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ABSTRACT
Existing retrieval models generally do not offer any guar-
antee for optimal retrieval performance. Indeed, it is even
difficult, if not impossible, to predict a model’s empirical
performance analytically. This limitation is at least partly
caused by the way existing retrieval models are developed
where relevance is only coarsely modeled at the level of doc-
uments and queries as opposed to a finer granularity level of
terms. In this paper, we present a new axiomatic approach
to developing retrieval models based on direct modeling of
relevance with formalized retrieval constraints defined at the
level of terms. The basic idea of this axiomatic approach is
to search in a space of candidate retrieval functions for one
that can satisfy a set of reasonable retrieval constraints. To
constrain the search space, we propose to define a retrieval
function inductively and decompose a retrieval function into
three component functions. Inspired by the analysis of the
existing retrieval functions with the inductive definition, we
derive several new retrieval functions using the axiomatic re-
trieval framework. Experiment results show that the derived
new retrieval functions are more robust and less sensitive to
parameter settings than the existing retrieval functions with
comparable optimal performance.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]: Retrieval models

General Terms: Experimentation

Keywords: Axiomatic model, retrieval heuristics, constraints,
formal models, TF-IDF weighting

1. INTRODUCTION
It has always been a significant challenge to develop prin-

cipled retrieval methods that are effective, robust, and ef-
ficient. Although many information retrieval models have
been studied [16, 15, 13, 10, 21, 20, 3, 9, 8], they generally
do not offer any guarantee for optimal retrieval performance.
Non-optimal parameter setting easily causes a model to per-
form poorly. As a result, heavy parameter tuning is almost
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always needed to achieve optimal performance on a partic-
ular data set.

In a way, this limitation is caused by the way existing
retrieval models are developed. Most existing models have
been developed based on a “coarse” or “black box” approx-
imation of the notion of relevance at the level of documents
and queries. Such approximation conveniently allows us to
avoid addressing relevance directly at a finer granularity level
of terms. For example, in the vector space model, the notion
of relevance is assumed to be captured through a similarity
measure on a query vector and a document vector, which al-
lows us to conveniently convert the retrieval problem to one
mainly involving vector space operations [15]. Similarly, in
probabilistic retrieval models, including the language mod-
eling approaches, the notion of relevance is assumed to be
captured through a binary random relevance variable and
a probabilistic model is defined to associate this variable
with some (probabilistic) representation of documents and
queries, which again allows us to avoid directly addressing
the notion of relevance and conveniently convert the retrieval
problem to one involving defining and estimating probabilis-
tic models [8]. The lack of a detailed modeling of relevance
makes it difficult for such a model to achieve optimal re-
trieval performance. Thus, heuristic modification of a re-
trieval formula and heuristic introduction of additional pa-
rameters are often made to improve retrieval performance.
To avoid such heuristic modifications, we will need to cap-
ture relevance more directly and at a finer granularity level
of terms.

Our previous work [2] sheds some light on how to model
relevance more directly. This work shows that intuitive re-
trieval heuristics can be formally defined as constraints on
retrieval functions and the empirical performance of a re-
trieval function is tightly related to how well it satisfies these
constraints. It is also shown that none of the analyzed re-
trieval formula can satisfy all the proposed constraints un-
conditionally. A very interesting question is thus whether
we can systematically search for a retrieval function that
can satisfy all the desirable constraints and develop new re-
trieval models in this way.

In this paper, we present a new axiomatic approach to
developing retrieval models based on direct modeling of rel-
evance with formalized retrieval constraints. The basic idea
of this axiomatic approach is to search in a space of can-
didate retrieval functions for one that can satisfy a set of
reasonable retrieval constraints. There are some previous
studies along this direction, mostly based on logic [1, 6, 22],
but, as far as we know, none of these studies has resulted in



any effective retrieval function. Although the general idea
is similar, our approach is completely different from these
previous studies both in the space of retrieval functions con-
sidered and in the way we specify the constraints (axioms).

One challenge in developing operational retrieval models
using such an axiomatic approach is how to appropriately
define the search space for retrieval formulas. To constrain
the search space, we assume a “bag-of-terms” representation
of queries and documents and propose to define a retrieval
function inductively. Based on such a definition, a retrieval
function can be decomposed into three components, referred
to as Primitive weighting function, Query growth function

and Document growth function, respectively. Thus search-
ing for a good retrieval function boils down to searching
for a good formula for each of these three functions in our
constrained search space.

The inductive definition scheme provides a common ba-
sis to analytically compare different retrieval functions. We
compare and analyze three representative existing retrieval
functions in this way and find that they share some com-
monalities in their primitive weighting functions and query
growth functions, but they generally differ in the document
growth function. The analysis provides an interpretation
of the three component functions of the inductive defini-
tion scheme. We further generalize these specific compo-
nent functions to derive new retrieval formulas within the
axiomatic framework. We use the intuitive retrieval con-
straints proposed in [2] and the technique of exploratory
data analysis [4, 5] to constrain the choices for the three
component functions and derive several new retrieval func-
tions. We implement and test these new functions with a
number of representative test sets. The experiment results
show that the derived new functions are more robust and less
sensitive to parameter settings than the existing retrieval
functions with comparable optimal performance.

The rest of the paper is organized as follows. We first
present the axiomatic framework in Section 2. In Section 3,
we derive new retrieval functions based on our axiomatic
framework. We report experiment results for these new
functions in Section 4 and conclude in Section 5.

2. AN AXIOMATIC FRAMEWORK
To define an axiomatic framework for information retrieval,

we need to define (1) a search space of possible retrieval func-
tions; and (2) a set of retrieval constraints that any reason-
able retrieval function should satisfy. The assumption is that
if a retrieval function satisfies all our constraints, the func-
tion would likely be effective empirically. The search space
must be large enough to include effective retrieval functions,
yet small enough for search. So there is clearly a trade-
off. For the constraints, ideally, we want to have as many
constraints as possible so that we can effectively prune the
search space and find an effective function more easily. In
reality, however, as we add more and more constraints, we
may introduce bias and some constraints may be too strong
or even contradictory. So there is also a tradeoff. We now
discuss how we make these tradeoffs.

2.1 Function space
Since a retrieval function is defined on a document and

a query, we first need to define our documents and queries.
Following the current retrieval models, we assume that both
documents and queries are “bags of terms”. To make our

framework as general as possible, we include all the scoring
functions defined on a bag-of-terms representation of docu-
ments and queries in our function space.

Formally, let T be the set of all terms. Let query Q =
{q1, ..., qn} and document D = {d1, ..., dm} be two bags of
terms, where qi, di ∈ T , and it is possible that qi = qj and
di = dj even if i 6= j. Our goal is to define a scoring func-
tion S(Q, D) ∈ <. To help us search through this function
space efficiently and define meaningful constraints on the
retrieval functions, we propose to define a retrieval function
inductively.

We start with the base case, when both the document and
query contain only one term.
Base Case: Assume Q = {q} and D = {d}.

S(Q,D) = f(q, d) =



weight(q) = weight(d) q = d
penalty(q, d) q 6= d

Function f gives the score of a one-term document and
a one-term query and will be referred to as the Primitive

weighting function. It rewards the document with a score
of weight(q) when d matches q and gives it a penalty score
of penalty(q, d) otherwise. We will reasonably assume that
∀t ∈ T , weight(t) > 0 and ∀q,∀d 6= q, penalty(q, d) <
weight(q).

In the inductive step, we consider the case when a docu-
ment or a query contains more than one term.
Inductive Step: ∀Q, D such that |Q| ≥ 1 and |D| ≥ 1,
(1) Assume Q′ = Q ∪ {q}.

S(Q′, D) = S(Q ∪ {q}, D) = g(S(Q,D), S({q}, D), q, Q, D)

(2) Assume D′ = D ∪ {d}.

S(Q, D′) = S(Q, D ∪ {d}) = h(S(Q, D), S(Q, {d}), d, Q,D)

Function g describes the score change when we add a term
to a query, and is called the Query growth function. When a
new term q is added to a query Q, the score of any document
for the new query (i.e. S(Q∪{q}, D)) would be mainly deter-
mined by the score of the document for the old query (i.e.
S(Q, D)), the score of the document for the added query
term (i.e. S({q}, D)), and any possible score adjustment
determined by D, Q and q. Similarly, function h describes
the score change when we add a term to a document, and is
called the Document growth function.

Unfortunately, without appropriate constraints on the com-
ponent functions f , g, and h, the inductive definition above
does not necessarily define a function since S(Q, D) may be
computed in multiple ways depending on how we construct
Q and D. Specifically, the value S(Q, D) may be sensitive
to the order of adding terms to the query and/or the docu-
ment. The following theorem gives a set of necessary and
sufficient conditions under which S(Q, D) can be guaranteed
to be a function.

Theorem 1 S(Q, D) is a function if and only if all the fol-
lowing conditions holds.
(1) ∀Q, D and ∀q, d ∈ T ,

δd(d, D, Q) + δq(q, D ∪ {d}, Q) = δq(q, D, Q) + δd(d, D, Q ∪ {q})

(2) ∀Q, D and ∀d1, d2 ∈ T ,

δd(d1, D, Q)+δd(d2, D∪{d1}, Q) = δd(d2, D, Q)+δd(d1, D∪{d2}, Q)

(3) ∀Q, D and ∀q1, q2 ∈ T ,

δq(q1, D, Q)+δq(q2, D, Q∪{q1}) = δq(q2, D, Q)+δq(q1, D, Q∪{q2})



where δd(d, D, Q) = S(Q, D∪{d})−S(Q, D) is the score change
due to the addition of term d to document D, and δq(q, D, Q) =

S(Q∪{q}, D)−S(Q, D) is the score change due to the addition
of a term q to query Q.

Intuitively, these three conditions simply require that
S(Q, D) remains the same no matter in which order the
terms are added to the query and the document when we
compute it. The proof of this theorem involves a straight-
forward mathematical induction and is omitted due to the
space limit.

2.2 Retrieval Constraints
Another important component in the axiomatic frame-

work is the retrieval constraints. In our previous work [2],
we proposed six retrieval constraints that any reasonable re-
trieval formula should satisfy. However, two of them (i.e.,
LNC2 and TDC) do not appear to be general enough for a
general framework. So we only use the other 4 retrieval con-
straints in our axiomatic framework, which are re-formalized
as follows:
Constraint 1: ∀Q,D and ∀d ∈ T , if d ∈ Q, S(Q,D∪{d}) >

S(Q,D).

This constraint says that adding one query term to a doc-
ument must increase the score. It corresponds to the con-
straints TF-LNC and TFC1 in [2].
Constraint 2: ∀Q, D and ∀d ∈ T , if d /∈ Q, S(Q,D∪{d}) <

S(Q,D).

This constraint ensures that adding a non-query term to
a document must decrease the score. It is essentially the
LNC1 constraint in [2].
Constraint 3: ∀Q, D and ∀d ∈ T , if d ∈ Q, δd(d, D,Q) >

δd(d, D ∪ {d}, Q).

This constraint says that the amount of increase in the score
due to adding a query term d to a document must decrease
as we add more and more d’s. It is similar to the TFC2
constraint defined in [2].

2.3 Anatomy of Existing Retrieval Functions
In order to obtain some sense about the relationship be-

tween the existing retrieval functions and this new way of
defining a retrieval function, we rewrite 3 representative
existing retrieval functions using the inductive definition
schema. The following notations will be used in this sec-
tion. CD

t (CQ
t ) is the count of term t in document D (query

Q). N is the total number of documents in the collection.
df(t) is the number of documents containing term t. |D| is
the length of document D. avdl is the average document
length in the collection. p(t|C) is the probability of a term
t given by the collection language model [23].

2.3.1 Pivoted Normalization (PN)
PN is a representative of effective vector space retrieval

functions with the following scoring formula [18, 17]:

S(Q, D) =
X

t∈Q∩D

Piv TF (CD
t )

Piv LN(|D|)
· C

Q
t · ln

N + 1

df(t)
,

where Piv TF (x) = 1+ln(1+ln(x)),Piv LN(x) = (1−s)+s x
avdl

.

After rewriting, we have

weight(q) = ln
N + 1

df(q)
·

1

Piv LN(1)

penalty() = 0

g() = S(Q, D) + S({q}, D)

h() = λ1(|D|) · S(Q, D) + λ2(|D|) · ∆TF (C
D
d ) · S(Q, {d})

where ∆TF (x) = Piv TF (x+1)−Piv TF (x), λ1(x) = P iv LN(x)
P iv LN(x+1)

and λ2(x) = P iv LN(1)
P iv LN(x+1)

.

The decomposition results show that weight(q) is related to
an IDF-like discriminative value of q, while h() appears to
implement document length normalization and TF normal-
ization.

2.3.2 Okapi
Okapi is an effective retrieval formula representing the

classical probabilistic retrieval model [11, 12]:

S(Q, D) =
X

t∈Q∩D

ln
N − df(t) + 0.5

df(t) + 0.5
× QTF (C

Q
t ) × TF LN(C

D
t , |D|),

where QTF (x) =
(k3+1)×x

k3+x
, TF LN(x, y) =

(k1+1)×x

k1((1−b)+b
y

avdl
)+x

,

k1 (between 1.0-2.0), b (usually 0.75), and k3 (between 0-
1000) are constants.

After rewriting, we have

weight(q) = ln
N − df(q) + 0.5

df(q) + 0.5
· TF LN(1, 1)

penalty() = 0

g() = S(Q, D) + ∆QTF (CQ
q ) · S({q}, D)

h() = S(Q, D) + S(Q; {d}) · ∆TF (CD
d , |D| + 1) · γ

+
X

t∈D∩Q

S(Q, {t}) · ∆LN(CD
t , |D|) · γ

=
X

t∈D∩Q−{d}

S(Q, {t}) · TF LN(CD
t , |D| + 1) · γ

+S(Q; {d}) · TF LN(CD
d + 1, |D| + 1) · γ

where ∆TF (x, y) = TF LN(x+1, y)−TF LN(x, y), ∆LN(x,y) =

TF LN(x, y+1)−TF LN(x, y), ∆QTF (x) = QTF (x+1)−QTF (x)

and γ = 1
TF LN(1,1)

.

It shows again that weight(q) is an IDF-related value of q.
And h() again implements length normalization and TF nor-
malization, though the form of the formula is more complex
than in the case of PN.

2.3.3 Dirichlet Prior (DP)
DP is an effective langauge modeling approach [23]:

S(Q, D) =
X

t∈Q∩D

C
Q
t · ln(1 +

CD
t

µ · p(t|C)
) + |Q| · ln

µ

|D| + µ

After rewriting, we have

weight(q) = ln(1 +
1

µ · p(q|C)
) − ln(1 +

1

µ
)

penalty() = −ln(1 +
1

µ
)

g() = S(Q, D) + S({q}, D)

h() = S(Q, D) + β(CD
d , p(d|C)) · S(Q, d)

+θ(p(d|C),CD
d , |D|, |Q|)

where θ(x, y, z, l) = l · (ln z+µ
z+1+µ

−
ln(1+

y+1
µ·x

)−ln(1+
y

µ·x
)

ln(1+ 1
µ·x

)
· ln

µ
1+µ

)

and β(x, z) =
ln(1+

x+1
µ·z

)−ln(1+ x
µ·z

)

ln(1+ 1
µ·z

)
.

The results show that weight(q) is yet again an IDF-
related value of q. However, penalty() is not equal to 0
as in the previous two methods; instead, it is a negative
value, which also contributes document length normaliza-
tion. Function h takes yet another complex form, involving
not only TF and length normalization but also the IDF-like



variable p(d|C). Function θ is playing a role for additional
score adjustment due to the addition of the terms.

2.3.4 Summary
The rewriting exercise provides some interesting insights

on how we may derive new functions. (1) All the instantia-
tions of weight(q) are related to an IDF-like discrimination
value of q. However, weight(q) in Okapi can be smaller
than penalty(q, d)(=0), which causes poor performance on
verbose queries. (2) There are two ways to implement doc-
ument length normalization in our framework. The first
method is to set penalty(w, q) < 0, which would penalize
any non-query terms in the document, as in the DP method.
The second is to use document length related parameters to
adjust the document relevance score as in PN (i.e. λ1() and
λ2()) and Okapi (i.e. TF LN()). (3) It shows three possible
ways to instantiate the document growth function, which we
summarize below in a more general form.

S(Q, D ∪ {d}) = λ1(|D|) · S(Q, D) + λ2(|D|) · α(CD
d ) · S(Q, {d})

S(Q, D ∪ {d}) =
X

t∈D∩Q−{d}

S(Q, {t})λ(|D| + 1, C
D
t )

+S(Q, {d}) · λ(|D| + 1, C
D
d + 1)

S(Q, D ∪ {d}) = S(Q, D) + β(C
D
d , C

Q

d , p(d|C)) · S(Q, {d})

+θ(CD
d , p(d|C), |D|, |Q|)

3. DERIVATION OF NEW RETRIEVAL
FORMULAS

In this section, we study how to instantiate each compo-
nent function in the framework to derive a new reasonable
retrieval function.

3.1 Primitive weighting function
The primitive weighting function has two component func-

tions: weight(q) and penalty(q, d). As discussed in the pre-
vious section, the decision on penalty(q, d) affects the instan-
tiation of the document growth function, so we will discuss
it later together with the document growth function.

We consider two ways to define weight(q), both connected
with how the matching of q contributes to relevance. The
first is to define it as the point-wise mutual information
between the presence/absence of q in a document (p(occ))
and whether the document is relevant to the given query
(p(rel)).

weight(q) = log
p(occ ∩ rel)

p(occ)p(rel)
= log

p(occ|rel)

p(occ)
(1)

The second is to define it as the conditional probability that
a document is relevant if q occurs in the document:

weight(q) = P (rel|occ) (2)

p(occ) can be estimated as p(occ) = df(q)
N

. If the rele-
vance information of documents is available (e.g. through
feedback from the users), it would also be easy to estimate
p(occ|rel) and p(rel|occ), so weight(q) can be computed ac-
cordingly. However, when we have no or insufficient rele-
vance information about documents, it would be hard to
compute weight(q) directly. One possible solution is to em-
ploy techniques of exploratory data analysis [4, 5]. The ba-
sic idea is to find some empirical function that can explain

the relationship between such unknown variables and some
known variables well on some training data. For example, we
may relate weight(q) to the known variables p(occ) and try
to find a function of p(occ) that can approximate weight(q)
well. Specifically, for a given data set, we compute weight(q)
(according to Equation (1) or (2)) and p(occ) for each query
term. Since the variance of these variables is large, we follow
[4] and group the data points together in bins. We average
both known and unknown variables for a bin to obtain a
“pseudo data point”. Finally, we plot the graph for these
two variables (i.e. weight(q) vs. p(occ)) for every pseudo
data point.
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Figure 1: Plot of weight(q)(computed using Equation 1)

vs. log
df(q)

N
(Left) and plot of log(weight(q)) (computed

using Equation 2) vs. log
df(q)

N
(Right)

In the left plot of Figure 1, we plot the weight(q) com-

puted using Equation(1) against log(P (occ)) = log df(q)
N

on
some AP data set. (The plots on other data sets are similar.)
There appears to be a negative linear correlation between

them. Thus we assume weight(q) = a log df(q)
N

+ b, where a
and b are constants. Visually examining several such plots
on different data sets indicates a = −1 and b = 0 may be
a good approximation. That is weight(q) = log N

df(q)
, which

will be referred to as LOG weighting function. Note that
the LOG weighting function is just the typical IDF [19, 14].

The right plot in Figure 1 shows how log(weight(q)), where

weight(q) is computed using Equation(2), is related to log df(q)
N

.
We also see a negative linear correlation between them.
Again, as a crude approximation, we may assume

weight(q) = (
N

df(q)
)k, (0 < k < 1)

where k is a parameter. We call this formula EXP weighting

function.

3.2 Query Growth Function
The analysis of existing retrieval functions reveals that

their query growth functions are quite similar and of a rel-
atively simple form. The slightly more complicated form
of Okapi has not shown any clear benefit in our prelimi-
nary experiments. Thus we fix our choice of query growth
function to the following simple form: S(Q ∪ {q}, D) =

S(Q,D) + S({q},D).

3.3 Document Growth Function
We generalize the document growth functions of the three

existing retrieval functions and explore how to generate some
interesting alternative choices.

3.3.1 Formula 1—PN Variation



The generalized form of the PN document growth function
is

S(Q, D ∪ {d}) = λ1(|D|) · S(Q, D) + λ2(|D|) · α(CD
d ) · S(Q, {d})

which is a weighted linear combination of S(Q, D)and S(Q, {d})
with the weights depending on three unknown functions (i.e.
λ1, λ2, α).

We can easily recover PN with the following instantia-
tions:

λ1(x) =
avdl · 1−s

s
+ x

avdl · 1−s
s

+ x + 1
, λ2(x) =

avdl · 1−s
s

+ 1

avdl · 1−s
s

+ x + 1

α(y) = ln(1 + ln(y + 1)) − ln(1 + ln(y)), (y > 1)

We now discuss how we may exploit our inductive defini-
tion scheme and retrieval constraints to find some interesting
alternative instantiations of λ1, λ2 and α.

First, we need to make sure that S(Q, D) is a function.
Applying theorem 1, we find that condition (1) and con-
dition (3) can be satisfied unconditionally, but in order to
satisfy condition (2), the following two equations must hold.

λ2(k + 1) = λ1(k + 1) × λ2(k), k ≥ 0 (3)

λ2(0) = 1 (4)

Next, the analysis of constraint 1 suggests that

λ2(k)

1 − λ1(k)
>

S(Q, D)

weight(q)
. (5)

Since S(Q, D) is roughly a sum of weights over all matched

terms, for most documents, we may expect S(Q,D)
weight(q)

< avdl.

Thus we may consider the following somehow stronger, but
simpler condition; if Equation (6) holds, we may expect
Equation (5) to hold for most documents.

λ2(k)

1 − λ1(k)
> avdl. (6)

Furthermore, Constraint 2 implies that

∀k, λ1(k) < 1. (7)

One way to satisfy this condition is to let λ1(k) = f(k)
f(k+1)

,

where f(k) decreases when k increases. A natural simple
choice for f(k) is f(k) = a × k + b, where a > 0. In
this case, λ1(k) = a×k+b

a×(k+1)+b
. According to Equation (3),

λ2(k) = f(1)
f(k+1)

= a+b
a×(k+1)+b

, k > 0. Therefore, Equation

(6) is equivalent to 1 + b
a

> avdl. Thus we can assume
b
a

= avdl/s and 0 < s < 1. So, we have

λ1(k) =
k + avdl

s

k + 1 + avdl
s

, λ2(k) =
1 + avdl

s

k + 1 + avdl
s

.

Finally, it follows from the analysis of Constraint 3 that
α(CD

d ) decreases when CD
d increases. It is easy to show that

α(0) = 1. So ∀x,α(x) ≤ 1. Leaving the study of a better
form of α(CD

d ) for our future work, we can simply take the
corresponding component from the pivoted normalization
formula. That is, α(k) = ln(1+ln(k+1))−ln(1+ln(k)), k ≥
1 and α(0) = 1.

Using this document growth function together with
penalty(q, d) = 0, we obtain the following retrieval function

S(Q, D) =
X

t∈D∩Q

TF (CD
t ) · C

Q
t · weight(t)

avdl + s

avdl + |D| · s
(8)

where 0 ≤ s ≤ 1 and TF (x) = 1 + ln(1 + ln(x)).

If we set s = s′

1−s′
and weight(q) = log N+1

df(q)
, Equation 8

turns into PN with parameter s′. The constraint 0 ≤ s ≤ 1
is equivalent to 0 ≤ s′ ≤ 0.5, which is a narrower range than
the full range (0, 1) allowed by the standard PN method.
Empirical study [2] shows that the optimal value of s′ is
always smaller than 0.4, thus the new formula we derived
using the axiomatic framework has a more reasonable pa-
rameter range than the original PN, which is due to the
introduction of the extra constraint Equations (5) and (6).

3.3.2 Formula 2—Okapi Variation
The generalized form of the Okapi document growth func-

tion is

S(Q, D ∪ {d}) =
X

t∈D∩Q−{d}

S(Q, {t})λ(|D| + 1, C
D
t )

+S(Q, {d}) · λ(|D| + 1, C
D
d + 1)

It differs from the document growth function of PN in
that the weights of linear combination are related to not
only the document length but also the term count and we
also have just one unknown function (i.e. λ) to instan-
tiate. The following instantiation clearly recovers Okapi.

λ(x, y) = (k1+1)×y

k1((1−b)+b x
avdl

)+y
.

We now explore how to find any interesting alternative
instantiations of λ(x, y), where x is related to the document
length and y is related to the term count. Again, we check
all the constraints to see whether they can provide us more
clues about λ.

All the three conditions in Theorem 1 are satisfied un-
conditionally. Constraint 1 indicates that λ(x + 1, y + 1) >
λ(x, y). The analysis of constraint 2 shows that λ(x+1, y) <
λ(x, y), which means λ(x, y) decreases when x increases.
From these, it follows that λ(x + 1, y + 1) > λ(x + 1, y), i.e.,
λ(x, y) increases as y increases. Constraint 3 indicates that
λ(x, y) should be a sublinear function w.r.t. y. From the
Okapi instantiation, it seems that λ(x, y) controls how to pe-
nalize a long document as well as how to normalize the term
frequency for every term. We consider a slightly more gen-
eral form than the Okapi instantiation, λ(x, y) = y

(ax+b)+y
.

The analysis of constraint 1 implies that b
a

> avdl × r, (0 <
r < 1) and 0 < b ≤ 1. One way to satisfy this condition is
to set a = s/avdl and b = s, where 0 < s ≤ 1. Using this
document growth function together with penalty(q, d) = 0,
we obtain

S(Q, D) =
X

t∈D∩Q

C
Q
t · weight(t) ·

CD
t

s
avdl

· |D| + s + CD
t

3.3.3 Formula 3—DP Variation
Different from PN and Okapi, the DP method partially

implements length normalization through setting a negative
value to penalty(q, d). The generalized form of the DP doc-
ument growth function is

penalty(d, q) < 0

S(Q, D ∪ {d}) = S(Q, D) + β(CD
d , C

Q

d , p(d|C)) · S(Q, d)

+θ(p(d|C),CD
d , |D|, |Q|)

Setting penalty() = −ln(1 + 1
µ
) and setting β and θ as

follows would recover the DP function.

β(x, y, z) =
ln(1 + x+1

µ·z ) − ln(1 + x
µ·z )

ln(1 + 1
µ·z )

θ(x, y, z, l) = l · (ln
z + µ

z + 1 + µ
−

ln(1 + y+1
µ·x ) − ln(1 + y

µ·x )

ln(1 + 1
µ·x )

· ln
µ

1 + µ
)



Table 1: Optimal Performance Comparison of the Derived Formulas
Formula Trec7 Trec8 Web

sk sv lk lv sk sv lk lv sk sv lk lv
F1-LOG(Piv) 0.176 0.146 ——- 0.199 0.245 0.205 ——- 0.234 0.288 0.212 ——- 0.214

F1-EXP 0.184 0.173 ——- 0.211 0.243 0.225 ——- 0.251 0.288 0.228 ——- 0.241
F2-LOG 0.185 0.159 ——- 0.208 0.260 0.210 ——- 0.240 0.295 0.245 ——- 0.266
F2-EXP 0.187 0.186 ——- 0.225 0.257 0.236 ——- 0.260 0.289 0.272 ——- 0.292
F3-LOG 0.180 0.154 ——- 0.204 0.244 0.206 ——- 0.240 0.290 0.213 ——- 0.213
F3-EXP 0.187 0.180 ——- 0.213 0.244 0.227 ——- 0.250 0.288 0.229 ——- 0.235

Formula FR AP DOE
sk sv lk lv sk sv lk lv sk sv lk lv

F1-LOG(Piv) 0.225 0.143 0.269 0.208 0.226 0.193 0.385 0.292 0.179 0.105 0.269 0.210
F1-EXP 0.223 0.144 0.267 0.200 0.223 0.197 0.376 0.278 0.172 0.119 0.269 0.207
F2-LOG 0.223 0.164 0.271 0.241 0.227 0.201 0.386 0.296 0.184 0.110 0.270 0.209
F2-EXP 0.222 0.169 0.268 0.241 0.225 0.203 0.379 0.280 0.175 0.116 0.269 0.203
F3-LOG 0.223 0.141 0.265 0.203 0.227 0.192 0.386 0.295 0.180 0.103 0.266 0.212
F3-EXP 0.218 0.142 0.265 0.191 0.225 0.196 0.377 0.272 0.173 0.111 0.271 0.203

To seek for any interesting alternative instantiations, we
follow DP and set penalty(q, d) = c where c is a negative
constant. We consider a simple case where θ() = 0 and β()

is only related to CD
d and CQ

d as follows.

β(CD
d , C

Q

d , p(d|C)) = β
′(CD

d , C
Q

d ) =



α(CD
d ), C

Q

d
6= 0

1, C
Q

d
= 0

β′(CD
d , CQ

d ) captures the change of term frequency. When

d is a query term (i.e. CQ
d > 0) , the change of term fre-

quency is captured by α(CD
d ). As before, the function α

can be constrained by Constraint 3. We use the same im-
plementation of α() in PN. On the contrary, when d is a

non-query term (i.e. CQ
d = 0), we simply assume that the

score change due to the addition of d is always the same.
To balance the score between the reward and the penalty,
we assume c = −s/avdl, where 0 ≤ s ≤ 1. We obtain the
following hybrid variation of PN and DP:

S(Q, D) =
X

t∈Q∩D

C
Q
t · weight(t) · TF (CD

t ) − γ(|D|, |Q|)

where TF (x) = 1+ln(1+ln(x)), γ(x, y) =
(x−y)·y·s

avdl
and 0 ≤ s ≤ 1

3.4 Derived Retrieval Functions
Combining all the choices, we obtain the following six new

retrieval functions.
F1-LOG(s): S(Q, D) =

P

t∈Q∩D C
Q
t · TF (CD

t ) · LN(|D|) · LW (t)

F1-EXP(s,k): S(Q, D) =
P

t∈Q∩D C
Q
t ·TF (CD

t ) ·LN(|D|) ·EW (t)

F2-LOG(s): S(Q, D) =
P

t∈Q∩D C
Q
t · TF LN(CD

t , |D|) · LW (t)

F2-EXP(s,k): S(Q, D) =
P

t∈Q∩D C
Q
t · TF LN(CD

t , |D|) · EW (t)

F3-LOG(s) S(Q, D) =
P

t∈Q∩D C
Q
t ·TF (CD

t ) ·LW (t)−γ(|D|, |Q|)

F3-EXP(s,k) S(Q, D) =
P

t∈Q∩D C
Q
t ·TF (CD

t )·EW (t)−γ(|D|, |Q|)

where TF (x) = 1 + ln(1 + ln(x)), LW (t) = ln N+1
df(t)

, EW (t) =

( N+1
df(t)

)k, LN(x) = avdl+s
avdl+x·s , TF LN(x, y) = x

x+s+
s·y

avdl

and γ(x, y) =

(x−y)·y·s
avdl

, 0 ≤ s ≤ 1 and 0 ≤ k ≤ 1 .
Previous works [14, 24] have also attempted to vary com-

ponents to form various retrieval formulas in a somehow
arbitrary way. Our framework provides more guidances on
how to choose the components and can guarantee the per-
formance of the derived functions in some sense.

4. EXPERIMENTS
In this section, we experimentally compare the derived

new retrieval functions with the three existing ones. We also
examine their parameter sensitivity. Our experiment results

show that the new functions can generally achieve compara-
ble optimal performance with the three existing functions,
but are more robust and less sensitive to the parameter set-
tings.

4.1 Experiment Design
To cover different types of queries and document sets, we

follow [2, 23] and conduct our experiments over six data
sets: news articles (AP), technical reports (DOE), govern-
ment documents (FR), the Web data used in TREC8 (Web),
the ad hoc data used in TREC7 (Trec7) and the ad hoc
data used in TREC8 (Trec8). For each query, we try differ-
ent types of queries: short-keyword(SK), short-verbose(SV),
long-keyword(LK), and long-verbose (LV). The preprocess-
ing of documents and queries only involves stemming with
the Porter’s stemmer. We intentionally did not remove stop
words for two reasons: (1) A truly robust model should be
able to discount the stop words automatically; (2) Remov-
ing stop words would introduce at least one extra parameter
(e.g. the number of stop words) into our experiments. We
set k in the EXP weighting function to 0.35 based on some
preliminary experiments.

4.2 Comparison of Derived Functions
To compare the optimal performances of the six derived

functions, we vary the parameter value from 0 to 1.0 and
select a best run with the highest average precision for each
function on each data set. We compare the average pre-
cisions of these best runs in Table 1. We make the fol-
lowing observations. First, the optimal performances of all
the six functions are comparable, and F1-LOG (i.e., PN)
is relatively worse than others. Second, the functions with
EXP weighting usually perform better than those with LOG
weighting for verbose queries, but worse for keyword queries.
Finally, the functions with F2 usually performs better than
those with F1 and F3. The parameter sensitivity study also
shows that F2-EXP appears to be more stable than others.
So, it appears that F2-EXP is overall a better choice than
others. Below we compare its performance with existing
retrieval functions.

4.3 Comparison with Existing Functions
We compare the performance of one derived function (i.e.F2-

EXP) with PN, Okapi, and DP. Due to the poor perfor-
mance of the original Okapi on verbose queries, we also com-
pare with the modified Okapi (i.e., Okapi with traditional
IDF) [2]. Since other retrieval functions all have just one pa-



Table 2: Performance Comparison with Existing Formulas—Top 25-percentile
Formula Trec7 Trec8 Web

sk sv lk lv sk sv lk lv sk sv lk lv
F2-EXP 0.187 0.187 ——- 0.224 0.256 0.236 ——- 0.260 0.289 0.272 ——- 0.291

F2-EXP-0.5 0.186 0.186 ——- 0.225 0.250 0.236 ——- 0.260 0.282 0.272 ——- 0.291
Pivoted 0.174 0.145 ——- 0.196 0.239 0.201 ——- 0.230 0.253 0.207 ——- 0.212
Okapi 0.185 0.084 ——- 0.073 0.251 0.101 ——- 0.108 0.310 0.203 ——- 0.229

Mod-Okapi 0.185 0.159 ——- 0.215 0.252 0.218 ——- 0.253 0.312 0.244 ——- 0.279
Dirichlet 0.186 0.182 ——- 0.224 0.251 0.228 ——- 0.259 0.289 0.272 ——- 0.291

Formula FR AP DOE
sk sv lk lv sk sv lk lv sk sv lk lv

F2-EXP 0.223 0.167 0.267 0.234 0.223 0.197 0.377 0.276 0.175 0.114 0.268 0.203
F2-EXP-0.5 0.222 0.164 0.266 0.227 0.220 0.190 0.374 0.272 0.174 0.112 0.268 0.203

Pivoted 0.207 0.139 0.250 0.207 0.225 0.190 0.383 0.288 0.179 0.102 0.263 0.206
Okapi 0.229 0.080 0.276 0.079 0.226 0.082 0.385 0.025 0.184 0.081 0.265 0.072

Mod-Okapi 0.226 0.162 0.274 0.251 0.226 0.194 0.384 0.295 0.183 0.104 0.270 0.216
Dirichlet 0.206 0.157 0.244 0.233 0.224 0.204 0.375 0.292 0.181 0.125 0.276 0.228

Table 3: Performance Comparison with Existing Formulas—Bottom 25-percentile
Formula Trec7 Trec8 Web

sk sv lk lv sk sv lk lv sk sv lk lv
F2-EXP 0.183 0.177 ——- 0.212 0.243 0.214 ——- 0.241 0.275 0.253 ——- 0.254
Pivoted 0.053 0.048 ——- 0.077 0.085 0.083 ——- 0.095 0.041 0.042 ——- 0.051
Okapi 0.161 0.059 ——- 0.053 0.223 0.085 ——- 0.088 0.215 0.139 ——- 0.153

Mod-Okapi 0.165 0.135 ——- 0.161 0.227 0.171 ——- 0.185 0.223 0.219 ——- 0.197
Dirichlet 0.175 0.154 ——- 0.202 0.235 0.209 ——- 0.240 0.282 0.233 ——- 0.234

Formula FR AP DOE
sk sv lk lv sk sv lk lv sk sv lk lv

F2-EXP 0.216 0.150 0.258 0.205 0.206 0.160 0.351 0.237 0.171 0.100 0.252 0.187
Pivoted 0.061 0.056 0.082 0.070 0.089 0.072 0.184 0.135 0.067 0.039 0.122 0.090
Okapi 0.186 0.054 0.228 0.058 0.208 0.076 0.371 0.023 0.167 0.062 0.250 0.051

Mod-Okapi 0.199 0.132 0.251 0.171 0.211 0.178 0.375 0.270 0.170 0.095 0.257 0.186
Dirichlet 0.189 0.138 0.202 0.171 0.212 0.178 0.357 0.267 0.159 0.114 0.259 0.207

rameter, we set k1 = 1.2, k3 = 1000 and only vary the value
of b in Okapi and modified Okapi. For every method, we
randomly sample 12 values within the range of the parame-
ter. Skewed samples with 25% or more of the values falling
into an interval of 0.1 are discarded. For each method on
each collection, we select the top/bottom 25-percentile runs
(i.e., 3 runs with the best/worst average precision) from the
12 runs for comparison.

The results are shown in Table 2 (top 25-percentile) and
Table 3 (bottom 25-percentile). F2-EXP0.5 is F2-EXP with
a fixed value of 0.5 for s. From Table 2, we see that the
optimal performance of F2-EXP is quite comparable with
that of all the existing retrieval formulas. Even the perfor-
mance of the derived formula with a fixed parameter value
(i.e. F2-EXP-0.5) is also comparable, demonstrating the
robustness of this axiomatic retrieval function. The robust-
ness is further confirmed in Table 3, where we see that F2-
EXP mostly outperforms others and in Table 4, where we
see that the average variance of all 12 runs for F2-EXP is
mostly smaller than for all others. It is interesting to note
that modified Okapi always performs better than F2-EXP
on AP; indeed, AP and DOE seem to be the only data sets
where F2-EXP has not shown advantages. Further analysis
and experiments are clearly necessary to better understand
this.

4.4 Parameter Sensitivity
We compare the parameter sensitivity between F2-EXP,

PN Okapi, and modified Okapi. We did not include DP
because its parameter is in a different scale, but it is known
that its performance is sensitive to the smoothing parameter
[23]. We vary the parameter from 0 to 1. The results on

TREC7 are shown in Figure 2. The plot demonstrates the
stability of F2-EXP, which we have also observed in the plots
for other data sets and query types.
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Figure 2: Performance Sensitivity on Trec7-LV

5. CONCLUSIONS AND FUTURE WORK
In this paper, we present a novel axiomatic framework for

developing information retrieval models, in which the no-
tion of relevance is directly captured by retrieval constraints.
The framework consists of an inductive scheme for function
definitions and a set of formalized retrieval constraints. Our
work can be regarded as an extension of some previous study
[2] to seek for a reasonable retrieval function that can satisfy
all the desired retrieval constraints.

The inductive definition scheme provides a common ba-
sis to analytically compare different retrieval functions. We



Table 4: Performance Comparison with Existing Formulas—Average variance
Formula Trec7 Trec8 Web

sk sv lk lv sk sv lk lv sk sv lk lv
F2-EXP 5.6e-06 2.2e-05 ——- 3.7e-05 3.8e-05 1.1e-04 ——- 6.9e-05 3.4e-05 7.3e-05 ——- 2.7e-04
Pivoted 2.5e-03 1.7e-03 ——- 2.4e-03 4.1e-03 2.4e-03 ——- 3.1e-03 7.4e-03 4.6e-03 ——- 4.4e-03

Mod-Okapi 7.0e-05 1.6e-04 ——- 7.3e-04 1.1e-04 4.7e-04 ——- 9.8e-04 1.4e-03 1.3e-04 ——- 1.4e-03
Dirichlet 1.9e-05 2.8e-04 ——- 1.6e-04 4.5e-05 1.5e-04 ——- 6.9e-05 1.3e-04 5.2e-04 ——- 6.9e-04

Form. FR AP DOE
sk sv lk lv sk sv lk lv sk sv lk lv

F2-E. 9.2e-06 5.7e-05 1.5e-05 1.4e-04 4.6e-05 2.3e-04 1.2e-04 2.6e-04 4.1e-06 3.2e-05 5.2e-05 5.3e-05
Piv. 3.6e-03 1.2e-03 4.6e-03 3.3e-03 3.2e-03 2.5e-03 7.2e-03 4.2e-03 2.3e-03 7.1e-04 3.7e-03 2.3e-03

M-Ok. 1.4e-04 2.2e-04 8.4e-05 1.3e-03 4.9e-05 4.9e-05 1.6e-05 1.3e-04 3.3e-05 1.3e-05 2.9e-05 1.8e-04
Dir. 6.0e-05 9.5e-05 3.8e-04 9.2e-04 2.7e-05 2.2e-04 5.8e-05 2.4e-04 7.3e-05 3.9e-05 5.3e-05 7.9e-05

compare and analyze three representative existing retrieval
functions in our framework and find that while the three
functions implement similar heuristics, they implement them
in different ways.

We further derive new retrieval functions using the ax-
iomatic framework. We use both intuitive retrieval con-
straints and exploratory data analysis to guide us in instan-
tiating the three components of the inductive definition and
obtain several new retrieval functions. We evaluate these
new retrieval functions on a number of representative test
sets. The experiment results show that the derived new
functions are more stable than the existing retrieval func-
tions with comparable optimal performance.

The axiomatic framework opens up many new possibili-
ties for exploring and developing principled retrieval models
based on direct modeling of relevance through constraints.
This paper has only moved a very small step in this direc-
tion. There are many interesting future research directions.
First, we have used only three basic constraints when deriv-
ing new retrieval functions. Presumably, with more reason-
able constraints, the derived functions will be more special-
ized and performing better. It would be interesting to add
additional constraints, including the two constraints that we
have not used from [2]. Second, it would be very interesting
to study what constraints are appropriate for modeling rele-
vance/pseudo feedback, which often leads to significant per-
formance improvement over a simple non-feedack retrieval
function. Finally, it would be interesting to study theoreti-
cal properties of retrieval functions along a similar line to a
related work on clustering algorithms [7].
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