a random-walk distribution.

∞→m



2-Aug-04 13

Properties of self-similar distributions

o For self-similar distributions (0.5 < H < 1)

• Hurst effect: the rescaled, adjusted range statistic is characterized by a 
power law; i.e.,  E[R(m) / S(m)] is similar to mH as m →∞.

• Slowly decaying variance. the variances of the sample means are decaying 
more slowly than the reciprocal  of the sample size.

• Long-range dependence: the autocorrelations decay hyperbolically rather 
than exponentially, implying a non-summable autocorrelation function.

• 1 / f noise: the spectral density f(.) obeys a power law near the origin.

o For memoryless or finite-memory distributions (0 < H < 0.5 )

• var[X (m)] decays as to m -1.

• The sum of variances if finite.

• The spectral density f(.) is finite near the origin.
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Origins of self-similar processes

o Long-range dependent (0.5 < H < 1)

• Fractional Gaussian Noise (F-GN)

r(k) = 1 / 2 [(k + 1)2H – 2k2H+ (k – 1)2H], k > 1

• Fractional Brownian Motion (F-BM)

• Fractional Autoregressive Integrative Moving Average (F-ARIMA

• Random Walk (RW) (descrete Brownian Motion (BM))

o Short-range dependent

• Memoryless and short-memory (Markov)

• Just about any conventional distribution – uniform, exponential, Pareto

• ARIMA
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Simulation studies

o The object of these simulations is to confirm samples from a given 
distribution have short-range dependency (SRD) or long-range 
dependency (LRD).

• X is a time series of N samples drawn from a distribution with given mean µ
and variance σ.

• X (m) = (Xk 
(m), k = 1, 2, …), where m = 1, 2, 4, … is a scale factor increasing 

in powers of two.

• X is divided in contiguous, non-overlapping intervals of size m indexed by k.

• a(m) = (ak 
(m), k = 1, 2, …) is the time series corresponding to the average of 

the samples in each interval .

• The variance-time graph plots variance σ2(a(m)) against m in log-log scales.
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Exponential distribution

o The object of this experiment is to determine whether an exponential 
distribution has only SRD.

• 100,000 samples generated from an exponential distribution with σ = 1.

• The next slide shows the time series Xk 
(m) for values of m = 1, 4, 16 and 64. 

Note the weak self-similar characteristic.

• The second slide shows the variance-time plot, which shows the Hurst 
parameter H = 0.5 and confirms the exponential distribution has only SRD.

• This property is true also of other processes generated by uniform, Poisson, 
finite Markov and just about every other process without a heavy-tail 
autocorrelation function.
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Exponential distribution m = 1, 4, 16, 64 s
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Exponential distribution variance-time plot

o Graph shows the variance from data averaged over specified intervals.

• One curve shows the data, the other  shows SRD with H = 0.5.

• Both curves overlap almost everywhere, showing the distribution is SRD.
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Random-walk distribution

o The object of this experiment is to determine whether a random-walk 
distribution is LRD.

• 1,000,000 samples were generated from a random-walk distribution 
consisting of the integral of a Gaussian distribution with µ = 0 and σ = 0.1.

• The next slide shows the time series Xk 
(m) for m = 1, 16, 256 and 4096 

seconds. Note the curves of the first three are almost identical, except for 
some high-frequency smoothing at m = 4096.

• This is to be expected, since even at m = 4096 the intervals are small 
compared to the wiggle of the curve. This is characteristic of flicker (1 / f) 
noise and the fact the autocorrelation functions are non-summable.

• Random-walk distributions (H = 1) are probably not good models for 
network delays, but they are good models for computer clock oscillator 
wander.
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Random-walk distribution m = 1, 16, 256 and 4096 s
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Random-walk distribution variance-time plot
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Filtered exponential distribution

o A strict  random-walk distribution ( H = 1) is probably not a good model 
for network delays. A better model would have H somewhere in the 
middle of 0.5 < H < 1.

o Generating a strict self-similar time series for given H is computationally 
complex and expensive.

o So, try a filtered exponential distribution with given finite autocorrelation 
function r(k) = kβ (1 ≤ k ≤ n, 0 ≤ β ≤ 1). We choose n = 1,000 and β = 1.

o The next slide shows the time series Xk 
(m) for m = 1, 16, 256 and 1024 

seconds. Note the curves of the first three are almost identical. There is 
some decay at 1024 s.

o The variance-time plot on the second page shows random-walk and 
characteristic at lags in the order of n and decays to SRD after tha.
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Filtered exponential distribution m = 1, 16, 256 and 1024 s
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Filtered exponential distribution variance-time plot

o Graph shows the variance from data averaged over specified intervals.

• The upper curve from data shows filtered exponential.

• The lower curve shows SRD with H = 0.5 for reference.
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Experiment study – USNO data

o The object of this experiment is to determine whether roundtrip delays 
measured over Internet paths by NTP show long-range dependency.

• The Internet path was between primary time servers pogo.udel.edu at UDel 
and tick.usno.navy.mil in Washington, DC.

• Measurements were made every 16 seconds over about 11 days.

• The next slide shows the path delays are asymmetric. The roundtrip delay is 
the sum of the two one-way delays, which is the convolution of their 
distributions. In most cases we assume the two distributionsare the same.

• The following slide shows the smoothed delay at averaging intervals m = 
32, 64, 64 and 256 seconds. Note the weak self-similar characteristic.
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USNO data wedge scattergram

o Each dot represents a offset/delay sample.

• The upper limb of the wedge represents packets inbound to USNO; the 
lower limb outbount.

• Obviously, the traffic is asymmetric, so the delays should be as well.
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USNO data delay m = 16, 32, 64 and 256 s
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USNO data delay variance-time plot

o Graph shows the variance from data averaged over specified intervals.

• The upper curve from data shows LRD with 0.5 < H < 1.

• The lower curve shows SRD with H = 0.5 for reference.
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Data from Levine paper

o The following figures are from the paper:

• Levine, W.E., M.S. Taqqu, W. Willinger and D.V. Wilson. On the self-similar 
nature of Ethernet traffic (extended version). IEEE/ACM Trans. Networking 
2, 1 (February 1984), 1-15.

o They show the same thing, that network delay distributions have LRD 
in some degree or other.

o The next slide shows an example of a self-similar distribution at five 
different values of m for network traffic (left) and samples drawn from 
an exponential distribution (right).

o The fact those on the left look substantially “like each other” suggests 
the distribution has more LRD than SRD.

o The fact those on the right look very different suggests the underlying 
distribution has more SRD and LRD. 
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Examples of self-similar traffic on a LAN
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Variance-time plot

o This is a variance-time plot from  the network traffic. The lower line is 
for H = 0.5. Apparently, the network traffic has LRD 0.5 < H < 1.
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R/S plot

o This is a S/R (poc)  plot from  the network traffic. This further confirms  
the network traffic has LRD 0.5 < H < 1.
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Periodogram (discrete Fourier transform) plot

o This is a periodogram (Fourier transform) from  the network traffic. this 
further confirms the network traffic has LRD 0.5 < H < 1.


