
The Visual Computer manuscript No.
(will be inserted by the editor)

Kevin Kreiser · Jingyi Yu

Real-time Projector Depixelation for Videos

Abstract The screen-door effect or projector pixelation
is a visual artifact produced by many digital projectors.
In this paper, we present a real-time projector depixela-
tion framework for displaying high resolution videos. To
attenuate pixelation, we use the common defocusing ap-
proach of setting the projection a little out-of-focus. Us-
ing a camera-projector pair, our system efficiently mea-
sures the spatially-varying defocus kernel and stores it
as a texture on the graphics hardware. We explore two
novel techniques to compensate for the defocusing blur
in real-time. First, we develop a steepest descent algo-
rithm on the GPU for estimating the optimally deblurred
video frames based on the measured defocus kernel. Sec-
ond, we present a novel optical flow algorithm that uses
an illumination ratio map (IRM) to model illumination
transformations between consecutive frames. We store
both the IRM and optical flow as textures. To process a
frame at runtime, we use the textures to warp the opti-
mized previous frame into an initialization for the iter-
ative GPU optimization. We show that our GPU opti-
mization achieves one magnitude acceleration using this
warping. Experiments on various video clips show that
our framework can realize real-time video playback with
significantly reduced pixelation and defocus while pre-
serving fine details and temporal coherence.

Keywords Pixelation · Defocus · Deblur · GPU ·
Projector Display

Kevin Kreiser
University of Delaware
Newark, DE 19711
E-mail: kevk@udel.edu

Jingyi Yu
University of Delaware
Newark, DE 19711
E-mail: yu@eecis.udel.edu

1 Introduction

The screen-door effect or projection pixelation is a visual
artifact produced by most digital projectors, in which
the gaps (called dead zones) separating the projector’s
pixels become visible in the projected image. Although
the latest generation of DLP projectors provide a closer
spacing of the mirror elements to reduce pixelation arti-
facts, some space is still required along the mirrors’ edges
to provide control circuit pathways. The pixelation arti-
fact is more apparent when one projects images with a
resolution higher than the projector’s. The spatial digi-
tization creates jaggy boundaries due to undersampling
and magnifies the pixelation.

A common approach to mitigate the pixelation arti-
facts is projector defocus, wherein the projector is de-
liberately set a little out-of-focus [27]. By defocusing the
projector, a small amount of light leaks into the dead
zones and blurs the boundaries between pixels. However,
it also introduces blurriness in the projection. Many ef-
forts have been proposed to compensate for the defocus
blur, ranging from the classical Wiener filters [11] and
the Richardson-Lucy algorithm [20], to the recently pro-
posed graph cuts [18] and belief propagation [25]. Other
techniques specific to projector deblur such as image pre-
conditioning [5] and focal pre-correction [17] have been
proposed. Although these algorithms are effective in de-
blurring still images, they are also computationally ex-
pensive and are therefore used to preprocess the images
before projection.

In this paper, we present a real-time projector depix-
elation framework for displaying high resolution videos.
Our framework also uses the defocus approach. Using
a camera-projector pair, our system efficiently measures
the spatially-varying defocus kernel and stores it as a
texture on the graphics hardware. We explore two novel
techniques to compensate for the defocusing blur in real-
time. First, we develop an iterative optimization algo-
rithm on the GPU for estimating the optimally deblurred
frames based on the measured defocus kernel. Second, we
present a novel optical flow algorithm that uses an illu-

2 Kevin Kreiser, Jingyi Yu

mination ratio map (IRM) to model illumination trans-
formations between consecutive frames. We precompute
both the IRM and the optical flow for each frame and
load them as textures at runtime to warp the optimized
previous frame into an initialization for the iterative GPU
optimization. We show that our GPU optimization achieves
one magnitude acceleration using this warping. We test
our framework on various video clips and show that we
are able to achieve real-time video playback with signif-
icantly reduced pixelation and defocus while preserving
fine details and temporal coherence. The complete sys-
tem pipeline is shown in Figure 1.

The specific contributions of this work are:

– A real-time projector depixelation framework based
on defocusing for displaying high resolution videos

– A GPU-based steepest descent algorithm for deblur-
ring individual frames of video

– An optical flow algorithm that handles illumination
variations across frames using an illumination ratio
map (IRM)

– An optical flow/IRM based warping method to ac-
celerate the iterative GPU optimization

2 Previous Work

The recent introduction and rapid adoption of consumer
digital projectors has redefined the landscape for display-
ing images and videos. High resolution and high contrast
projectors are increasingly used in a wide array of com-
mercial and scientific applications, ranging from shape
acquisition [28,7], to virtual environments [19] and IMax
theaters [13]. Many of these applications require the pro-
jected images maintain high sharpness, low aliasing [27],
and low brightness variation [8].

The most commonly observed visual artifact produced
by digital projectors is projector pixelation or the screen
door effect. The fine lines separating the projector’s pix-
els become visible in the projected image. The screen
door effect can be mitigated by defocusing the projec-
tor a little in front of (or behind) the projection screen
to allow a slight amount of light to leak into the pixel
gaps [27,5]. However, defocusing the projector results in
a blurry image, which can make viewing strenuous since
one’s eyes will constantly try to bring the projection into
focus. Although multiple projectors could be combined
to fill in the pixel gaps [3,14], multiple projection ap-
proaches require pixel-level-accurate geometric and ra-
diometric calibrations.

Image deblurring algorithms have been widely used
to compensate for defocus blur. However, the problem
of deblurring (deconvolution) is inherently ill-posed in
that multiple distinct solutions exist for the same con-
volution kernel. Several methods have been proposed for
approximating a solution. The classical Wiener filter [11]
attempts to statistically estimate the image’s blur kernel
and uses regularization to compute the inverse kernel.

Computer vision methods such as graph cuts [18] and
belief propagation [25] have also been used to recover
nearly optimal deblurred images. Mathematically, im-
age deblurring can be formulated as a bound-constrained
quadratic programming problem [16]. Iterative methods
based on steepest descent [27] and conjugate gradient
[11] have been used to efficiently locate a local optimal
solution. However, most of these approaches are compu-
tationally expensive and cannot achieve real-time perfor-
mance.

Our approach focuses on real-time video deblurring
and uses the programmable graphics hardware (GPU).
The recent addition of programmable graphics chipsets
has led to a myriad of efforts in exploiting them for
general-purpose computations, in particular, iterative lin-
ear algorithms including the sparse matrix conjugate gra-
dient [4], Gauss-Seidel [12], and fast fourier transforma-
tion [15]. The stream-based architecture and large tex-
ture size of the graphics hardware have also enabled new
computational video algorithms [6,2,1]. In this paper, we
combine both GPU-based linear algorithms and compu-
tational video methods for real-time video deblur.

A key factor that determines the performance of it-
erative linear optimization is the initial condition. We
present a new optical flow estimation method for warping
the optimized previous frame into an initialization for the
GPU-based optimization. Classical optical flow methods
[9] assume that the scene objects maintain consistent
appearance in neighboring frames. Tremendous efforts
have been focused on how to robustly handle textures,
noise, and occlusion boundaries [21,23]. However, these
algorithms are sensitive to illumination changes such as
varying shadows or lighting, which commonly appear in
videos. In this paper, we propose finding the illumination
transformation between two frames by calculating the ra-
tio of intensity for each scene point in the frames. The
resulting ratio image is called the illumination ratio map
(IRM). Jacob et al. [10] have shown that illumination ra-
tio images tend to exhibit spatial smoothness, although
abrupt changes may occur across the shadow and occlu-
sion boundaries. We develop efficient GPU algorithms
based on the Bilateral Filter [26] to simultaneously re-
cover the optical flow and the IRM and use the two maps
as initialization for the GPU-based optimization.

Before proceeding, we clarify our notation. Fin repre-
sents the source video and Fopt represents the optimized
video in our framework. Fin(n) and Fopt(n) represent the
nth frame of the input and optimized output respectively.
OF (n) and IRM(n) represent the optical flow field and
illumination ratio map between frame Fin(n − 1) and
Fin(n). Superscripts such as F i

opt(n) represent the ith

iteration result when estimating Fopt(n).

Real-time Projector Depixelation for Videos 3

OF(n)

OF(n-1)

OF(n-2)

Optical

Flow

Texture

Fin(n+1) Fin(n) Fin(n-1)Videoin

Measured

Spatially Varying

Kernel Texture

Videoout

Fopt(n)

Fopt(n-1)

Fopt(n-2)

Optimized

Video

Initialize Fopt(n) by

Warping Fopt(n-1)

Using OF(n-1)

GPU Iterative

Optimization

of Fopt(n)

Fig. 1 Our real-time projector depixelation framework. Our
system first defocuses the projector and measures the blur
kernel. At runtime, to process frame Fin(n), we warp the
optimized previous frame Fopt(n − 1) using the optical flow
and then correct it using an Illumination Ratio Map (IRM).
Finally, we use the warped Fopt(n− 1) as the initial guess to
find the optimal deblurred frame on the GPU.

3 Kernel Estimation

To attenuate pixelation, we use the common defocusing
approach of setting the projection a little out-of-focus.
Defocusing the projector, however, blurs the projected
image as shown in Figure 5. To measure the blur kernel,
we project a binary dot-pattern onto the screen as shown
in Figure 2(a) and 2(b). We then use a camera to cap-
ture the projected pattern Γ . A similar setup has been
proposed by Zhang and Nayar [27], where a beam split-
ter was used to form a coaxial camera-projector system.
The coaxial camera-projector system avoids rectifying Γ
but requires accurate geometric calibrations.

We do not require the camera and projector share the
same optical center. Instead, we assume the projection
surface is planar and we use homography to warp the
captured pattern Γ . Our system automatically detects
the center of each blurred dot and uses Singular Value
Decomposition (SVD) to compute the homography.

Since the captured pattern Γ consists of an ambient
component, we capture an ambient image Γambient by
turning off the projector and then subtract Γambient from
Γ such that Φ = Γ − Γambient.

To measure the spatially-varying blur kernel K, we
warp Φ using the estimated homography and detect the
center c of each pattern. We then place a window w cen-
tered at c of size t × t for each blurred dot. For every
pixel [u, v] with respect to window w, the kernel kc[u, v]
is normalized as:

kc[u, v] =
I[u, v]∑

u,v∈w I[u, v]
(1)

where I[u, v] represents the radiance received at pixel
[u, v]. Since we only measure a sparse sampling of the

Kernel 0, 0 Kernel 19, 0

Kernel 0, 19 Kernel 19, 19

Sampled Kernel Interpolated Kernel Texture

(a)

(c)(b)

Fig. 2 Measuring the defocus kernel. (a) We use a camera to
capture the projected binary pattern and use homography to
warp the pattern. (b) The warped camera image with samples
of the blur kernel. (c) We interpolate the spatially varying
kernel and pack them into a single texture.

spatially-varying kernels, we bilinearly interpolate be-
tween the neighboring kernels to estimate the deblur ker-
nel kp,q for every pixel [p, q] in the image Φ. We then pack
the kernels into a large spatially-varying kernel texture
K that will be used by our GPU-based deblur algorithm,
as shown in Figure 2(c).

We benefit from the large texture memory and mem-
ory bandwidth available in today’s graphics cards for effi-
cient storage and querying of the kernels. On an nVidia
8800GTS card that supports a texture size of 8Kx8K,
we are able to store a blur kernel up to 16x16 pixels for
512x512 resolution video clips. In our experiments, a de-
focus blur of size 5x5 pixels is usually sufficient to remove
most pixelation artifacts.

4 GPU-Based Defocusing

We formulate the problem of image deblurring as a con-
strained quadratic programming problem [16,27]. Given
the measured spatially-varying kernel K and frame Fin(n),
our goal is to compute the optimal image Fopt(n) that is
as close as possible to Fin(n) after it is blurred by kernel
K, i.e.:

Fopt(n) = arg min
D

{‖K ⊗D − Fin(n)‖2
∀p, q 0 ≤ D[p, q] ≤ 255

}
(2)

where ‖ · ‖ is an image distance metric.
Notice that each pixel [p, q] in image D has an asso-

ciated kernel kp,q in the kernel texture K, therefore ⊗
represents spatially-varying convolution for each pixel.
In our implementation, we use the sum of squared pixel
differences as the image distance metric.

4.1 Image and Kernel Representation

To solve for Equation 2, linear optimization algorithms
such as steepest descent and conjugate gradient can be

4 Kevin Kreiser, Jingyi Yu

used to approximate a nearly optimal solution. For an
image of size m×m pixels, traditional CPU-based linear
optimization methods pack all pixels in the image into
a single column vector of size m2 and represent the blur
kernel as a sparse matrix of size m2 × m2. Using this
representation, convolving an image with the kernel can
be written as matrix multiplication [27].

Our goal is to use the GPU to solve for Equation
2. This requires storing both the image and convolution
kernel as textures on the graphics card. For high reso-
lution videos, packing all the pixels of a frame into a
single vector can easily result in a matrix that exceeds
the largest texture size allowed on the graphics card.
Therefore, we choose to represent both the image and
the spatially varying blur kernel K as 2D textures. We
then implement the convolution operation using a frag-
ment shader which multiplies the two textures (see sup-
plemental material).

4.2 Steepest Descent Optimization

We use the steepest descent method for computing the
optimal D in Equation 2. We start with some initial guess
to D as D0. A common choice to D0 is to directly use
the input frame Fin(n). In Section 5.1, we show that a
better initialization is obtained by warping the optimized
previous frame Fopt(n− 1).

Once we initialize D0, we then repeat the following
three steps.

In step 1, we compute the residue R as:

R = K̃ ⊗ (Fin(n)−K ⊗Di) (3)

where K̃ is a spatially varying kernel satisfying k̃[u, v] =
k[t−u, t−v]. The derivation of K̃ follows from formulat-
ing convolution as matrix multiplication. If we pack the
pixels in image D into a single vector V and represent
K and K̃ as two large sparse matrices M and M̃ respec-
tively, it is easy to see that K̃ is the kernel corresponding
to the transpose of the sparse matrix form M of kernel
K (i.e. M̃ = MT).

In step 2, we update Di using the steepest descent
as Di+1 = Di + αR where α is computed using steepest
descent algorithm as:

α =
| R |2

| K ⊗R |2 (4)

Notice that after we update Di, some pixel intensities
may become negative or greater than 255. Therefore, we
clamp Di+1 after step 2.

Finally, in step 3, we compute the sum of absolute
differences for all pixels [p, q] in consecutive iterations of
D by:

∑
p,q

|D[p, q]i+1 −D[p, q]i| (5)

We repeat steps 1, 2, and 3 until the difference in
Equation 5 is less than a predefined threshold. We set
our threshold to be βm2, where m2 is the number of
pixels in each frame Fin(n) and β is a user definable con-
stant between 0 and 1 exclusive. For scenes with higher
detail, we choose a smaller β (and hence execute more
iterations) to preserve high frequencies.

There are many advantages to implementing the steep-
est descent deblur algorithm on the GPU. First, by using
a fragment shader, we efficiently parallelize convolution
for all pixels. Second, our GPU scale-addition shader
implicitly clamps Di to values between 0 and 255, by
rendering it directly to an 8 byte texture. To efficiently
compute the image difference metric, we employ the clas-
sic MIPMAP technique; we generate a MIPMAP of im-
age |D[p, q]i+1 − D[p, q]i| and multiply its lowest level
MIPMAP value by m2 to compute Equation 5.

5 Illumination Coherent Optical Flow
Estimation

Notice, like many iterative linear optimization methods,
the performance of our GPU-based deblur algorithm de-
pends heavily on the initial condition D0. The most
straightforward initialization is to use the original frame
Fin(n) as D0 [27]. A better choice is to take advantage of
the temporal coherence between the consecutive frames
and warp the optimized previous frame Fopt(n − 1) as
D0 using the optical flow.

However, two fundamental problems still remain. First,
classical optical flow approaches [9] assume the corre-
sponding pixels have consistent intensities in consecutive
frames. In the presence of illumination inconsistencies
such as varying shadows or lighting, which frequently
occur in videos, state-of-art optical flow methods break
down. Second, directly warping Fopt(n−1) using OF (n)
without compensating for the illumination inconsisten-
cies results in limited improvement in the number of it-
erations.

5.1 Illumination Ratio Map

We present a new approach to account for illumination
variations between consecutive video frames using an Il-
lumination Ratio Map (IRM). An IRM computes the
intensity ratio of corresponding points in an image pair.
If two consecutive frames Fin(n) and Fin(n−1) are cap-
tured at the same viewpoint, and the scene is static, then
the IRM γ simply corresponds to Fin(n)

Fin(n−1) [10]. If the
camera position changes or any part of the scene moves,
we need to find the corresponding pixel in Fin(n), i.e.:

γ(i, j) =
Fin(n)[i + OF (n).x, j + OF (n).y]

Fin(n− 1)[i, j]
(6)

where OF [x, y] corresponds to the optical flow field.

Real-time Projector Depixelation for Videos 5

Our goal is to simultaneously recover γ and OF . No-
tice that the IRM maintains spatial smoothness in gen-
eral. Discontinuities in the IRM appear in near scene
occlusion boundaries, shadow boundaries, or moving ob-
jects. For instance, when the illumination direction changes
across the two images, shadows abutting the occlusion
boundaries may appear or disappear. As a result, sharp
edges can appear near depth edges in the IRM. Shadow
boundaries also change due to illumination variations.
However, since most of the shadows are soft in real scenes,
they often appear in the IRM as smooth transitions in-
stead of discontinuities.

The characteristics of spatial smoothness and occlu-
sion discontinuity in the IRM are very similar to those
seen in disparity maps from stereo matching. Previous
researchers [24,23] have shown that fields satisfying such
properties can be modeled as probabilistic graphical mod-
els. We propose a new two-step optimization algorithm
to iteratively estimate the optical flow and the IRM as
follows:

In step 1 we detect and match a sparse set of feature
points between frame Fin(n) and Fin(n − 1) using the
Shi-Tomasi method [22]. The feature points are then tri-
angulated and interpolated to form a dense optical flow
field OF (n).

In step 2 we compute γ(n) using Equation 6, apply
a bilateral filter to γ(n), and de-illuminate Fin(n) using
γ(n). We repeat these steps until satisfactory.

We choose to use the bilateral filter [26] to smooth
the IRM as it preserves occlusion boundaries, reduces
noise, and can be implemented on the GPU [6]. To fur-
ther accelerate the optical flow estimation, our algorithm
only detects a sparse set of features and uses Delaunay
triangulation to create an interpolant. Each vertex is
then associated with x and y directional motion com-
ponents. We then rasterize the triangles’ x and y vector
components using the GPU, as shown in Figure 3. Af-
ter rasterization, all pixels have floating point x and y
directional motion components. Thus, when warping us-
ing our IRM-OF shader, we use bilinear interpolation for
fetching floating point texture locations.

In our experiments, we found that after two to three
iterations, the estimated optical flow and IRM were suf-
ficiently denoised to reduce the iterations of the GPU
optimization by a magnitude as shown in the table in
Figure 4. In Figure 3, we show a frame of the recovered
IRM and rasterized optical flow of a video with strong
illumination variations. It is also worth noting that more
sophisticated algorithms such as [24] can be used to pre-
compute more accurate optical flow fields and IRMs, al-
though at higher computational cost.

To process each frame Fin(n) at runtime, we use the
estimated optical flow and IRM to warp the optimized
previous frame Fopt(n− 1) to D0 as:

D0[i, j] = Fopt(n−1)[i+OF [i, j].x, i+OF [i, j].y]·γ[i, j](7)

(a) (b)

(c) (d)

Fig. 3 Recovering the optical flow and the Illumination Ra-
tio Map (IRM). We detect sparse features and find their cor-
respondences in consecutive frames (a). Using our two-step
iterative algorithm, we recover both the optical flow field (b)
and the IRM (d). (c) shows the initial IRM estimation and
(d) shows the final result after 2 iterations.

10.21.02.417.2Coral Reef

18.02.01.410.1Roadside

21.92.11.110.0Grass Hill

25.41.11.016.4Clown Fish

7
x

7
 K

e
rn

e
l

11.61.04.332.3Coral Reef

18.52.12.719.0Roadside

21.32.12.418.7Grass Hill

34.11.01.531.2Clown Fish

5
x

5
 K

e
rn

e
l

6.31.022.066.3Coral Reef

17.82.48.040.1Roadside

22.33.16.433.7Grass Hill

13.21.010.667.9Clown Fish

3
x

3
 K

e
rn

e
l

Iterations per

Frame w/o Warping

Iterations per Frame

with Warping

FPS w/o

Warping

FPS with

Warping

512x512

Video

10.21.02.417.2Coral Reef

18.02.01.410.1Roadside

21.92.11.110.0Grass Hill

25.41.11.016.4Clown Fish

7
x

7
 K

e
rn

e
l

11.61.04.332.3Coral Reef

18.52.12.719.0Roadside

21.32.12.418.7Grass Hill

34.11.01.531.2Clown Fish

5
x

5
 K

e
rn

e
l

6.31.022.066.3Coral Reef

17.82.48.040.1Roadside

22.33.16.433.7Grass Hill

13.21.010.667.9Clown Fish

3
x

3
 K

e
rn

e
l

Iterations per

Frame w/o Warping

Iterations per Frame

with Warping

FPS w/o

Warping

FPS with

Warping

512x512

Video

Fig. 4 Comparing the performance of our GPU framework
with and without warping at different blur kernel sizes on
an nVidia 8800GTS. All video clips are rendered at 512x512
resolution.

We implement Equation 7 using a fragment shader
(see supplemental materials). We then optimize D0 for
frame Fin(n) as show in section 4.2.

6 Experimental Results

We have used our framework to display various video
clips on an InFocus LP850 projector. We defocus the
projector a little in front of the projection screen and
use a Canon SD750 camera (7.1M pixels) to measure the
defocus kernel and capture the projected video frames.

Quality. Our video depixelation framework is able to
significantly reduce screen door artifacts while preserving
fine details and high temporal coherence. In our experi-
ments, we found that using a defocus blur kernel of size
5x5 is usually sufficient to reduce most of the pixelation

6 Kevin Kreiser, Jingyi Yu

Optimization

7x7 Kernel

Defocus

7x7 Kernel

Optimization

3x3 Kernel

Defocus

3x3 Kernel

Fig. 5 Results of depixelated video projection using our framework. We use a Canon SD750 camera to capture the projected
video clip rendered at 24 fps. The projected video frames with defocusing blur are shown in the first and third rows. Notice
the strong blurring artifacts in the defocused projection. The optimized results are for the smaller and larger kernel sizes are
shown in the second and fourth rows respectively. Please refer to the companion video for more examples.

artifacts without introducing ringing. Our algorithm also
performs well with this kernel size for most video clips.
High frequency features are much better preserved using
our framework, as is shown on the grass, corn stalks, and
coral reef in Figure 6 and in the supplemental video.

The quality of our algorithm also depends on the size
of the blurring kernel. We found that our algorithm usu-
ally performs better with smaller kernel sizes than with
larger ones. Kernels larger than 7x7 pixels (Figure 5 row
4) generally require more optimization and sometimes re-
sult in ringing artifacts, as is shown on the clownfish in
the left column of Figure 5. This is an inherent problem
in many existing deblurring algorithms [27].

Speed. In the table in Figure 4, we compare the pro-
cessing speed of our GPU-based deblur method with and
without the OF/IRM warping. For small kernel sizes, ini-
tializing our steepest descent optimization using IRM-
OF warping renders at over 30 fps. This allows real-
time playback of the video while it is deblurred. The
IRM-OF warping also achieves a speedup of 5 times over
simply using the input frame as initialization. For even
larger kernel sizes, this speedup is more significant. This

is intuitive in that large blur kernels product deblurred
frames which are very different than the input frames.
This leads to a large number of iterations before steep-
est descent converges. However, consecutive frames in a
video are temporally coherent. Therefore, the warped op-
timized previous frame is more similar to the deblurred
target frame and this allows the optimization to quickly
converge to the optimal solution with much fewer iter-
ations. In fact, the average number of iterations using
the IRM-OF warping is a magnitude less than the one
using the nave initialization, as shown in the rightmost
two columns of table in Figure 4.

The speed of our algorithm also depends on the qual-
ity of the IRM-OF approximation. For highly textured
regions such as the grass hill scene shown in the third col-
umn of Figure 6, the estimated IRM-OF is less accurate,
and hence, the GPU-based optimization takes more iter-
ations. Furthermore, if an input video has many high fre-
quency details, those details will require more optimiza-
tion. It is also important to note that the optimization
is computed globally. Thus videos which are spatially
homogenous with respect to the frequency domain, will

Real-time Projector Depixelation for Videos 7

require a predictable amount of optimization, where as
spatially heterogenous videos are less predictable.

Finally, both initialization schemes scale approximately
linearly with the kernel size. This can be explained by
the large number of convolutions performed in our GPU-
based optimization, since the overhead of convolution
grows linearly with the kernel size.

7 Conclusions and Future Work

We have presented a real-time projector depixelation
framework for displaying high resolution videos. To at-
tenuate pixelation, we have used the common defocusing
approach of setting the projection a little out-of-focus.
Our system efficiently measures the spatially-varying de-
focus kernel and stores it as a texture on the graph-
ics hardware. We have explored two novel techniques to
compensate for the defocusing blur in real-time. First, we
have developed an iterative optimization algorithm on
the GPU for estimating the optimally deblurred frames
based on the measured defocus kernel. Second, we have
presented a novel optical flow algorithm that uses an illu-
mination ratio map (IRM) to model illumination trans-
formations between consecutive frames. We store both
the IRM and the optical flow as textures and we use them
at runtime to warp the optimized previous frame into an
initialization for the GPU optimization. We have shown
that our GPU optimization with warping achieves one
magnitude speedup. Experiments on various video clips
have shown that our framework is able to realize real-
time video playback with significantly reduced pixelation
and defocus while preserving fine details and temporal
coherence.

Limitations remain in our approach, however. Our
framework can only support blur kernels of relatively
small sizes, although they are usually sufficient to re-
duce pixelation. This is a result of packing the spatially
varying kernels into a single texture on the GPU. Since
the current generation of graphics hardware can only
support texture sizes up to 8Kx8K, we would need to
store the kernels as separate textures for larger kernels.
Furthermore, larger kernels lead to higher computational
overhead and texture fetching when computing the con-
volution on the GPU. Our warping method also relies
on the accuracy of the estimated optical flow and IRM.
Our results, in theory, can be further improved using the
combined IRM-OF Markov Random Field model using
a maximum a posteriori (MAP) optimization [24]. We
intend to investigate how to use GPU-based MAP to
improve the accuracy of the optical flow and the IRM.

Although initially designed for video deblur, our frame-
work has the potential for real-time motion deblur. In
Figure 7, we apply the GPU optimization with known
or estimated kernels and initialize it with the blurred in-
put image. Figure 7(c) shows the resolution chart image
blurred with a known 7×1 linear kernel. Our GPU algo-

(a) (b) (c)

(d) (e) (f)

Fig. 7 Motion deblur using our framework. (a) Synthesized
motion blur on a resolution chart. (b) Our deblurred result
running at 30fps. (c) Ground truth image of (a). (d) Captured
motion blur on a Mustang RC car. (e) Our deblurred result
running at 14fps. (f) Ground truth image of (d).

rithm recovers the deblurred image at about 30 fps with
an image resolution of 256 × 256. Figure 7(d) shows a
captured image of a moving RC car. We recover the blur
kernel using the Wiener Filter and show the deblurred
result using our GPU algorithm in Figure 7(e). Com-
pared with the ground truth image of the stationary RC
car (Figure 7(f)), our result robustly captures the detail
on the Mustang decal and is computed at 14 fps with an
image resolution of 256× 256. In the future, we plan to
explore efficient methods for estimating the blur kernels
and integrate them with our GPU deblurring framework.

References

1. Bennett, E.P., McMillan, L.: Proscenium: a framework
for spatio-temporal video editing. In: MULTIMEDIA
’03: Proceedings of the eleventh ACM international con-
ference on Multimedia, pp. 177–184 (2003)

2. Bennett, E.P., McMillan, L.: Computational time-lapse
video. In: SIGGRAPH ’07: ACM SIGGRAPH 2007 pa-
pers, p. 102 (2007)

3. Bimber, O., Emmerling, A.:
4. Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse

matrix solvers on the gpu: conjugate gradients and multi-
grid. In: SIGGRAPH ’03: ACM SIGGRAPH 2003 Pa-
pers, pp. 917–924 (2003)

5. Brown, M.S., Song, P., Cham, T.J.: Image pre-
conditioning for out-of-focus projector blur. In: CVPR
’06: Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion, pp. 1956–1963 (2006)

6. Chen, J., Paris, S., Durand, F.: Real-time edge-aware im-
age processing with the bilateral grid. In: SIGGRAPH
’07: ACM SIGGRAPH 2007 papers, p. 103 (2007)

7. Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S.:
8. Fujii, K., Grossberg, M.D., Nayar, S.K.: A projector-

camera system with real-time photometric adaptation for

8 Kevin Kreiser, Jingyi Yu

In Focus

Optimization

5x5 Kernel

Defocus

5x5 Kernel

Fig. 6 Comparative results from our framework using highly textured video clips. Notice the high frequency features such
as the leaves on the trees (left), the multifaceted coral reef (middle), and the blades of grass (right) retain their detail using
our method. All three videos are processed at over 30 frames per second.

dynamic environments. In: CVPR ’05: Proceedings of the
2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05) - Volume 1,
pp. 814–821 (2005)

9. Horn, B.K., Schunck, B.G.: Determining optical flow.
Tech. rep. (1980)

10. Jacobs, D.W., Belhumeur, P.N., Basri, R.: Comparing
images under variable illumination. In: CVPR ’98: Pro-
ceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, p. 610. IEEE
Computer Society, Washington, DC, USA (1998)

11. Jain, A.K.: Fundamentals of digital image processing.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1989)

12. Krüger, J., Westermann, R.: Linear algebra operators for
gpu implementation of numerical algorithms. In: SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Courses, p. 234
(2005)

13. Lantz, E.: A survey of large-scale immersive displays. In:
EDT ’07: Proceedings of the 2007 workshop on Emerging
displays technologies, p. 1 (2007)

14. Majumder, A., GregWelch: COMPUTER GRAPHICS
OPTIQUE Optical Superposition of Projected Computer
Graphics . pp. 209–218

15. Moreland, K., Angel, E.: The fft on a gpu.
In: HWWS ’03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics
hardware, pp. 112–119. Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland (2003)

16. Nocedal, J., Wright, S.: Numerical Optimization.
Springer (2000)

17. Oyamada, Y., Saito, H.: Focal pre-correction of projected
image for deblurring screen image. In: CVPR. IEEE
Computer Society (2007)

18. Raj, A., Zabih, R.: A graph cut algorithm for general-
ized image deconvolution. In: ICCV ’05: Proceedings of
the Tenth IEEE International Conference on Computer
Vision, pp. 1048–1054 (2005)

19. Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L.,
Fuchs, H.: The office of the future: A unified approach to
image-based modeling and spatially immersive displays.
In: SIGGRAPH, pp. 179–188 (1998)

20. Richardson, W.H.: Bayesian-based iterative method of
image restoration. Journal of the Optical Society of
America (1917-1983) 62, 55–59 (1972)

21. Scharstein, D., Szeliski, R.: A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. In-
ternational Journal of Computer Vision 47(1-3), 7–42
(2002)

22. Shi, J., Tomasi, C.: Good features to track. In: IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR’94). Seattle (1994)

23. Sun, J., Shum, H.Y., Zheng, N.N.: Stereo matching using
belief propagation. In: ECCV (2), pp. 510–524 (2002)

24. Tappen, M.F., Freeman, W.T.: Comparison of graph cuts
with belief propagation for stereo, using identical mrf pa-
rameters. In: ICCV ’03: Proceedings of the Ninth IEEE
International Conference on Computer Vision, p. 900.
IEEE Computer Society, Washington, DC, USA (2003)

25. Tappen, M.F., Russell, B.C., Freeman, W.T.: Efficient
graphical models for processing images. In: CVPR (2),
pp. 673–680 (2004)

26. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and
color images. In: ICCV ’98: Proceedings of the Sixth
International Conference on Computer Vision, p. 839.
IEEE Computer Society, Washington, DC, USA (1998)

27. Zhang, L., Nayar, S.: Projection defocus analysis for
scene capture and image display. In: SIGGRAPH ’06:
ACM SIGGRAPH 2006 Papers, pp. 907–915 (2006)

28. Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Space-
time faces: high resolution capture for modeling and an-
imation. In: SIGGRAPH ’04: ACM SIGGRAPH 2004
Papers, pp. 548–558 (2004)

