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Combining Pairwise Sequence Similarity and
Support Vector Machines for Detecting Remote

Protein Evolutionary and Structural Relationships
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ABSTRACT

One key element in understanding the molecular machinery of the cell is to understand the
structure and function of each protein encoded in the genome. A very successful means of
inferring the structure or function of a previously unannotated protein is via sequence simi-
larity with one or more proteins whose structure or function is already known. Toward this
end, we propose a means of representing proteins using pairwise sequence similarity scores.
This representation, combined with a discriminative classi� cation algorithm known as the
support vector machine (SVM), provides a powerful means of detecting subtle structural
and evolutionary relationships among proteins. The algorithm, called SVM-pairwise, when
tested on its ability to recognize previously unseen families from the SCOP database, yields
signi� cantly better performance than SVM-Fisher, pro� le HMMs, and PSI-BLAST.
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1. INTRODUCTION

Detecting subtle protein sequence similarities is a core problem in computational biology. Se-
quence similarity typically implies homology, which in turn may imply structural and functional

similarity. The discovery of a statistically signi� cant similarity between two proteins is frequently used,
therefore, to justify inferring a common functional role for the two proteins.

Over the past 25 years, researchers have developed a battery of successively more powerful methods for
detecting protein sequence similarities. This development can be broken into four stages. Early methods
looked for pairwise similarities between proteins. Among such algorithms, the Smith–Waterman dynamic
programming algorithm (Smith and Waterman, 1981) is among the most accurate, whereas heuristic al-
gorithms such as BLAST (Altschul et al., 1990) and FASTA (Pearson, 1985) trade reduced accuracy for
improved ef� ciency.

In the second stage, further accuracy was achieved by collecting aggregate statistics from a set of similar
sequences and comparing the resulting statistics to a single, unlabeled protein of interest. Pro� les (Gribskov

1Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716.
2Department of Genome Sciences, University of Washington, Seattle, WA 98195.
3Formerly William Noble Grundy: see www.gs.washington.edu/»noble/name-change.html.

857

http://www.gs.washington.edu/%7Enoble/name-change.html


858 LIAO AND NOBLE

et al., 1990) and hidden Markov models (HMMs) (Krogh et al., 1994; Baldi et al., 1994) are two methods
for representing these aggregate statistics. These family-based methods allow the comptutational biologist
to infer nearly three times as many homologies as a simple pairwise alignment algorithm (Park et al., 1998).

In stage three, additional accuracy was gleaned by leveraging the information in large databases of
unlabeled protein sequences. Iterative methods such as PSI-BLAST (Altschul et al., 1997) and SAM-T98
(Karplus et al., 1998) improved upon pro� le-based methods by iteratively collecting homologous sequences
from a large database and incorporating the resulting statistics into a central model. All of the resulting
statistics, however, are generated from positive examples, i.e., from sequences that are known or posited
to be evolutionarily related to one another.

In stage four, additional accuracy was gained by modeling the difference between positive and negative
examples. Because the homology task requires discriminating between related and unrelated sequences, ex-
plicitly modeling the difference between these two sets of sequences yields an extremely powerful method.
The SVM-Fisher method (Jaakkola et al., 1999, 2000), which couples an iterative HMM training scheme
with a discriminative algorithm known as a support vector machine (SVM) (Vapnik, 1998; Christianini and
Shawe-Taylor, 2000), is one of the most accurate known method for detecting remote protein homologies.

This paper proposes a simple way to represent a protein sequence as a � xed-length vector of real
numbers. The resulting vectors can then be used as input to a discriminative learning algorithm. The vector
representation is summarized in Fig. 1. The essential idea is that the interesting characteristics of a protein
sequence can be effectively captured by asking how similar the protein is to a large collection of other
proteins. A given protein is compared to every protein in the collection, which is called the vectorization
set of proteins. Thus, for example, if the vectorization set consisted of one protein domain from each of the
domain families in the Pfam (Sonnhammer et al., 1997) database, then the resulting vector representation
of a protein would indicate which of the Pfam domains appear in the given sequence.

This idea—of representing an object via its similarity to a collection of other objects—is not novel.
In support vector machine learning, this type of mapping is known as an empirical feature map (Tsuda,
1999). Such a mapping also underlies the spectral clustering algorithm (Ng et al., 2002), which uses an
all-versus-all computation of radial basis function similarity scores as its initial step.

This paper presents an SVM-based protein classi� cation method that uses the pairwise sequence simi-
larity algorithm in place of the HMM of the SVM-Fisher method. Both the SVM-Fisher method and the
new method, called SVM-pairwise, consist of two steps: converting a given set of proteins into � xed-length
vectors and training an SVM from the vectorized proteins. The two methods differ only in the vectorization
step. In the SVM-Fisher method, a protein’s vector representation is its gradient with respect to a pro� le
hidden Markov model; in the SVM-pairwise method, the vector is a list of pairwise sequence similarity
scores, computed with respect to all of the sequences in the training set.

The pairwise score representation of a protein offers three primary advantages over the pro� le HMM
gradient representation. First, the pairwise score representation is simpler, since it dispenses with the pro� le
HMM topology and parameterization, including training via expectation maximization. Second, pairwise
scoring does not require a multiple alignment of the training set sequences. For distantly related protein
sequences, a pro� le alignment may not be possible if, for example, the sequences contain shuf� ed domains.
Thus, a collection of pairwise alignments allows for the detection of motif- or domain-sized similarities,
even when the entire model cannot be easily aligned.

The third advantage of the pairwise score representation is its use of a negative training set. A pro� le
HMM is trained solely on a collection of positive examples—sequences that are known (or at least believed)

FIG. 1. Representing a protein as a vector of pairwise similarity scores. The protein P is represented as a vector of
scores. The score function S.¢; ¢/ is computed using a standard sequence comparison algorithm. The vectorization set
of proteins p1; p2; p3; : : : ; pn is selected a priori and is used for every protein being vectorized.
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to be homologous to one another. The SVM adds to this model the ability to learn from negative examples
as well, by discriminating between the two classes. In the SVM-pairwise method, this discriminative
advantage is extended throughout the algorithm. The vector space de� ned by the pairwise scores includes
many dimensions (i.e., sequence similarity scores) that are unrelated to the positive training set. These
dimensions, if they contain signi� cant similarity scores, can provide important evidence against a protein
belonging to the positive class. For example, if a query protein is somewhat similar to sequences in the
positive class but very similar to several proteins in the negative class, then the slight similarities to the
positive class can safely be ignored. In the absence of these negative examples, the classi� cation of such
a sequence would remain in doubt.

The following section describes in more detail the two protein vectorization methods. This section is
followed by an experimental comparison of protein homology detection methods. The methods include
the SVM-Fisher (Jaakkola et al., 1999) and SVM-pairwise methods, two BLAST-based algorithms (PSI-
BLAST [Altschul et al., 1997] and Family Pairwise Search [FPS] [Grundy, 1998]), a pro� le HMM method
(SAM [Krogh et al., 1994]), and several variants of the SVM-pairwise algorithm. We measure the ability
of each algorithm to discover previously unseen families from the SCOP database (Murzin et al., 1995),
using as training sets all other members of the family’s superfamily. The experiments indicate that, for this
set of data, the algorithm described here produces the most accurate means of detecting remote homologs
among these methods.

A preliminary version of this work was described by Liao and Noble (2002). Relative to that paper, the
current work includes some new experimental results (Section 4.2) and � xes some errors in the previously
reported results. Supplementary data, including the training sets and pairwise similarity scores, as well as
experimental results, can be found at www.cs.columbia.edu/compbio/svm-pairwise.

2. ALGORITHM

The SVM algorithm, which provides the framework of the SVM-Fisher and SVM-pairwise methods,
is suprisingly simple. The algorithm addresses the general problem of learning to discriminate between
positive and negative members of a given class of n-dimensional vectors. The algorithm operates by
mapping the given training set into a possibly high-dimensional feature space and attempting to locate in
that space a plane that separates the positive from the negative examples. Having found such a plane, the
SVM can then predict the classi� cation of an unlabeled example by mapping it into the feature space and
asking on which side of the separating plane the example lies. Much of the SVM’s power comes from its
criterion for selecting a separating plane when many candidates planes exist: the SVM chooses the plane
that maintains a maximum margin from any point in the training set. Statistical learning theory suggests
that, for some classes of well-behaved data, the choice of the maximum margin hyperplane will lead to
maximal generalization when predicting the classi� cation of previously unseen examples (Vapnik, 1998).
The SVM algorithm can also be extended to cope with noise in the training set and with multiple classes
(Christianini and Shawe-Taylor, 2000).

One important requirement of the SVM is that the input be a collection of � xed-length vectors. Proteins,
of course, are variable-length sequences of amino acids and hence cannot be directly input to the standard
SVM. In the SVM-Fisher method, the HMM provides the necessary means of converting proteins into
� xed-length vectors. First, the HMM is trained using the positive members of the training set. Then the
gradient vector of any sequence—positive, negative, or unlabeled—can be computed with respect to the
trained model. Each component of the gradient vector corresponds to one parameter of the HMM. The
vector summarizes how different the given sequence is from a typical member of the given protein family.
An SVM trained on a collection of positively and negatively labeled protein gradient vectors learns to
classify proteins extremely well.

In the current work, we would like to accomplish a similar conversion of a protein from an amino
acid sequence into a � xed-length numeric vector. The sequence similarity score vectorization described
in Section 1 is closely related to the Family Pairwise Search (FPS) algorithm (Grundy, 1998; Bailey
and Grundy, 1999). FPS extends a pairwise sequence comparison algorithm such as Smith–Waterman
or BLAST to carry out sequence-versus-family comparisons by combining multiple pairwise comparison
scores. BLAST-based FPS is ef� cient and has been shown to perform competitively with HMM methods
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(Grundy, 1998). In place of an explicit model of the protein family, FPS uses the members of the family.
This implicit model provides an easy way to vectorize a given protein: simply store in the vector the
pairwise similarity scores with respect to each member of the training set. As in the SVM-Fisher method,
the vectorized proteins can then be fed into an SVM. We call this algorithm SVM-pairwise, and it is
illustrated in Fig. 2.

3. METHODS

The primary experiment reported here compares the performance of � ve algorithms: SVM-pairwise,
SVM-Fisher, PSI-BLAST, SAM, and FPS. We assess the recognition performance of each algorithm by
testing its ability to classify protein domains into superfamilies in the Structural Classi� cation of Pro-
teins (SCOP) (Murzin et al., 1995) version 1.53. Sequences were selected using the Astral database
(astral.stanford.edu [Brenner et al., 2000]), removing similar sequences using an E-value threshold of
10¡25. This procedure resulted in 4,352 distinct sequences, grouped into families and superfamilies. For
each family, the protein domains within the family are considered positive test examples, and the pro-
tein domains outside the family but within the same superfamily are taken as positive training examples.
The data set yields 54 families containing at least 10 family members (positive test) and 5 superfamily
members outside of the family (positive train). Negative examples are taken from outside of the positive
sequences’ fold and are randomly split into train and test sets in the same ratio as the positive exam-
ples. Details about the various families are listed in Table 1, and the complete data set is available at
www.cs.columbia.edu/compbio/svm-pairwise. This experimental setup is similar to that used by Jaakkola
et al. (1999), except for one important difference: in the current experiments, the positive training sets do
not include additional protein sequences extracted from a large, unlabeled database. As such, the recog-
nition tasks performed here are more dif� cult than those in Jaakkola et al. In principle, any of the seven
methods described here could be applied in an iterative framework using an auxiliary database.

The vectorization step of SVM-pairwise uses the Smith–Waterman algorithm as implemented on the
BioXLP hardware accelerator (www.cgen.com). The feature vector corresponding to protein X is FX D
fx1; fx2; : : : ; fxn, where n is the total number of proteins in the training set and fxi is the E-value of the
Smith–Waterman score between sequence X and the ith training set sequence. The default parameters are
used: gap opening penalty and extension penalties of 11 and 1, respectively, and the BLOSUM 62 matrix.

The SVM implementation employs the optimization algorithm described by Jaakkola et al. (2000), and
a web server and software is available at svm.sdsc.edu. At the heart of the SVM is a kernel function that
acts as a similarity score between pairs of input vectors. The base SVM kernel is normalized so that each
vector has length 1 in the feature space; i.e.,

K.X; Y/ D
X ¢ Y

p
.X ¢ X/.Y ¢ Y /

: (1)

FIG. 2. Schematic diagram of the SVM-pairwise algorithm. Pairwise sequence similarity scores are computed using
a standard algorithm such as BLAST or Smith–Waterman. Vectors are computed by comparing each protein to every
other protein in the (positive and negative) training set.
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Table 1. SCOP Families Included in the Experimentsa

Positive set Negative set Positive set Negative set

ID Train Test Train Test ID Train Test Train Test

1.27.1.1 12 6 2890 1444 2.9.1.4 21 10 2928 1393
1.27.1.2 10 8 2408 1926 3.1.8.1 19 8 3002 1263
1.36.1.2 29 7 3477 839 3.1.8.3 17 10 2686 1579
1.36.1.5 10 26 1199 3117 3.2.1.2 37 16 3002 1297
1.4.1.1 26 23 2256 1994 3.2.1.3 44 9 3569 730
1.4.1.2 41 8 3557 693 3.2.1.4 46 7 3732 567
1.4.1.3 40 9 3470 780 3.2.1.5 46 7 3732 567
1.41.1.2 36 6 3692 615 3.2.1.6 48 5 3894 405
1.41.1.5 17 25 1744 2563 3.2.1.7 48 5 3894 405
1.45.1.2 33 6 3650 663 3.3.1.2 22 7 3280 1043
2.1.1.1 90 31 3102 1068 3.3.1.5 13 16 1938 2385
2.1.1.2 99 22 3412 758 3.32.1.1 42 9 3542 759
2.1.1.3 113 8 3895 275 3.32.1.11 46 5 3880 421
2.1.1.4 88 33 3033 1137 3.32.1.13 43 8 3627 674
2.1.1.5 94 27 3240 930 3.32.1.8 40 11 3374 927
2.28.1.1 18 44 1246 3044 3.42.1.1 29 10 3208 1105
2.28.1.3 56 6 3875 415 3.42.1.5 26 13 2876 1437
2.38.4.1 30 5 3682 613 3.42.1.8 34 5 3761 552
2.38.4.3 24 11 2946 1349 7.3.10.1 11 95 423 3653
2.38.4.5 26 9 3191 1104 7.3.5.2 12 9 2330 1746
2.44.1.2 11 140 307 3894 7.3.6.1 33 9 3203 873
2.5.1.1 13 11 2345 1983 7.3.6.2 16 26 1553 2523
2.5.1.3 14 10 2525 1803 7.3.6.4 37 5 3591 485
2.52.1.2 12 5 3060 1275 7.39.1.2 20 7 3204 1121
2.56.1.2 11 8 2509 1824 7.39.1.3 13 14 2083 2242
2.9.1.2 17 14 2370 1951 7.41.5.1 10 9 2241 2016
2.9.1.3 26 5 3625 696 7.41.5.2 10 9 2241 2016

aFor each family, the numbers of sequences in the positive and negative training and test sets are listed. Full names of each SCOP
family are available at www.cs.columbia.edu/compbio/svm-pairwise.

This kernel K.¢; ¢/ is then transformed into a radial basis kernel OK.¢; ¢/, as follows:

OK.X; Y / D e
¡ K.X;X/¡2K.X;Y /CK.Y;Y /

2¾2 C 1; (2)

where the width ¾ is the median Euclidean distance (in feature space) from any positive training example to
the nearest negative example. The constant 1 is added to the kernel in order to translate the data away from
the origin. This translation is necessary because the SVM optimization algorithm we employ requires that
the separating hyperplane pass through the origin. An asymmetric soft margin is implemented by adding
to the diagonal of the kernel matrix a value 0:02 ¤ ½ , where ½ is the fraction of training set sequences that
have the same label as the current sequence (see Brown et al. [2000] for details). The output of the SVM
is a discriminant score that is used to rank the members of the test set. The same SVM parameters are
used for the SVM-Fisher and SVM-pairwise tests.

Hidden Markov models are trained using the Sequence Alignment and Modeling (SAM) toolkit (www.
soe.ucsc.edu/research/compbio/sam.html) (Krogh et al., 1994). Models are built from unaligned positive
training set sequences using the local scoring option (-SW 2). Following Jaakkola et al. (2000), we use a 9-
component Dirichlet mixture prior developed by Kevin Karplus (byst-4.5-0-3.9comp at www.soe.ucsc.edu/
research/compbio/dirichlets). Once a model is obtained, it is straightforward to compare the test sequences
to the model by using hmmscore (also with the local scoring option). The resulting E-values are used to
rank the test set sequences.

The SVM-Fisher method uses the same, trained HMMs during the vectorization step. As in the Baum–
Welch training algorithm for HMMs, the forward and backward matrices are combined to yield a count

http://www.cs.columbia.edu/compbio/svm-pairwise
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of observations for each parameter in the HMM. As shown by Jaakkola et al. (2000), the counts can be
converted into components of a gradient vector EU via the following equation:

EUij D
Ej .i/

ej .i/
¡

X

k

Ej .k/; (3)

where Ej .i/ is the number of times that amino acid i is observed in state j and ej .i/ is the emission
probability for amino acid i in state j . Although these gradients can be computed for every HMM param-
eter, the SVM-Fisher method uses only the gradient components that correspond to emission probabilities
in the match states. Furthermore, a more compact gradient vector can be derived using a mixture decom-
position of the emission probabilities. The mixture gradient calculation, analogous to Equation 3, is as
follows:

EU j̀ D
20X

iD1

Ej .i/

µ
µi`

ej .i/
¡ 1

¶
; (4)

where µi` corresponds to the ith amino acid in the `th Dirichlet distribution. These experiments employ
the same nine-component Dirichlet mixture mentioned above. For a pro� le HMM containing m match
states, the resulting vector contains 9m components. These vectors are then used as input to an SVM, as
described above.

For comparison, we also include in the experiments the PSI-BLAST algorithm (Altschul et al., 1997),
which is probably the most widely used protein homology detection algorithm. It is not straightforward to
compare PSI-BLAST, which requires as input a single sequence, with methods such as HMMER and SVM-
Fisher, which take multiple input sequences. We address this problem by randomly selecting a positive
training set sequence to serve as the initial query. The complete positive training set is then aligned using
CLUSTALW (Thompson et al., 1994). Using the query sequence and the alignment as inputs, PSI-BLAST
is run for one iteration with the test set as a database. The resulting E-values are used to rank the test set
sequences. Note that PSI-BLAST is not run on the test set for multiple iterations: this restriction allows a
fair comparison with the other, noniterative methods included in the study.

Family Pairwise Search (Grundy, 1998; Bailey and Grundy, 1999) is another family-based protein ho-
mology detection method that is based upon pairwise sequence similarity scores. We include in the study
a simple form of FPS called FPS-minp. This method simply ranks each test set sequence according to the
minimum of the Smith–Waterman E-values with respect to the positive training set.

Each of methods produces as output a ranking of the test set sequences. To measure the quality of this
ranking, we use two different scores: receiver operating characteristic (ROC) scores and the median rate
of false positives (RFP). The ROC score is the normalized area under a curve that plots true positives as a
function of false positives for varying classi� cation thresholds (Gribskov and Robinson, 1996). A perfect
classi� er that puts all the positives at the top of the ranked list will receive an ROC score of 1, and a
random classi� er will receive an ROC score of 0.5. The median RFP score is the fraction of negative test
sequences that score as high or better than the median-scoring positive sequence. RFP scores were used
by Jaakkola et al. in evaluating the Fisher-SVM method.

4. RESULTS

4.1. Primary experiment

The results of the primary experiment are summarized in Fig. 3. The two graphs rank the � ve homology
detection methods according to ROC and median RFP scores. In each graph, a higher curve corresponds
to more accurate homology detection performance. Using either performance measure, the SVM-pairwise
method performs signi� cantly better than the other four methods. We assess the statistical signi� cance of
differences among methods using a two-tailed signed rank test (Henikoff and Henikoff, 1997; Salzberg,
1997). The resulting p-values are conservatively adjusted using a Bonferroni correction for multiple com-
parisons. As shown in Table 2, nearly all of the differences apparent in Fig. 3 are statistically signi� cant
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FIG. 3. Relative performance of the � ve homology detection methods. Each graph plots the total number of families
for which a given method exceeds a score threshold. The top graph uses ROC scores, and the bottom graph uses
median RFP scores. Each series corresponds to one protein homology detection method.

at a threshold of 0:05. The resulting induced performance ranking of methods is SVM-pairwise, FPS,
SVM-Fisher, SAM, PSI-BLAST. Only the difference between SVM-Fisher and SAM is not statistically
signi� cant.

Some of these results agree with previous assessments. For example, the relative performance of SVM-
Fisher and SAM agrees with the results given by Jaakkola et al. (1999), although in that work the difference
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Table 2. Statistical Signi� cance of Differences between Pairs of
Homology Detection Methodsa

FPS SVM-Fisher SAM PSI-BLAST

SVM-pairwise 6.3e-03 3.3e-08 2.2e-08 1.0e-08
FPS 1.5e-05 5.4e-06 5.4e-09
SVM-Fisher — 1.7e-02
SAM —

aEach entry in the table is the p-value given by a two-tailed signed rank test comparing
paired ROC scores from two methods for each of the 54 families. The p-values have been
(conservatively) adjusted for multiple comparisons using a Bonferonni adjustment. An entry in
the table indicates that the method listed in the current row performs signi� cantly better than
the method listed in the current column. A “—” indicates that the p-value is greater than 0:05.
The statistics for median RFP scores are similar.

FIG. 4. Family-by-family comparison of SVM-pairwise with SVM-Fisher and FPS method. Each point on the graph
corresponds to one of the SCOP superfamilies listed in Table 1. The y-axis in each plot is the ROC score achieved by
the SVM-pairwise method. The x-axes in the two plots correspond to ROC scores from SVM-Fisher and FPS.

was more pronounced. Similarly, Park et al. (1998) showed that SAM signi� cantly out-performs PSI-
BLAST. Here, the difference between the two methods is not as pronounced.

One surprise in Fig. 3 is the relatively strong performance of the FPS algorithm on this task.1 Previous
assessments have shown FPS to outperform HMMs for close homologies (Grundy, 1998) but to perform
worse than HMMs in recognizing remote relationships (Jaakkola et al., 1999). These results suggest that,
when only a small number of similar sequences are available, the FPS algorithm does a good job of
exploiting those sequences.

The relative performance of the SVM-pairwise method is further illustrated in Fig. 4, which shows a
family-by-family comparison of the 54 ROC scores computed for SVM-pairwise versus SVM-Fisher and
FPS. The SVM-pairwise method scores higher than both other methods on nearly every family. The one
outlier is family 2.44.1.2 (eukaryotic proteases), which has a relatively small training set. Family-by-family
results from each of the seven methods are available at www.cs.columbia.edu/compbio/svm-pairwise.

4.2. Lesion studies

To understand how brains work, scientists perform lesion studies, removing a portion of the brain and
examining the subsequent behavior of the subject. We are interested in understanding why the SVM-
pairwise algorithm works as well as it does. Accordingly, we have performed a series of experiments with
modi� ed versions of the original algorithm.

1The FPS results reported in the earlier version of this paper were incorrect, due to a software bug.

http://www.cs.columbia.edu/compbio/svm-pairwise
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First, in order to evaluate the necessity for an O.n2/ sequence comparison algorithm, we repeated
the above experiment using BLAST log p-values in place of the Smith–Waterman E-values in SVM-
pairwise. The results, shown in Fig. 5(A), show intermediate performance between SVM-pairwise and the
FPS algorithm. The signed-rank test indicates a signi� cant difference between the two variants of SVM-
pairwise (p D 0:011/, but not between BLAST-based SVM-pairwise and FPS. This result is encouraging,
because the modi� ed SVM-pairwise algorithm is much more ef� cient than the original version and provides
performance that is nearly as good.

FIG. 5. Testing variants of the SVM-pairwise algorithm. (A) Replacing Smith-Waterman with the BLAST algorithm.
(B) Removing negative examples from the vectorization set. (C) Replacing the SVM with the k-nearest neighbor
algorithm.
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Second, in order to evaluate the bene� t provided by the negative elements in the pairwise score vector,
we tested a version of SVM-pairwise in which the negative training set is not used during the creation
of the score vectors. In this method, called SVM-pairwiseC, the negative examples are still used during
the training of the SVM. The results in Fig. 5(B) are quite similar to the results from the previous
modi� cation: SVM-pairwiseC performs signi� cantly worse than the original algorithm (p D 0:0005) and
not signi� cantly better than FPS. Nonetheless, with respect to the range of available algorithms, the SVM-
pairwiseC algorithm performs quite well. This result implies that the power of SVM-pairwise does not lie
primarily in the use of the negative training set during vectorization. Given the large size of the negative
training set, SVM-pairwiseC is considerably faster than SVM-pairwise and therefore provides a quite
powerful, ef� cient alternative.

Finally, in order to evaluate the utility of the SVM in the SVM-pairwise algorithm, we include a method,
KNN-pairwise, that replaces the SVM with a simpler discriminative classi� er, the k-nearest neighbor
algorithm. The algorithm takes as input the same feature vector as the SVM does in SVM-pairwise.
However, rather than classifying a query protein by orienting it with respect to a separating plane, KNN
locates the k training set proteins that are nearest to the query protein (using Euclidean distances between
vectors). We use a kernel version of k-nearest neighbor, with the same kernel function as in the SVM.
The predicted classi� cation is simply the majority classi� cation among these k neighbors. For this study,
we use k D 3. Sequences are ranked according to the number of distance-weighted votes for the positive
class.

As shown in Fig. 5(C), KNN-pairwise performs relatively poorly. The difference betwen KNN-pairwise
and PSI-BLAST is not statistically signi� cant. This result shows the utility of the SVM algorithm, since
both SVM-based methods perform better than the KNN-based method. It would certainly be possible
to improve our k-nearest neighbor implementation using, for example, a generalization such as Parzen
windows (Bishop, 1995). We have no reason to suspect, however, that such an improvement would yield
better performance than the SVM-pairwise method.

5. DISCUSSION

We have shown that, for the datasets used here, the SVM-pairwise method yields signi� cantly improved
remote homology detection relative to a number of existing, state-of-the-art algorithms. The key compo-
nents of the algorithm include its discriminative approach, its use of a large-margin SVM classifer, and
its straightforward means of converting a protein into vector form. We believe that this vectorization is
particularly signi� cant. Algorithms such as BLAST and the Smith–Waterman have undergone two decades
of empirical optimization in the � eld of bioinformatics. Thus, considerable prior knowledge is implic-
itly incorporated into the pairwise sequence similarity scores and hence into the SVM-pairwise vector
representation.

One signi� cant characteristic of any homology detection algorithm is its computational ef� ciency. In this
respect, the SVM-pairwise algorithm is not signi� cantly better than SVM-Fisher. Both algorithms include
an SVM optimization, which is roughly O.n2/, where n is the number of training set examples. The
vectorization step of SVM-Fisher requires training a pro� le HMM and computing the gradient vectors.
The gradient computation dominates, with a running time of O.nmp/, where m is the length of the
longest training set sequence and p is the number of HMM parameters. In contrast, the vectorization
step of SVM-pairwise involves computing n2 pairwise scores. Using Smith–Waterman, each computation
is O.m2/, yielding a total running time of O.n2m2/. Thus, assuming that m ¼ p, the SVM-pairwise
vectorization takes approximately n times as long as the SVM-Fisher vectorization. The BLAST-based
version of SVM-pairwise reduces the running time to O.n2m/.

There is, however, an important sense in which the SVM-pairwise algorithm is incomplete. In addition
to learning from the given sequences, state-of-the-art algorithms such as PSI-BLAST and SAM-T99 pull
in additional training set examples from a large, unannotated database of protein sequences. SVM-pairwise
has not yet been implemented in an iterative framework. Therefore, in order to produce a fair comparison,
the experiments reported here prevent any of the algorithms from iterating. Clearly, to make SVM-pairwise
a usable algorithm in practice, unlabeled data must be included. This extension will be the subject of future
work.
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