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Abstract. Motion deblurring is a long standing problem in computer
vision and image processing. In most previous approaches, the blurred
image is modeled as the convolution of a latent intensity image with a
blur kernel. However, for images captured by a real camera, the blur
convolution should be applied to scene irradiance instead of image inten-
sity and the blurred results need to be mapped back to image intensity
via the camera’s response function (CRF). In this paper, we present a
comprehensive study to analyze the effects of CRFs on motion deblur-
ring. We prove that the intensity-based model closely approximates the
irradiance model at low frequency regions. However, at high frequen-
cy regions such as edges, the intensity-based approximation introduces
large errors and directly applying deconvolution on the intensity image
will produce strong ringing artifacts even if the blur kernel is invertible.
Based on the approximation error analysis, we further develop a dual-
image based solution that captures a pair of sharp/blurred images for
both CRF estimation and motion deblurring. Experiments on synthetic
and real images validate our theories and demonstrate the robustness
and accuracy of our approach.

1 Introduction

Image deblurring is a long standing problem in computer vision and image pro-
cessing. A common assumption in most existing approaches is that a blurred
image is the convolution result of a blur-free intensity image I with a blur ker-
nel K, i.e., B̂ = I ⊗K. However, for images captured by a real camera, the blur
convolution should be applied to image irradiance Ĩ rather than image intensity.
The blurred results then need to be mapped back to image intensity via the
camera’s response function (CRF) ψ as:

B = ψ(Ĩ ⊗K). (1)

Eqn. (1) reveals that, unless the CRF ψ is linear, the actual captured blur image

B will be different from the synthetically blurred intensity image B̂. The correct
way to deblur B hence is to first map B back to irradiance as ψ−1(B), then
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apply deconvolution, and finally map it back to intensity. In reality, recovering
the CRF ψ of a real camera often requires applying complex calibration processes
[1] or using special scene settings [2].

Previously irradiance domain deconvolution methods assume a known CR-
F curve [3, 4]. More recently approaches [5–8] apply additional constraints in
the intensity domain to reduce visual artifacts. Although they simplify the es-
timation, they may introduce significant approximation errors caused by the
underlying linear CRF assumption. More important, it is desirable to character-
ize how close the intensity based convolution is to the ground truth irradiance
blurring model and where the errors are large.

In this paper, we present a comprehensive study to analyze the effect of CRFs
on motion deblurring. Our contributions are two-folded. On the theory side, we
prove that the intensity-based blur model closely approximates the irradiance-
based one at low frequency regions. We further derive a closed-form error bound
to quantitatively measure the difference between B and B̂. However, at high
frequency regions such as near texture or occlusion edges, the intensity-based
approximation introduces large errors and directly applying deconvolution on the
intensity image introduces ringing artifacts even if the blur kernel is invertible.

On the application front, we develop a simple but effective computational
photography technique to recover the CRF. Our approach is inspired by the
recent single-image based CRF estimation method [9] that strategically blurs
the image under 1D linear motion. We, instead, capture a pair of sharp/blurred
images and directly use motion blurs caused by hand shakes. Specifically, we first
automatically align the two images and then use the sparsity prior to recovering
the blur kernel. To recover the CRF, we represent it using the Generalized Gam-
ma Curve Model (GGCM) and find the optimal one by fitting pixels near edge
regions in the two images. Experiments on synthetic and real images validate our
theories and demonstrate that our dual-image approach is robust and accurate.

Concurrent with this research, Kim et al. [10] independently developed a
similar analysis to characterize nonlinear CRFs in motion blur and proposed a
single-image deblurring scheme. We, on the other side, focus on the theoretical
analysis of the approximation errors and derive an error bound.

2 Related Work

Our work is related to a number of areas in image processing and computational
imaging.

CRF Estimation. The CRF can be estimated by capturing multiple im-
ages from the same viewpoint with different but known exposure settings. The
pioneer work by Debevec and Malik [1] assume smooth CRFs and form an over-
determined linear system for simultaneously estimating the irradiance at each
pixel as well as the inverse CRF. Later approaches [11–14] adopt more complex
CRF models based on polynomial fitting [13] or Empirical Model of Response
(EMoR) [12]. EMoR, for example, is particularly useful for its low dimensional-
ity and high accuracy and has been widely used in various imaging applications
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[11, 15–18]. Lee et al. [14] employed this low-rank structure of irradiance where-
as Kim and Pollefeys [11] developed a full radiometric calibration algorithm
to simultaneously estimate CRF, exposure, and vignetting. More recently [15],
they used an outdoor image sequence with varying illumination based CRF es-
timating method, while different from previous constant illumination methods
[1, 12].

A downside of multi-image approaches is that both the scene and camera
have to be static during capturing. To resolve this issue, a number of single-
image based approaches have been recently proposed. The classical approach
uses the Macbeth color chart [2] and assumes known surface reflectance for
calibrating the radiometric function. In Lin and Zhang [17] and Lin et al. [16],
the authors analyzed the linear blending properties of edges in gray scale or color
images. Matsushita and Lin [18] explored how symmetric distribution of noise
gets skewed by the CRF and used a single noisy image for recovering the CRF.
Wilburn et al. [9] further analyzed how the CRF affects linearly motion blurred
edges and then used the blurred edges for sampling the CRF. Their approach
requires strategically introducing a linear motion blur whereas we use general
motion blurs, e.g., the ones caused by hand shakes.

Image Deblurring. Our work aims to actively use image blurs for recovering
the CRF, and also analyzes ringing effect in deblurred images caused by the
nonlinearity introduced by the CRF. The literature on image deblurring is huge
and we refer the readers to the recent papers [19, 20] for a thorough review. Most
existing approaches assume that the CRF is known or linear and directly apply
the deblurring on the intensity domain. More recent approaches have focused
on imposing priors to the kernel or to image statistics to improve quality. For
example, Fergus et al. [3] assumed the gradient distribution of a sharp image is
heavy-tailed and apply inference to recover the optimally deblurred result. Shan
et al. [5] concatenated two piece-wise continuous functions to fit the heavy-tailed
distribution and use local image constraint and high-order noise distribution to
suppress the ringing artifacts. Other types of priors such as edge sharpness [21,
6], transparency [22], kernel sparsity [23] and Fields of Experts [24] have shown
promising results for image restoration. Levin et al. [19] analyzed and evaluated
many recent blind deconvolution algorithms. Due to the complexity of both
estimating CRF and blind deconvolution, recent approaches [7, 6, 5] attempt
to model the blur on image intensities by bypassing the irradiance-intensity
conversion. Additional constraints such as minimal ringing can be added to the
deconvolution process. However, the underlying approximation error has been
barely discussed.

3 Deblurring: Irradiance vs. Intensity

We first study the role of the CRF in image blurring/deblurring. Before pro-
ceeding, we clarify our notation. I represents the blur-free intensity image, E
represents its corresponding scene irradiance, ∆tI is the exposure time. We also
assume that the CRF ψ is monotonically increasing and use ϕ to represent its
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inverse. We have I = ψ(E ·∆tI) or,

E = ϕ(I)/∆tI . (2)

We use B to represent the ground truth blurred image that is obtained by
first convolving the irradiance image E with the blur kernelK and then mapping
the result onto intensity as:

B = ψ((E ⊗K) ·∆tB), (3)

where all kernel elements in K are non-negative and sum to one. Substituting
Eqn.(2) into (3), we have:

B = ψ((ϕ(I)⊗K) · r), r = ∆tB/∆tI . (4)

r represents exposure ratio. It is important to note that Eqn. (4) simplifies the
exposure ratio r in terms of the exposure time. In practice, we can factor other
exposure parameters such as the ISO and the aperture size (F number) into r 4.

In our analysis, we assume that the hypothetic latent image I and the cap-
tured blurred image B have identical exposure, i.e., r = 1, and we have:

B = ψ(ϕ(I)⊗K). (5)

Actually, two images have the same exposure do not necessitate the same ex-
posure settings of a camera. They may differ in exposure time, ISO value or
aperture size 4.

For blind image deconvolution, the goal is to recover the latent sharp image
and the kernel. By Eqn. (5), it is straightforward to map B back to the irradi-
ance domain and then perform the deconvolution. However, it is also popular to
use the intensity based convolution model B̂ = I⊗K in conventional deblurring
algorithms [5, 7]. By using additional edge prediction [6] or gradient regulariza-
tion [7], the intensity based model is also able to produce pleasing deblurring

results. We aim to measure the Blur Inconsistency Γ = B−B̂, and to understand
where the intensity based convolution model introduces approximation error.

3.1 Blur Inconsistency

We first study where Blur Inconsistency occurs.
Claim 1. In uniform intensity regions, Γ = 0 .

Since pixels within the blur kernel region have uniform intensity, we have ϕ(I ⊗
K) = ϕ(I) = ϕ(I)⊗K. Therefore,

B = ψ(ϕ(I)⊗K) = ψ(ϕ(I ⊗K)) = B̂,

4 As shown in [4] and [13], the exposure ratio can be calculated by r = ISOB∆tBFI
2

ISOI∆tIFB
2 .

ISOI and FI denote the camera ISO setting and aperture F-number relating to
image I. ISOB and FB are the corresponding values with respect to image B.
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thus Γ = 0.
Claim 1 applies to any (non-linear) CRF. This also implies that uniform

regions in B will not be useful to recover the CRF.
Claim 2. If the blur kernel K is small and the CRF ψ is smooth, Γ ≈ 0 in

low frequency regions in I .

Proof. Let I = I + ∆I in a local patch covered by the blur kernel K. I is
the average intensity within the patch and ∆I is the deviation from I. In low
frequency regions, ∆I is small.

Next we apply the first-order Taylor expansion to ϕ(I)⊗K as:

ϕ(I +∆I)⊗K ≈ ϕ(I)⊗K + (ϕ′(I) ·∆I)⊗K (6)

Since I is uniform, we have ϕ(I)⊗K = ϕ(I), and ϕ′(I) is constant in the local
neighborhood. The right hand side (RHS) of Eqn.(6) thus can be approximated
as:

ϕ(I) + ϕ′(I) ·∆I ⊗K. (7)

Furthermore, since ϕ(I ⊗K) = ϕ(I ⊗K +∆I ⊗K), by using the first-order
Taylor expansion, we have

ϕ(I ⊗K) ≈ ϕ(I ⊗K) + ϕ′(I ⊗K) · (∆I ⊗K). (8)

Since I is constant in the local patch, the RHS of (8) is equal to:

ϕ(I) + ϕ′(I) ·∆I ⊗K. (9)

Therefore,
B = ψ(ϕ(I)⊗K) ≈ ψ(ϕ(I ⊗K)) = B̂, (10)

i.e., Γ ≈ 0.

Claim 2 holds only for small kernels. If the kernel is large, like 80 × 80, our
first-order Taylor expansion will be less accurate. To illustrate this property we
simulate I, B̂ and B on a 1D signal with ϕ being a gamma 2.2 curve used in [3,
4]. We then plot Γ with different sized Ks (10, 20, 30 and 80 pixels). Figure 1
(a) shows that Γ ≈ 0 for the first three kernels. Claim 2 also implies that low
frequency regions in I contribute little information to the CRF.

Claim 3. Γ can be large at high frequency regions in I.
Recent analysis [9, 10] shows that the blurred edges in B best illustrate the

non-linearity of the CRF. When an edge is motion blurred, the results should
demonstrate linear changes on intensity due to the linear convolution. However,
in the observed image the linear profile is warped by the CRF[9, 17] and causes
B to deviate from I ⊗K.

Specifically, let us consider a sharp edge in I represented by a Step Edge
Function,

I(x) =

{
0 x < 0.5,

1 else.
(11)
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Fig. 1. Blur Inconsistency Γ . (a): Γ is computed on a 1D sharp signal with a gamma
2.2 CRF curve with four different blur kernels of size 10, 20, 30 and 80 pixels. (b):
The diagram of Γ vs. different kernel sizes. Blurs are applied to the top row pattern in
(c). Notice that large Γ values match sharper edges. (c): The top two rows show the
latent pattern I and the irradiance-based blurred result B. The bottom row shows the
measured Γ which varies across edge strength.

Since ϕ has boundary ϕ(0) = 0 and ϕ(1) = 1 [12], we have ϕ(I) = I. Therefore,

B = ψ(ϕ(I)⊗K) = ψ(I ⊗K) = ψ(B̂), (12)

and then, Γ = ψ(B̂) − B̂. In this toy example, Γ (x) simply measures the mag-
nitude how ψ(x) deviates from the linear function y(x) = x. In other words,
Γ (x) → 0, iff ψ(x) → x. However, practical CRFs ψ are highly nonlinear [12].

To validate Claim 3, we synthesize the blurred edges and measure their Γ
shown in Figure 1(c). The top row shows a sharp pattern corresponding to I.
Notice that the foreground blocks gradually become brighter from left to right
and the rightmost edge has the largest scale of the step-edge. The second row
shows its corresponding horizontally motion blurred result B. ϕ is simulated by
Gamma 2.2. The motion length is 20 pixels. The bottom row presents Γ and
clearly shows that the blurred edge regions Γ have significant deviations that
cannot be ignored. We also notice that a sharper edge leads to a larger Γ . Figure
1(b) shows the horizontal profile of the Γ used in Figure 1(c). We experiment on
four different kernel sizes and show the corresponding Γ s. The results illustrate
that the magnitude of Γ is closely related with the contrast of the edge whereas
the kernel size only affects the shape of Γ curve.

Finally, we analyze the more general case and provide upper and lower bound
to Γ :

Theorem 1. Let Imin and Imax be the local lowest and highest pixel intensi-
ties in a local neighborhood covered by kernel K in image I. If ϕ is convex, then
the Blur Inconsistency is bounded by 0 ≤ Γ ≤ Imax − Imin.

Proof. Consider that ϕ(I)⊗K can be viewed as a convex combination of pixels
from ϕ(I). If ϕ is convex, we can use Jensen’s inequality and get

ϕ(I)⊗K ≥ ϕ(I ⊗K). (13)

Further, since the CRF ψ is a monotonically increasing [1, 13], we have:

B = ψ(ϕ(I)⊗K) ≥ ψ(ϕ(I ⊗K)) = B̂, (14)
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Fig. 2. The left panel shows 188 CRF curves of real cameras from DoRF [12]. Nearly
all curves appear concave. For a clearer illustration, the second-order derivatives at
sample points on the curves are plotted on the right. Each row corresponds to a CRF
curve where which negative derivatives are drawn in gray and positive in black.

i.e., Γ ≥ 0.
Next, we derive the upper bound of Γ . Since I ⊗ K ≤ Imax and ϕ is the

inversion of ψ, it must also be monotonically increasing. Therefore ϕ(I)⊗K ≤
ϕ(Imax) and we have,

B = ψ(ϕ(I)⊗K) ≤ ψ(ϕ(Imax)) = Imax. (15)

Likewise, we can also derive taht B̂ = I ⊗ K ≥ Imin. Combining it with Eqn.
(14) and Eqn. (15), we have: Imin ≤ B̂ ≤ B ≤ Imax. Therefore,

0 ≤ Γ ≤ Imax − B̂ ≤ Imax − Imin. (16)

Theorem 1 explains the phenomenon in Figure 1 (b) and (c): when the
intensity contrast (gradient) of an edge is high, the upper-bound of Γ will be
large. In contrast, in low-frequency regions, the upper bound Imax−Imin is lower
and so is Γ , i.e., B can be well approximated by B̂.

It is important to note that Theorem 1 assumes a convex inverse CRF ϕ.
This property has been observed in many previous results. For example, the
widely used Gamma curves ϕ(x) = xγ , γ > 1, are convex. To better illustrate
the convexity of ϕ or equally the concavity of ψ, we plot in Figure 2 188 real
camera CRF curves (ψ) collected in [12]. We represent all curves by a matrix
with 188 rows and compute the discrete second-order derivatives and show the
results in the right panel of Figure 2. The negative second-order derivatives are
illustrated in gray pixels and the positive ones in black pixels. Our experiment
shows that the majority (84.4%) of sample points are negative and therefore the
inverse CRF ϕ is largely convex.

3.2 Deconvolution Artifacts

Our theory reveals that if a camera has a non-linear CRF, the conventional
intensity-based blur model is largely valid on uniform and smooth regions but
fails near high frequency regions such as near occlusion or texture edges. Next,
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Fig. 3. The ringing artifacts when deblurring a blurred step-edge function. The kernel
is invertible and therefore the artifacts are caused by Γ .

we analyze the deblurring artifacts when applying brute-force intensity-based
deblurring method.

In the first example, we analyze the 1D step-edge signal (11) for its simplicity.

By 12, we have B = ψ(B̂). Assume ψ is a Gamma function ψ(x) = xγ , γ < 1,
we can then expand B with Taylor expansion:

B = B̂γ = B̂ + P, (17)

where P =
∞∑
t=1

(γ−1)t

t! B̂(ln B̂)
t
. An important property of function x(lnx)

t
is

that it approaches zero for x → 0+ or x → 1. Therefore, P only has non-zero
values in the blurred edge regions.

Given an invertible filter which has non-zero points in the frequency, we can
represent the deconvolution of B with K by B ⊗K−1, and thus

B ⊗K−1 = B̂ ⊗K−1 + P ⊗K−1, (18)

where B̂ ⊗K−1 = I since K is invertible. P ⊗K−1 can be viewed as the decon-
volution artifacts introduced by the Blur Inconsistency Γ . Figure 3 illustrates
the decomposition of (18) in details.

The ringing artifacts in the step-edge function discussed above can also be
observed in the frequency domain. Let I∗ = B⊗K−1. We assume that the fouri-
er coefficient of K at a specific frequency ωn is an. Therefore, the corresponding
coefficient of K−1 at frequency ωn is 1/an. Since Ĩ is a Step Function, its co-
efficient at ωn is α/n for n ̸= 0, where α is a constant value for all n. We can

further verify that the coefficient of Ĩ ⊗K at frequency ωn is α/n · an.
If ψ is a linear function, the coefficient of I∗ at frequency ωn will be β ·

α/n · an · 1/an = αβ/n where β is a constant scaling factor introduced by ψ.

Therefore, the spectrum of I∗ will be a scaled version of Ĩ, i.e., I∗ will still be a
step function and there will be no ringing artifacts.

In contrast, if ψ is monotonically increasing and concave, Farid [25] proved
by using Taylor’s series that the coefficients at frequency ωn for I∗ will be scaled
non-linearly and non-uniformly, i.e., it will no longer be a scaled version of α/n·an
and convolving it with K−1 will not cancel out an. As a result, I∗ will no longer
be a step function (edge) but a signal corrupted by non-uniformly scaled high
frequencies. Visually it will exhibit strong ringing artifacts.

Finally, we analyze and illustrate the visual artifacts caused by a non-linear
CRF in image deblurring. In Figure 4, we synthesize a motion-blurred image
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Fig. 4. TV-based deblurring results on the irradiance-based blur image B and on the
intensity-based blur image B̂. (a) shows the latent intensity image I. (b) shows B (left)

and B̂ (right). (c) and (d) show the deblurred results using TV on B and B̂ with the
same blur kernel. (e) and (f) show the corresponding error maps.

using an invertible blur kernel under a Gamma 2.2 CRF. Figure 4(a) shows the
latent image I and the kernel K. (b) shows the irradiance-based blur image B

and the intensity-based blur image B̂. We apply non-blind deconvolution using
Total Variation regularization [26] to recover the latent images from B and B̂
respectively. The results are shown in Figure 4 (c) and (d). Figure 4 (e) and (f)
show the error map to the ground truth.

As shown in Figure 4, the TV-based technique produces high quality result
given B̂. However, applying the same deconvolutoin technique on B using the
same blur kernel produces ringing artifacts surrounding image edges. Such re-
sult is consistent with our Theorem 1. Note that the edges with large contrast
Imax−Imin will have large Blur Inconsistency Γ , and exhibit noticeable ringings
artifacts.

Theorem 1 reveals the importance of image regularization in intensity-based
deblurring. When images have moderate edge contrasts, our experiments show
that Total Variation regularized nonblind deconvolution can produce reasonable
results. However, for images with large edge contrasts, the Blur Inconsistency will
be large and suppressing the ringing artifacts can be difficult. The deconvolution
models used [5, 7] further help to suppress ringing by assuming heavy-tailed
distribution, local gradient constraint, noise distribution, etc.

4 Dual-Image CRF Estimation

Based on our analysis, we present a new computational photography technique to
estimate the CRF using a pair of images. Our work is inspired by the recent dual-
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image processing techniques where a pair of images captured towards the same
scene but under different aperture/shutter settings are used [4]. In a similar vein,
we use a blurry/sharp image pair: the first image is captured with a slow shutter
and introduces motion blurs whereas the second is captured with fast shutter
but high ISO. The main difference is that [4] uses known CRF for deblurring
whereas our goal is to estimate CRF from the image pair.

Recall that our analysis shows that the blurred edge pixels reveal most infor-
mation about the CRF. We therefore focus on using these pixels. We first align
the two images and estimate the blur kernel. Next, we approximate the CRF by
fitting a non-linear function to match the edge pixels on the blur-free image to
the corresponding ones on the blurred image. Compared with the recent single-
image CRF estimation technique [9] that relies on 1D linear motion blurs, our
solution aims to provide a more flexible setup, i.e., using a hand-held camera
and it can handle complex 2D motions.

We apply the kernel sparsity based method [27] to simultaneously register
the blurry/sharp image pair and estimate the kernel. In our setup, we capture
the images with nearly identical exposure settings of the camera pair (i.e., 0.8 ≤
r ≤ 1) by properly adjusting the shutter and the ISO. This allows us to robustly
register the pair. Finally, to recover the CRF, we model the inverse CRF ϕ(x)
using the Generalized Gamma Curve Model (GGCM) [28]:

ϕ(x) = x1/P (x,α), P (x, α) =

n∑
i=0

αix
i. (19)

In our experiment, we find that n = 4 is usually accurate enough to reproduce
the CRF.

To find the optimal ϕ, the brute-force approach is to minimize the difference
between prediction and observation in the irradiance domain:

∥ϕ(B)− ϕ(I)⊗K · r∥2. (20)

Apparently, a trivial solution is ϕ(x) = 0. We therefore set out to minimize the
difference in the intensity domain as:

∥ψ(ϕ(I)⊗K · r)−B∥2. (21)

Claim 1-3 show that the edge pixels contribute most information to the CRF.
Therefore, instead of treating all pixels equally, we assign more weights to pixels
near edges that have a high inconsistency measure Γ . The final weighted energy
function is then:

J(ϕ) = ∥W · (ψ(ϕ(I)⊗K · r)−B)∥2, (22)

where the weighting matrix W is determined by

W (i, j) =

{
Γ (i, j) if Γ (i, j) > τ1 ,

0 else.
(23)
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If the two images have slightly different exposures, i.e., r ̸= 1, we will not be
able to directly measure Γ . In this case, we measure the upper-bound of Γ (16)
to define the weight matrix as:

W (i, j) =

{
Imax − Imin if Imax − Imin > τ2 ,

0 else.
(24)

In our experiments, we use τ1 = 0.02, τ2 = 0.2 as the edge threshold. To
improve robustness, we further exclude saturated pixels in our optimization.
Finally, the computed exposure ratio r from the camera parameters can still
contain errors due to camera hardware controls. To reduce error, we calculate
initial exposure ratio according to exposure time and ISO value and then it-
eratively update ϕ and r where r is obtained by fitting the observation model
Eqn.(4):

r =

∑
i,j

(ϕ(I(i, j))⊗K)ϕ(B(i, j))∑
i,j

(ϕ(I(i, j))⊗K)
2 (25)

Since ϕ and its inverse function ψ both appear in the energy function, the direct
optimization is difficult. We apply non-linear Nelder-Mead Simplex method [18]
to find the optimal solution.

5 Experiments and Results

We have evaluated our dual-image based CRF estimation technique on both syn-
thesized images and real cameras. For synthetic results, we use the ground truth
irradiance image Ĩ and a known blur kernel K to generate a blurred irradiance
image B̃. We then map Ĩ and B̃ back onto the corresponding intensity images I
and B using predefined CRFs. Specifically, we select the first ten camera CRFs
listed in [13] and use only the green channel CRF.

To synthesize motion blurs, we use eight canonical PSFs from Levin et al. [19]
as the blur kernels. To test robustness, we further add noise to the latent intensity
image I. The addition of noise is important to faithfully emulating capturing
images under a high ISO. We use Gaussian noise with three different variances
σ2 = 0.001, 0.005 and 0.01 (with image intensity scaled to [0, 1]). This produces
a total of 240 possible combinations in terms of CRFs, blur kernels, and noise
levels.

Next, we apply our CRF estimation algorithm to all 240 cases. The input of
the algorithm includes B, noisy I and blur kernel K. Then we measure the error
of the recovered CRFs. Figure 5 shows our results for a specific ϕ illustrated
as the red curve. The left panel shows our estimated ϕ at three noise levels
and the right panel shows the average RMSE (Root Mean Square Error) of
our estimations over all 240 estimated curves. Our estimations at different noise
levels (shown in three different colors) have similar mean RMSE: 0.0155, 0.0137
and 0.0169 respectively. This illustrates that our technique is robust in presence
of image noise.
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Fig. 5. CRF estimation on synthetic images. The left three panels show the results on
a specific CRF with different noise levels. At each noise level, the red curves shows the
ground truth CRF and the blue curves show our estimation results under 8 different
blur kernels. We average the RMSE between the estimated ones and the ground truth
as the error. The right panel shows the error curve of 10 different CRFs.
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Fig. 6. CRF estimation on real images. The top row shows the sharp/blurred pairs.
The bottom row shows our recovered the CRF (in blue) and the ground truth CRF (in
red) obtained by acquiring the MacBeth’s chart (in green).

We have also validated our approach on three real cameras: Canon 60D, 400D,
and Nikon D3100. Figure 6 (a), (c) and (e) show sample captured sharp/blurry
image pairs. We also list the ISO and exposure setting for each captured image.
The sharp image in (a) is captured with a tripod whereas the rest are captured
by holding the camera by hands to introduce motion blurs. We recover the blur
kernel using [4] and then apply our algorithm to estimate ϕ. To obtain the
ground truth ϕ, we further capture an image of the Macbeth color checkerboard
and apply the PCA-based method [12] to estimate ϕ via curve fitting [28].
Figure 6 (b,d,f) plot our recovered CRFs against the ground truth ones. Our
technique is able to achieve comparable quality.
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6 Discussions and Future Work

We have presented a comprehensive study to analyze the effect of the Camera
Response Function (CRF) in motion blurring. We have shown that for non-linear
CRFs, the intensity-based and irradiance-based blur models are similar at low
frequency regions but are significantly different at high frequency regions such
as edges. Our theory shows that directly applying deconvolution on the intensity
image leads to strong ringing artifacts that are irrelevant to kernels. Based on
our analysis, we have developed a dual-image solution that captures a pair of
sharp/blurred images with a hand-held camera to simultaneously recover the
CRF and to deblur the image.

Although our solution uses a much simpler setup than traditional multi-
image based techniques, our method has a number of limitations. The algorithm
relies on accurately registering two images captured under different exposure
settings. In our implementation, we directly use sparsity-based methed [27] that
was originally proposed to register two relatively low dynamic range images with
similar appearances. In our case, the sharp/blurry images would be captured
under high dynamic range for recovering the CRF and the two images can appear
significantly different due to exposure variations. Consequently, the recent single-
image based solution [10] has a key advantage.

Another important future direction that we will explore is to deblur images
without knowing the CRF. Our analysis shows that applying brute-force de-
convolution will introduce ringing artifacts even if the kernel is invertible. One
possible solution is to first detect potential ringing regions in the deblurred result
and then analyze if they are caused by a non-linear CRF. Finally, we will explore
possible integrations of our analysis/approach with the single-image approach
[10].
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