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Sources of error in network timekeeping

o Short-range distribution induced errors

« Software latencies due to cache misses, context switches, page faults and
process scheduling

« Hardware latencies due to interrupts, network collisions, nonmaskable
interrupts and timer/clock resolution

* Asymmetric network propagation paths to and from the server

o Suspected long-range distribution induced errors
* Network propagation path delay and jitter.
« Jitter induced by wander in the system clock oscillator

o We need to prove/disprove whether long-range effects are in play.
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Jitter witn a serial port hardware and driver
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o Graph shows raw jitter of millisecond timecode and 9600-bps serial
port. Samples are uniformly distributed over the character interval.

» Additional latencies from 1.5 ms to 8.3 ms on SPARC IPC due to software
driver and operating system; rare latency peaks over 20 ms

* Using on-second format and median filter, residual jitter is less than 50 us
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Jitter with a PPS signal and Digital Alpha 433
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o Graph shows raw jitter of PPS timecode and parallel port due to
interrupt latencies.

* While not proven, the distribution looks very much like exponential.
e Standard deviation 51.3 ns
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Jitter with a modem and ACTS service
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o Measurements use 2400-bps telephone modem and NIST Automated
Computer Time Service (ACTS). Calls are placed at 16,384-s intervals.

« Jitter is due primarily due to digital processing in the modem.
* |tis not clear what the distribution is, but it could include LRD.
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Computing and filtering offset and delay samples
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o The most accurate offset 6, is measured at the lowest delay o6, (apex of
the wedge scattergram).

o The correct time 6 must lie within the wedge 6, £ (6 — 5,)/2.

o The 9§, is estimated as the minimum of the last eight delay
measurements and (6,,9,) becomes the peer update.

o [Each peer update can be used only once and must be more recent
than the previous update.
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o Left figure shows raw time offsets measured for a typical path over a
24-hour period (mean error 724 us, median error 192 us)

o Right graph shows filtered time offsets over the same period (mean
error 192 us, median error 112 us).

o The mean error has been reduced by 11.5 dB; the median error by 18.3
dB. This is impressive performance.

2-Aug-04 7



Asymmetric path delays

o We like to think that the delays on the outbound and inbound network
paths are the same, or at least drawn from the same distribution.

o Such is not the case in several instances, one of which is shown in the
wedge scattergram on the next slide.

* The occasion arises with a slow PPP line while downloading a large file.

* The download direction utilization is essentially 100 percent, while the other
direction carries only ACKs and is only minimally utilized.

« The delay distribution on the download direction depends on the packet
length distribution, which is SRD.

* The delay distribution on the other direction depends on the network jitter,
which may or may not be LRD.
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Huff&puff wedge scattergram
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e Cumulative distribution function of absolute roundtrip delays
— 38,722 Internet servers surveyed running NTP Version 2 and 3
— Delays: median 118 ms, mean 186 ms, maximum 1.9 s(!)
— Asymmetric delays can cause errors up to one-half the delay
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Self-similar distributions

o Consider the (continuous) process X = (X, - <t < «)

o If X, and a"(X,) have identical finite distributions for a > 0, then X is
self-similar with parameter H.

o We need to apply this concept to a time series. Let X = (X, t=0, 1, ...)
with given mean y, variance o2 and autocorrelation function r(k), k = 0.

o It’s convienent to express this as r(k) = kAL(k) as k -~ and 0 < 3 < 1.

o We assume L(Kk) varies slowly near infinity and can be assumed a
constant like 1.
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Definition of self-similar distribution

o Form=1,2 ...letXM=(XM k=1,2,..), where mis a scale factor.

o Each X, ™ represents a subinterval of m samples, and the subintervals are non-
overlapping: X, ™ =1/m (X ™y, + ...+ XM, 1), k>0.

o Forinstance, m = 2 subintervals are (0,1), (2,3), ...; m = 3 subintervals are (0, 1,
2), (3,4,5), ...

o A process is (exactly) self-similar with parameter H=1-03/2if, forall m=1, 2,
LovarXM]=a2m—-Band rMK) =rk) =1/2 [(k + 1)2H - 2k2H + (k — 1)2H], k >
0, where r(™ represents the autocorrelation function of X (™,

o A process is (asymptotically) second-order self-similar if r(Mm(k) -> r(k) as m—.

Plot r(k) = k#=k1-2" in log-log coordinates as a straight line with

o

e B =-1forH=0.5, representing short-range dependent (SRD) distribution,
* -1<B<0for0.5<H<1,representing long-range dependent (LRD) distribution,

* B =1forH=1, representing a random-walk distribution.
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Properties of self-similar distributions

o For self-similar distributions (0.5 <H < 1)

* Hurst effect: the rescaled, adjusted range statistic is characterized by a
power law; i.e., E[R(m)/ S(m)] is similar to mM as m —,

» Slowly decaying variance. the variances of the sample means are decaying
more slowly than the reciprocal of the sample size.

* Long-range dependence: the autocorrelations decay hyperbolically rather
than exponentially, implying a non-summable autocorrelation function.

« 1/fnoise: the spectral density f(.) obeys a power law near the origin.
o For memoryless or finite-memory distributions (0 <H<0.5)

« var[X M] decays as to m -1,

« The sum of variances if finite.

» The spectral density f(.) is finite near the origin.
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Origins of self-similar processes

o Long-range dependent (0.5 <H < 1)
* Fractional Gaussian Noise (F-GN)
r(k)=1/2[(k + 1) - 2k?H+ (k- 1)2H], k> 1
* Fractional Brownian Motion (F-BM)
« Fractional Autoregressive Integrative Moving Average (F-ARIMA
 Random Walk (RW) (descrete Brownian Motion (BM))

o Short-range dependent
 Memoryless and short-memory (Markov)
e Just about any conventional distribution — uniform, exponential, Pareto
« ARIMA
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Simulation studies

o The object of these simulations is to confirm samples from a given
distribution have short-range dependency (SRD) or long-range

dependency (LRD).

« X is atime series of N samples drawn from a distribution with given mean u

and variance o.

e XM=(X M k=1,2,..),wherem=1, 2, 4, ... is a scale factor increasing

in powers of two.

« Xs divided in contiguous, non-overlapping intervals of size m indexed by k.

« am=(a M k=1,2,..)is the time series corresponding to the average of

the samples in each interval .

« The variance-time graph plots variance ¢2(a(™) against m in log-log scales.

m=1

k X1 X, X3 X4 X5 Xs X Xg
m=2

K| Xy +X) 12| (Xg+X) /2| Xsg+Xg)/2 | (X;+Xg)/2
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Exponential distribution

o The object of this experiment is to determine whether an exponential
distribution has only SRD.
« 100,000 samples generated from an exponential distribution with ¢ = 1.

¢ The next slide shows the time series X, (™ for values of m = 1, 4, 16 and 64.
Note the weak self-similar characteristic.

« The second slide shows the variance-time plot, which shows the Hurst
parameter H = 0.5 and confirms the exponential distribution has only SRD.

« This property is true also of other processes generated by uniform, Poisson,
finite Markov and just about every other process without a heavy-tail
autocorrelation function.

2-Aug-04 16



Exponential distributionm=1,4,16, 64 s
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Exponential distribution variance-time plot
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Graph shows the variance from data averaged over specified intervals.

One curve shows the data, the other shows SRD with H = 0.5.
Both curves overlap almost everywhere, showing the distribution is SRD.

o
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Random-walk distribution

i

o The object of this experiment is to determine whether a random-walk
distribution is LRD.

« 1,000,000 samples were generated from a random-walk distribution
consisting of the integral of a Gaussian distribution with u = 0 and ¢ = 0.1.

« The next slide shows the time series X, ™ for m = 1, 16, 256 and 4096
seconds. Note the curves of the first three are almost identical, except for
some high-frequency smoothing at m = 4096.

* This is to be expected, since even at m = 4096 the intervals are small
compared to the wiggle of the curve. This is characteristic of flicker (1 / f)
noise and the fact the autocorrelation functions are non-summable.

 Random-walk distributions (H = 1) are probably not good models for
network delays, but they are good models for computer clock oscillator
wander.
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Random-walk distribution m =1, 16, 256 and 4096 s
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Random-walk distribution variance-time plot
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Filtered exponential distribution

o Astrict random-walk distribution ( H = 1) is probably not a good Codal
for network delays. A better model would have H somewhere in the
middle of 0.5 <H < 1.

o Generating a strict self-similar time series for given H is computationally
complex and expensive.

o So, try a filtered exponential distribution with given finite autocorrelation
functionr(k) =k (1<k<n,0<B<1). We choosen=1,000 and 3 = 1.

o The next slide shows the time series X, (™ for m = 1, 16, 256 and 1024
seconds. Note the curves of the first three are almost identical. There is
some decay at 1024 s.

o The variance-time plot on the second page shows random-walk and
characteristic at lags in the order of n and decays to SRD after tha.
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Filtered exponential distribution variance-time plot
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o Graph shows the variance from data averaged over specified intervals.
* The upper curve from data shows filtered exponential.
* The lower curve shows SRD with H = 0.5 for reference.
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Experiment study — USNO data

o The object of this experiment is to determine whether roundtrip delays
measured over Internet paths by NTP show long-range dependency.

* The Internet path was between primary time servers pogo.udel.edu at UDel
and tick.usno.navy.mil in Washington, DC.

* Measurements were made every 16 seconds over about 11 days.

* The next slide shows the path delays are asymmetric. The roundtrip delay is
the sum of the two one-way delays, which is the convolution of their
distributions. In most cases we assume the two distributionsare the same.

« The following slide shows the smoothed delay at averaging intervals m =
32, 64, 64 and 256 seconds. Note the weak self-similar characteristic.
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USNO data wedqge scattergram
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o Each dot represents a offset/delay sample.

« The upper limb of the wedge represents packets inbound to USNO,; the
lower limb outbount.

« Obviously, the traffic is asymmetric, so the delays should be as well.
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USNO data delay m = 16, 32, 64 and 256 s
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USNO data delay variance-time plot
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o Graph shows the variance from data averaged over specified intervals.
* The upper curve from data shows LRD with 0.5 < H < 1.
* The lower curve shows SRD with H = 0.5 for reference.
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Data from Levine paper

o The following figures are from the paper:

* Levine, W.E., M.S. Taqqu, W. Willinger and D.V. Wilson. On the self-similar
nature of Ethernet traffic (extended version). IEEE/ACM Trans. Networking
2, 1 (February 1984), 1-15.

o They show the same thing, that network delay distributions have LRD
in some degree or other.

o The next slide shows an example of a self-similar distribution at five
different values of m for network traffic (left) and samples drawn from
an exponential distribution (right).

o The fact those on the left look substantially “like each other” suggests
the distribution has more LRD than SRD.

o The fact those on the right look very different suggests the underlying
distribution has more SRD and LRD.
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Examples of self-similar traffic on a LAN
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Variance-time plot
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o This is a variance-time plot from the network traffic. The lower line is
for H = 0.5. Apparently, the network traffic has LRD 0.5 <H < 1.
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R/S plot
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o Thisisa S/R (poc) plot from the network traffic. This further confirms
the network traffic has LRD 0.5 <H < 1.
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Periodogram (discrete Fourier transform) plot
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o This is a periodogram (Fourier transform) from the network traffic. this
further confirms the network traffic has LRD 0.5 <H < 1.
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