
A Formal Study of Information Retrieval Heuristics

Hui Fang
Department of Computer

Science
University of Illinois at Urbana

Champaign
Urbana,IL 61801

hfang@cs.uiuc.edu

Tao Tao
Department of Computer

Science
University of Illinois at Urbana

Champaign
Urbana,IL 61801

taotao@cs.uiuc.edu

ChengXiang Zhai
Department of Computer

Science
University of Illinois at Urbana

Champaign
Urbana,IL 61801

czhai@cs.uiuc.edu

ABSTRACT
Empirical studies of information retrieval methods show that
good retrieval performance is closely related to the use of
various retrieval heuristics, such as TF-IDF weighting. One
basic research question is thus what exactly are these “nec-
essary” heuristics that seem to cause good retrieval perfor-
mance. In this paper, we present a formal study of retrieval
heuristics. We formally define a set of basic desirable con-
straints that any reasonable retrieval function should satisfy,
and check these constraints on a variety of representative re-
trieval functions. We find that none of these retrieval func-
tions satisfies all the constraints unconditionally. Empirical
results show that when a constraint is not satisfied, it often
indicates non-optimality of the method, and when a con-
straint is satisfied only for a certain range of parameter val-
ues, its performance tends to be poor when the parameter
is out of the range. In general, we find that the empiri-
cal performance of a retrieval formula is tightly related to
how well it satisfies these constraints. Thus the proposed
constraints provide a good explanation of many empirical
observations and make it possible to evaluate any existing
or new retrieval formula analytically.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Experimentation

Keywords
Retrieval heuristics, constraints, formal models, TF-IDF weight-
ing

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’04, July 25–29, 2004, Sheffield, South Yorkshire, UK.
Copyright 2004 ACM 1-58113-881-4/04/0007 ...$5.00.

The study of retrieval models is central to information re-
trieval. Many different retrieval models have been proposed
and tested, including vector space models [13, 12, 10], prob-
abilistic models[7, 16, 15, 3, 6, 5], and logic-based models[17,
19, 2]. Despite this progress in the development of formal
retrieval models, good empirical performance rarely comes
directly from a theoretically well-motivated model; rather,
heuristic modification of a model is often necessary in or-
der to achieve optimal retrieval performance. Indeed, many
empirical studies show that good retrieval performance is
closely related to the use of various retrieval heuristics, es-
pecially TF-IDF weighting and document length normal-
ization. Many empirically effective retrieval formulas tend
to boil down to an explicit or implicit implementation of
these retrieval heuristics, even though they may be moti-
vated quite differently [18]. Even the recently developed lan-
guage modeling approach has been shown to be connected
with these heuristics [20]. It thus appears that these heuris-
tics are somehow necessary for achieving good retrieval per-
formance. However, it is unclear at all what exactly are
these “necessary heuristics” mathematically. A basic re-
search question is then how we can formally define and char-
acterize these necessary retrieval heuristics.

In this paper, we present a formal study of retrieval heuris-
tics. We formally define a set of basic desirable constraints
that any reasonable retrieval formula should satisfy, and
check these constraints on a variety of retrieval formulas,
which respectively represent the vector space model (piv-
oted normalization), the classic probabilistic retrieval model
(Okapi), and the recently proposed language modeling ap-
proach (Dirichlet prior smoothing). We find that none of
these retrieval formulas satisfies all the constraints uncon-
ditionally, though some formulas violate more constraints
or violate some constraints more “seriously” than others.
Empirical results show that when a constraint is not satis-
fied, it often indicates non-optimality of the method, and
when a constraint is satisfied only for a certain range of
parameter values, its performance tends to be poor when
the parameter is out of the range. In general, we find that
the empirical performance of a retrieval formula is tightly
related to how well it satisfies these constraints. Thus the
proposed constraints provide a good explanation of many
empirical observations about retrieval methods. Moreover,
these constraints make it possible to evaluate any existing or
new retrieval formula analytically and suggest how we may
further improve a retrieval formula.

The rest of the paper is organized as follows. We first



present six formal constraints in Section 2. In Section 3,
we apply these constraints to a variety of representative re-
trieval formulas and propose some hypotheses about the per-
formance behavior of these formulas based on the analysis
results. We test these hypotheses with systematic exper-
iments in Section 4. Finally, we discuss our findings and
future research directions in Section 5.

2. FORMAL DEFINITIONS OF HEURISTIC
RETRIEVAL CONSTRAINTS

In this section, we formally define six intuitive and desir-
able constraints that any reasonable retrieval formula should
satisfy. They capture the commonly used retrieval heuris-
tics, such as TF-IDF weighting, in a formal way, making it
possible to apply them to any retrieval formula analytically.

These constraints are motivated by the following obser-
vations on some common characteristics of typical retrieval
formulas. First, most retrieval methods assume a “bag of
words” (more precisely, “bag of terms”) representation of
both documents and queries. Second, a highly effective re-
trieval function typically involves a TF part, an IDF part,
and a document length normalization part [11, 21]. The
TF part intends to give a higher score to a document that
has more occurrences of a query term, while the IDF part
is to penalize words that are popular in the whole collec-
tion. The document length normalization is to avoid favor-
ing long documents; long documents generally have more
chances to match a query term simply because they contain
more words. Finally, different retrieval formulas do differ in
their way of combining all these factors, even though their
empirical performances may be similar.

These observations suggest that there are some “basic re-
quirements” that all reasonable retrieval formulas should fol-
low. For example, if a retrieval formula does not penalize
common words, then it somehow violates the “IDF require-
ment”, thus can be regarded as “unreasonable.” However,
some of these requirements may compromise each other. For
example, while the TF heuristic intends to assign a higher
score to a document that has more occurrences of a query
term, the document length normalization component may
cause a long document with a higher TF to receive a lower
score than a short document with a lower TF. Similarly,
if two documents match precisely one single, but different
query term, the IDF heuristic may allow a document with a
lower TF to “beat” the one with a much higher TF. A crit-
ical question is thus how we can regulate such interactions
so that they will all be “playing a fair game”? Clearly, in
order to answer this question, we must first define what is a
“fair game”, i.e., we must define what exactly is a reasonable
retrieval function.

Our idea is to characterize a reasonable retrieval formula
by listing the desirable constraints that any reasonable re-
trieval formula must satisfy. We now formally define six
such desirable constraints. Note that these constraints are
necessary, but not necessarily sufficient, and should not be
regarded as the only constraints that we want a retrieval
function to satisfy; indeed, it is not hard to come up with
additional constraints that may also make sense. However,
we focus on these six basic constraints in this paper because
they capture the major well-known IR heuristics, particu-
larly TF-IDF weighting and length normalization.

Let us first introduce some notations. We use d or di to

denote a document, q to denote a query, w or wi to represent
a query term, and w′ to represent a non-query term. c(w, d)
is the count of word w in document d. |d| denotes the length
of document d. f denotes a retrieval function, and f(d, q)
gives the score of document d with respect to query q. idf(w)
denotes any IDF-like discrimination value of a term w.

2.1 Term Frequency Constraints (TFCs)
TFC1: Let q = {w} be a query with only one term w.
Assume |d1| = |d2|. If c(w, d1) > c(w, d2), then f(d1, q) >
f(d2, q).
TFC2: Let q = {w} be a query with only one term w.
Assume |d1| = |d2| = |d3| and c(w, d1) > 0. If c(w, d2) −
c(w, d1) = 1 and c(w, d3) − c(w, d2) = 1, then f(d2, q) −
f(d1, q) > f(d3, q) − f(d2, q).

Both constraints are to capture the desired contribution
of the TF of a term to scoring. The first constraint captures
the basic TF heuristic, which gives a higher score to a docu-
ment with more occurrences of a query term when the only
difference between two documents is the occurrences of the
query term. In other words, the score of retrieval formula
will increase with the increase in TF (i.e., the first partial
derivative of the formula w.r.t. the TF variable should be
positive). The second constraint ensures that the increase in
the score due to an increase in TF is smaller for larger TFs
(i.e., the second partial derivative w.r.t. the TF variable
should be negative). Here, the intuition is that the change
in the score caused by increasing TF from 1 to 2 should be
larger than that caused by increasing TF from 100 to 101.

Interestingly, it can be shown that the TFC2 constraint
also implies another desirable property – if two documents
have the same total occurrences of all query terms, a higher
score will be given to the document covering more distinct
query terms. This property can be formalized as follows.
Let q be a query and w1, w2 ∈ q be two query terms. Assume
|d1| = |d2| and idf(w1) = idf(w2). If c(w1, d1) = c(w1, d2) +
c(w2, d2) and c(w2, d1) = 0, c(w1, d2) 6= 0,c(w2, d2) 6= 0,
then f(d1, q) < f(d2, q).

2.2 Term Discrimination Constraint (TDC)
TDC: Let q be a query and w1, w2 ∈ q be two query
terms. Assume |d1| = |d2|, c(w1, d1)+c(w2, d1) = c(w1, d2)+
c(w2, d2). If idf(w1) ≥ idf(w2) and c(w1, d1) ≥ c(w1, d2),
then f(d1, q) ≥ f(d2, q).

This constraint regulates the interaction between TF and
IDF, and accurately describes the effect of using IDF in scor-
ing. It ensures that, given a fixed number of occurrences of
query terms, we should favor a document that has more
occurrences of discriminative terms (i.e., high IDF terms).
Clearly, simply weighting each term with an IDF factor does
not ensure that this constraint be satisfied. When applying
this constraint, IDF can be any reasonable measure of term
discrimination value (usually based on term popularity in a
collection).

2.3 Length Normalization Constraints (LNCs)
LNC1: Let q be a query and d1, d2 be two documents. If
for some word w′ /∈ q, c(w′, d2) = c(w′, d1) + 1 but for any
query term w, c(w, d2) = c(w, d1), then f(d1, q) ≥ f(d2, q).
LNC2: Let q be a query. ∀k > 1, if d1 and d2 are two
documents such that |d1| = k · |d2| and for all terms w,
c(w, d1) = k · c(w, d2), then f(d1, q) ≥ f(d2, q).



Table 1: Summary of intuitions for each formalized constraint
Constraints Intuitions

TFC1 to favor a document with more occurrence of a query term
TFC2 to favor document matching more distinct query terms
TFC2 to make sure that the change in the score caused by increasing TF from 1 to 2

is larger than that caused by increasing TF from 100 to 101.
TDC to regulate the impact of TF and IDF
LNC1 to penalize a long document(assuming equal TF)

LNC2, TF-LNC to avoid over-penalizing a long document
TF-LNC to regulate the interaction of TF and document length

The first constraint says that the score of a document
should decrease if we add one extra occurrence of a “non-
relevant word” (i.e., a word not in the query), thus intends
to penalize long documents. The second constraint intends
to avoid over-penalizing long documents, as it says that if
we concatenate a document with itself k times to form a
new document, then the score of the new document should
not be lower than the original document. Here, we make the
assumption that the redundance issue is not considered.

2.4 TF-LENGTH Constraint (TF-LNC)
TF-LNC: Let q = {w} be a query with only one term w.
If c(w, d1) > c(w, d2) and |d1| = |d2| + c(w, d1) − c(w, d2),
then f(d1, q) > f(d2, q).

This constraint regulates the interaction between TF and
document length. The intuition is that if d1 is generated by
adding more occurrences of the query term to d2, the score
of d1 should be higher than d2.

Based on TF-LNC and LNC1, it is not hard to derive the
following constraint:
Let q = {w} be a query with only one term w. If d3 is the
document such that c(w, d3) > c(w, d2) and |d3| < |d2| +
c(w, d3) − c(w, d2), then f(d3, q) > f(d2, q).

The above constraint can be derived in the following way.
Assume we have a document d1 such that |d1| = |d2| +
c(w, d1)−c(w, d2) and c(w, d3) = c(w, d1). It is obvious that
the only difference between d1 and d3 is that d1 has more
occurrences of the non-query terms. According to LNC1,
we know that f(d3, q) ≥ f(d1, q). Since f(d1, q) > f(d2, q)
follows from TF-LNC, it is clear that f(d3, q) > f(d2, q).

This constraint ensures that document d1, which has a
higher TF for the query term, should have a higher score
than d2, which has a lower TF, as long as d1 is not too
much longer than d2.

The first three constraints (i.e. TFCs and TDC) are in-
tended to capture the desired scoring preferences when two
documents have equal lengths. The other three constraints
are applicable when we have variable document lengths. In
Table 1, we summarize the intuitions behind each formalized
constraint.

These constraints are basic and non-redundant in the sense
that none of them can be derived from the others. Formally,
suppose Ci represents the set of all the retrieval functions
satisfying the i-th Constraint, then we can show that ∀i, j,
∃e ∈ Ci, such that e ∈ Ci − Cj .

We must emphasize that the constraints proposed in this
section are necessary constraints for a “reasonable” retrieval
formula, but not necessarily sufficient, and should not be re-

garded as the only constraints that a “reasonable” retrieval
formula needs to satisfy. Thus when a constraint is vio-
lated, we know the retrieval function may not perform well
empirically since it is not entirely consistent with our intu-
itive preferences, but satisfying all the constraints does not
necessarily guarantee good performance.

3. ANALYSIS OF THREE REPRESENTA-
TIVE RETRIEVAL FORMULAS

In this section, we apply the six constraints defined in the
previous section to three specific retrieval formulas, which
respectively represent the vector space model, the classi-
cal probabilistic retrieval model, and the language modeling
approach. Our goal is to see how well each retrieval for-
mula satisfies the proposed constraints. As will be shown,
it turns out that none of these retrieval formulas satisfies
all the constraints unconditionally, though some models vi-
olate more constraints or violate some constraints more “se-
riously” than others. The analysis thus suggests some hy-
potheses regarding the empirical behavior of these retrieval
formulas, which will be tested in the next section.

The following notations will be used in this section:
c(w, d) is the count of word w in the document d.
c(w, q) is the count of word w in the query q.
N is the total number of documents in the collection.
df(w) is the number of documents that contain the term w.
|d| is the length of document d.
avdl is the average document length.

3.1 Pivoted Normalization Method
The pivoted normalization retrieval formula [14] is one

of the best performing vector space retrieval formulas. In
the vector space model, text is represented by a vector of
terms. Documents are ranked by the similarity between the
query vector and the document vector. According to [14],
the pivoted normalization retrieval formula is

∑

w∈q∩d

1 + ln(1 + ln(c(w, d)))

(1 − s) + s |d|
avdl

· c(w, q) · ln
N + 1

df(w)

The results of analyzing the pivoted normalization formula

Table 2: Constraint analysis results (Pivoted)
TFCs TDC LNC1 LNC2 TF-LNC
Yes Cond. Yes Cond. Cond.

are summarized in Table 2. (“Cond” means “Conditional”.)



TFCs and LNC1 are easily seen to be satisfied. We now
examine some of the non-trivial constraints.

First, let us check the TF-LNC constraint. Consider a
common case when |d1| = avdl. It can be shown that the
TF-LNC constraint is equivalent to the following constraint
on the parameter s:

s ≤
h(c(w, d1)) − h(c(w, d2))

(c(w, d1) − c(w, d2)) × (1 + h(c(w, d1)))
× avdl

where h(x) = ln(1 + ln(x)).
This means that TF-LNC is satisfied only if s is below a

certain upper bound. The TF-LNC constraint thus provides
an upper bound for s, which is tighter for a larger c(w, d1).

Next, we consider the TDC constraint. It can be shown
that TDC is equivalent to c(w2, d1) ≥ c(w1, d2), which is
only conditionally satisfied.

Finally, we show that the LNC2 leads to an upper bound
for parameter s. The LNC2 constraint is equivalent to

1 + ln(1 + ln(k × c(w, d2)))

1 − s + s k×|d2|
avdl

· c(w, q) · ln
N + 1

df(w)

≥
1 + ln(1 + ln(c(w, d2)))

1 − s + s |d2|
avdl

· c(w, q) · ln
N + 1

df(w)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

c(w,d
2
)

Bo
un

d

Upper bound for parameter s

k=2
k=3
k=4

Figure 1: Upper bound of parameter s.

Therefore, the upper bound of s can be derived as:

s ≤
tf1 − tf2

(k |d2|
avdl

− 1)tf2 − ( |d2|
avdl

− 1)tf1

where tf1 = 1 + ln(1 + ln(k × c(w, d2))), tf2 = 1 + ln(1 +
ln(c(w, d2))). In order to get a sense of what the bound is
exactly, consider a common case when |d2| = avdl. We have

s ≤
1

k − 1
× (

tf1

tf2
− 1).

As shown in the Figure 1, the bound becomes tighter when k
increases or when the term frequency is larger. This bound
shows that in order to avoid over-penalizing a long docu-
ment, a reasonable value for s should be generally small –
it should be below 0.4 even in the case of a small k, and we
know that for a larger k the bound would be even tighter.
This analysis thus suggests that the performance can be bad
for a large s, which is confirmed by our experiments.

3.2 Okapi Method

The Okapi formula is another highly effective retrieval
formula that represents the classical probabilistic retrieval
model [8]. The formula as presented in [14] is 1

∑

w∈q∩d

(

ln
N − df(w) + 0.5

df(w) + 0.5
×

(k1 + 1) × c(w, d)

k1((1 − b) + b |d|
avdl

) + c(w, d)

×
(k3 + 1) × c(w, q)

k3 + c(w, q)

)

where k1 (between 1.0-2.0), b (usually 0.75), and k3 (between
0-1000) are constants.

The major difference between Okapi and other retrieval
formulas is the possibly negative value of the IDF part in
the formula, which has been discussed in [9]. It is trivial to
show that if df(w) > N/2, the IDF value would be negative.

When the IDF part is positive (which is mostly true for
keyword queries), TFCs and LNCs are easily seen to be sat-
isfied. By considering a common case when |d2| = avdl, the
TF-LNC constraint is shown to be equivalent to b ≤ avdl

c(w,d2)
.

As we know, the value of b is always smaller than 1. There-
fore, TF-LNC can be satisfied unconditionally. Moreover,
we can show that TDC is equivalent to c(w1, d2) ≤ c(w2, d1),
which is the same as the result for the pivoted normalization
method.

Although Okapi satisfies some constraints conditionally,
unlike in the pivoted normalization method, the conditions
do not provide any bound for the parameter b. Therefore,
the performance of Okapi can be expected to be less sensi-
tive to the length normalization parameter than the pivoted
normalization method, which is confirmed by our experi-
ments.

When the IDF part is negative, the Okapi formula would
clearly violate the TFCs, LNCs and TF-LNC, since match-
ing an additional occurrence of a query term could mean de-
creasing the score. It would satisfy TDC when c(w1, d2) >
c(w2, d1). Since a negative IDF only happens when a query
term has a very high document frequency (e.g., when the
query is verbose), our analysis suggests that the performance
of Okapi may be relatively worse for verbose queries than
for keyword queries.

A simple way to solve the problem of negative IDF is
to replace the original IDF in Okapi with the regular IDF
in the pivoted normalization formula. This modified Okapi
satisfies all the constraints but TDC. We thus hypothesize
that the performance of the modified Okapi would perform
better than the original Okapi for verbose queries. As will be
shown later, this is indeed true according to our experiment
results.

Table 3: Constraint analysis results (Okapi)
Formula TFCs TDC LNC1 LNC2 TF-LNC
Original Cond Cond Cond Cond Cond
Modified Yes Cond Yes Yes Yes

The results of analyzing the Okapi formula are summa-
rized in Table 3. We distinguish two forms of the formula –
the original formula and the one with a modified IDF part.
The modification significantly affects the constraint analysis
results as discussed above.

1There is a typo in the formula in [14], which is corrected
here.



3.3 Dirichlet Prior Method
The Dirichlet prior retrieval method is one of the best per-

forming language modeling approaches [20]. This method
uses the Dirichlet prior smoothing method to smooth a doc-
ument language model and then ranks documents according
to the likelihood of the query according to the estimated
language model of each document. With a notation con-
sistent with those in the pivoted normalization and Okapi
formulas, the Dirichlet prior retrieval function is

∑

w∈q∩d

c(w, q) · ln(1 +
c(w, d)

µ · p(w|C)
) + |q| · ln

µ

|d| + µ

where, |q| is the query length, and p(w|C) is the probability
of a term w given by the collection language model. p(w|C)
indicates how popular the term w is in the whole collection,
thus is quite similar to the document frequency df(w). The

Table 4: Constraint analysis results (Dirichlet)
TFCs TDC LNC1 LNC2 TF-LNC
Yes Cond Yes Cond Yes

results of analyzing the Dirichlet prior formula are summa-
rized in Table 4. TFCs, LNC1 and TF-LNC are easily seen
to be satisfied. So we only examine some of the non-trivial
constraints.

The LNC2 constraint can be shown to be equivalent to
c(w, d2) ≥ |d2|·p(w|C), which is usually satisfied for content-
carrying words. If all the query terms are discriminative
words, long documents will not be over-penalized. Thus,
compared to pivoted normalization, Dirichlet prior appears
to have a more robust length normalization mechanism, even
though none of them satisfies the LNC2 constraint uncon-
ditionally.

Another interesting observation is that TDC constraint
may lead to some lower bound for parameter µ, as derived
below. Assume p(w1|C) ≤ p(w2|C) (roughly equivalent to
idf(w1) > idf(w2) ). TDC implies

ln(1 +
c(w1, d1)

µp(w1|C)
) + ln(1 +

c(w2, d1)

µp(w2|C)
) + 2ln

µ

µ + |d1|
≥

ln(1 +
c(w1, d2)

µp(w1|C)
) + ln(1 +

c(w2, d2)

µp(w2|C)
) + 2ln

µ

µ + |d2|

After some simplification, we can obtain a lower bound
for µ:

µ ≥
c(w1, d1) − c(w2, d2)

p(w2|C) − p(w1|C)

In order to have a sense of the exact value of this bound, let
us consider a common case of w2 such that p(w2|C) = 1

avdl

(i.e. w2 is expected to occur once in a document). We have

µ >
c(w1, d1) − c(w2, d2)

p(w2|C)

= avdl × (c(w1, d1) − c(w2, d2))

It means that for discriminative words with a high term
frequency in a document, µ needs to be sufficiently large (at
least as large as the average document length) in order to
balance TF and IDF appropriately. In general, the analysis
shows that µ has a lower bound, and a very small µ might
cause poor retrieval performance. This is also confirmed by
our experiments.

Table 5: Comparison between different retrieval for-
mulas

Formula TFCs TDC LNC1 LNC2 TF-LNC
Pivoted Yes C1 Yes C∗

2 C∗
3

Dirichlet Yes C∗
4 Yes C5 Yes

Okapi C6 C1 ∩ C6 C6 C6 C6

(original) ¬C1 ∩ ¬C6

Okapi Yes C1 Yes Yes Yes
(modified)

3.4 Summary
We have applied our six constraints to three represen-

tative retrieval formulas. The results are summarized in
Table 3.4, where a “Yes” means the corresponding model
satisfies the particular constraint and a “Cx” means cor-
responding model satisfies the particular constraint under
some particular conditions (irrelevant to parameter setting),
and a “C∗

x” means the model satisfies the constraint only
when the parameter is in some range. The specific condi-
tions are

C1 ⇔ c(w1, d2) ≤ c(w2, d1)

C∗
2 ⇔ s ≤

tf1 − tf2

(k |d2|
avdl

− 1)tf2 − ( |d2|
avdl

− 1)tf1

C∗
3 ⇔ s ≤

(h(c(w, d1)) − h(c(w, d2))) × avdl

(c(w, d1) − c(w, d2)) × (1 + h(c(w, d1)))

C∗
4 ⇔ µ ≥

c(w1, d1) − c(w2, d2)

p(w2|C) − p(w1|C)

> avdl × (c(w1, d1) − c(w2, d2))

C5 ⇔ c(w, d2) ≥ |d2| · p(w|C)

C6 ⇔ idf(w) ≥ 0 ⇔ df(w) ≤ N/2

Based on the results, we can make several interesting ob-
servations:

First, it is surprising that all the methods, including a
highly effective TF-IDF model, fail to satisfy the TDC (es-
sentially the IDF heuristics) unconditionally.

Second, it is also surprising that the original IDF part
of Okapi formula causes the formula to violate almost all
constraints, thus we may predict that the Okapi formula
may have a worse performance for verbose queries.

Finally, C2, C3 and C4 provide an approximate bound for
the parameters in pivoted normalization method and Dirich-
let prior method. In contrast, by checking the constraints,
we have not found any particular bound for the parameter in
Okapi. Therefore, we predict that the performance of Okapi
is less sensitive to parameter setting than that of the other
two methods.

4. EXPERIMENTS
In the previous section, we have examined three represen-

tative retrieval formulas analytically. Based on the analysis,
we propose some hypotheses about the performance for each
retrieval formula. In this section, we test these hypotheses
through carefully designed experiments. Our experiment re-
sults show that the proposed constraints can both explain
the performance difference in various retrieval models and
provide an approximate bound for the parameters in a re-
trieval formula.



Table 6: Document set characteristic
AP DOE FR ADF Web Trec7 Trec8

#qry 142 35 42 144 50 50 50
#rel/q 103 57 33 126 46 93 95
size 491MB 184MB 469MB 1GB 2GB 2GB 2GB

#doc(k) 165K 226K 204K 437K 247K 528K 528K
#voc(k) 361K 163K 204K 700K 1968K 908K 908K
mean(dl) 454 117 1338 372 975 477 477
dev(dl) 239 58 5226 1739 2536 789 789

mean(rdl) 546 136 12466 1515 6596 1127 1325

4.1 Experiment Design
As is well-known, retrieval performance can vary signifi-

cantly from one test collection to another. We thus construct
several quite different and representative test collections us-
ing the existing TREC test collections.

To cover different types of queries, we follow [20] , and
vary two factors: query length and verbosity, which gives us
four different combinations : short-keyword (SK, keyword
title), short-verbose (SV, one sentence description), long-
keyword (LK, keyword list), and long-verbose (LV, multiple
sentences). The number of queries is usually larger than
50. To cover different types of documents, we construct our
document collections by varying several factors, including
(1) the type of documents; (2) document length; (3) collec-
tion size(varies from 165K documents to 528K documents);
and (4) collection homogeneity. Our choice of document
collection has been decided to be news articles (AP), tech-
nical reports (DOE), government documents (FR), a com-
bination of AP, DOE, and FR (ADF), the Web data used
in TREC8(Web), the ad hoc data used in TREC7(Trec7)
and the ad hoc data used in TREC8(Trec8). Table 6 shows
some document set characteristics, including the number of
queries used on the document set, the average number of
relevant documents per query, the collection size, the num-
ber of documents, the vocabulary size, the mean document
length, the standard deviation of document length, and the
mean length of relevant documents.

The preprocessing of documents and queries is minimum,
involving only stemming with the Porter’s stemmer. No
stop words have been removed, as it would introduce at least
one extra parameter (e.g., the number of stop words) into
our experiments. On each test collection, for every retrieval
method, we vary the retrieval parameter to cover a reason-
ably wide range of values. This allows us to see a complete
picture of how sensitive each method is to its parameter.

4.2 Parameter Sensitivity
Based on the analysis in Section 3, we formulate the fol-

lowing hypotheses: (1) The pivoted normalization method is
sensitive to the value of parameter s. The analysis of LNC2
suggests that the reasonable value for s should be generally
smaller than 0.4 and the performance can be bad for a large
s. (2) Okapi is more stable with the change of parameter b.
(3) The Dirichlet prior method is sensitive to the value of
parameter µ. The analysis of TDC shows that µ has some
lower bound, and a very small µ might cause poor retrieval
performance.

We now discuss the experiment results. First, let us con-
sider the experiment result for pivoted normalization. The
optimal value of s is shown in Table 7. As shown in the ta-
ble, the optimal value of s to maximize average precision has
been found to be indeed quite small in all cases. Moreover,
we also see that when s is large, which causes the method not
to satisfy the LNC2 constraint, the performance is signifi-

Table 7: Optimal s (for average precision) in the
pivoted normalization method

AP DOE FR ADF Web Trec7 Trec8
lk 0.2 0.2 0.05 0.2 — — —
sk 0.01 0.2 0.01 0.05 0.01 0.05 0.05
lv 0.3 0.3 0.1 0.2 0.2 0.2 0.2
sv 0.2 0.3 0.1 0.2 0.1 0.1 0.2

cantly worse. In Figure 2, we show how the average precision
is influenced by the parameter value in the pivoted normal-
ization method on the AP document set and long-keyword
queries; the curves are similar for all other data sets.

Next, we experiment with the Okapi method. Assume
k1 = 1.2, k3 = 1000 and b changes from 0.1 to 1.0. The
performance of Okapi is indeed more stable compared with
the pivoted normalization (shown in Figure 2). By checking
the constraints, we have not found any particular bound
for the parameter, which may explain why the performance
is much less sensitive to the parameter value than in the
pivoted normalization method where a bound for parameter
s is implied by the LNC2 constraint.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

s or b

Av
er

ag
e 

Pr
ec

isi
on

Performance comparision for AP−LK

Pivoted
Okapi

Figure 2: Performance Comparison between Okapi
and Pivoted for AP-LK.

Finally, the optimal values of µ in Dirichlet are shown in
Table 8. We see that these optimal values are all greater
than the average document length, also shown in the same
table. We further plot how the average precision is influ-
enced by the parameter value in Figure 3. Clearly, when
µ is larger than a specific value, the performance is rela-
tively stable. However, when µ is small, the performance is
noticeably worse.

Table 8: Optimal µ (for average precision) in the
Dirichlet prior method

AP DOE FR ADF Web Trec7 Trec8
lk 2000 2000 20000 1000 — — —
sk 2000 2000 5000 2000 4000 2000 800
lv 3000 1000 15000 3000 8000 3000 2000
sv 8000 4000 20000 3000 10000 8000 5000

avdl 454 117 1338 372 975 477 477

Therefore, in general it seems that the constraints could
provide an empirical bound for the parameter in the retrieval



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.25

0.3

0.35

0.4

µ

Av
er

ag
e 

Pr
ec

isi
on

AP−LK−Dirichlet

Figure 3: Performance of Dirichlet for AP-LK.

formula and the performance would tend to be poor when
the parameter is out of the bound.

4.3 Performance Comparison
In this subsection, we compare the performance of these

three retrieval formulas through systematic experiments. Our
goal is to see whether the experiment results are consistent
with the analytical results based on formalized heuristics.
We form the following hypotheses based on the constraint
analysis:(1) For any query type, the performance of Dirich-
let prior method is comparable to pivoted normalization
method when the retrieval parameters are set to an optimal
value. (2) For keyword queries, the performance of Okapi is
comparable to the other two retrieval formulas. (3) For ver-
bose queries, the performance of Okapi may be worse than
others, due to the possible negative IDF part in the formula.
As mentioned in Section 3, when IDF is negative, Okapi vi-
olates almost all the constraints. However, if we modify the
Okapi formula by replacing the original IDF part with IDF
part of the pivoted normalization method, then the formula
would satisfy almost all the constraints for any query type,
therefore we hypothesize that the modified Okapi formula
performs better than the original one for verbose queries.

In order to test these hypotheses, we run experiments over
seven collections and four query sets by using the pivoted
normalization method, the Dirichlet prior method, Okapi
and the modified Okapi formula (which replaces the IDF
part in Okapi with the IDF part in the pivoted normalization
formula). We use average precision as the evaluation mea-
sure. The optimal performance for each formula is summa-
rized in Table 9. The results show that for verbose queries,
the performance of the Mod-Okapi is significantly better
than that of Okapi; the p-values of the Wilcoxin signed rank
test are all below 0.013.

We see that, indeed, for keyword queries, the performances
of three retrieval formulas are comparable. However, for
verbose queries, in most cases the performance of Okapi is
worse than others, which may be caused by the negative IDF
scores for common words. This hypothesis is verified by the
performance of the modified Okapi. After replacing the IDF
part in Okapi with the IDF part of the pivoted normaliza-
tion formula, the performance is improved significantly for
the verbose queries. See Figure 2 and Figure 4 for plots of
these comparisons.

From Figure 4, we may conclude that satisfying more con-

Table 9: Comparison of optimal performance for
four formulas.

AP DOE FR ADF Web Trec7 Trec8
lk Piv 0.39 0.28 0.33 0.27 — — —
lk Dir 0.38 0.28 0.32 0.25 — — —
lk Okapi 0.38 0.27 0.28 0.33 — — —
lk Mod- 0.39 0.28 0.28 0.33 — — —

Okapi
sk Piv 0.23 0.18 0.19 0.22 0.29 0.18 0.24
sk Dir 0.22 0.18 0.18 0.21 0.30 0.19 0.26
sk Okapi 0.23 0.19 0.23 0.19 0.31 0.19 0.25
sk Mod- 0.23 0.19 0.23 0.19 0.31 0.19 0.25

Okapi
lv Piv 0.29 0.21 0.23 0.21 0.22 0.20 0.23
lv Dir 0.29 0.23 0.24 0.24 0.28 0.22 0.26
lv Okapi 0.03 0.07 0.09 0.06 0.23 0.08 0.11
lv Mod- 0.30 0.24 0.25 0.23 0.28 0.26 0.25

Okapi
sv Piv 0.19 0.10 0.14 0.14 0.21 0.15 0.20
sv Dir 0.20 0.13 0.16 0.16 0.27 0.18 0.23
sv Okapi 0.08 0.08 0.08 0.09 0.21 0.09 0.10
sv Mod- 0.19 0.12 0.16 0.14 0.25 0.16 0.22

Okapi

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

s or b

Av
er

ag
e 

Pr
ec

isi
on

Performance comparision for AP−SV

Okapi
Pivoted
Mod−Okapi

Figure 4: Performance Comparison between modi-
fied Okapi, Okapi and Pivoted for AP-SV.

straints appears to be correlated with a better performance.
Therefore, the proposed constraints provide a plausible ex-
planation for the performance difference in various retrieval
models, and suggest how we may improve a retrieval formula
further.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we study the problem of formalizing the

necessary heuristics for good retrieval performance. Moti-
vated by some observations on common characteristics of
typical retrieval formulas, we formally define six basic con-
straints that any reasonable retrieval function should sat-
isfy. These constraints correspond to some desirable intu-
itive heuristics, such as term frequency weighting, term dis-
crimination weighting and document length normalization.
We check these six constraints on three representative re-
trieval formulas analytically and derive specific conditions
when a constraint is conditionally satisfied. The constraint
analysis suggests many interesting hypotheses about the ex-



pected performance behavior of all these retrieval functions.
We design experiments to test these hypotheses using dif-
ferent types of queries and different document collections.
We find that in many cases the empirical results are indeed
consistent with these hypotheses. Specifically, when a con-
straint is not satisfied, it often indicates non-optimality of
the method. This is most evident from the analysis of Okapi
formula, based on which we successfully predict the non-
optimality for verbose queries. In some other cases, when a
method only satisfies a constraint for a certain range of pa-
rameter values, its performance tends to be poor when the
parameter is out of this range, which is evident in the anal-
ysis of the pivoted normalization and the Dirichlet prior. In
general, we find that the empirical performance of a retrieval
formula is tightly related to how well they satisfy these con-
straints. Thus the proposed constraints can provide a good
explanation of many empirical observations (e.g., the rela-
tively stable performance of the Okapi formula) and make
it possible to evaluate any existing or new retrieval formula
analytically, which is extremely valuable for testing new re-
trieval models. Moreover, when a constraint is not satisfied
by a retrieval function, it also suggests a possible way to
improve the retrieval formula.

There are many interesting future research directions based
on this work. First, it will be interesting to repeat all the
experiments by removing the stop words with a standard list
to see if the way a retrieval formula treats stop words might
have an impact on the results. Second, since our constraints
do not cover all the desirable properties, it would be inter-
esting to explore additional necessary heuristics for a reason-
able retrieval formula. This will help us further understand
the performance behavior of different retrieval methods. A
more ambitious direction is to develop a constraint-based
methodology for studying retrieval models (e.g., along the
line of [4]). Third, we will apply these constraints to many
other retrieval models proposed in the literature [1] and dif-
ferent smoothing methods for language models as well [20].
Previous work [11, 21] has attempted to identify an effective
retrieval formula through extensive empirical experiments,
but the results are generally inconclusive with some formulas
performing better under some conditions. Analysis of for-
malized retrieval constraints as explored in this paper may
shed some light on what these conditions are exactly. Fi-
nally, the fact that none of the existing formulas that we
have analyzed can satisfy all the constraints uncondition-
ally suggests that it would be very interesting to see how
we can improve the existing retrieval methods so that they
would satisfy all the constraints, which presumably would
perform better empirically than these existing methods.

6. ACKNOWLEDGMENTS
We thank anonymous reviewers for their useful comments.

We also thank Robin Dhamanka and Jing Jiang for their
help to improve the English in this paper.

7. REFERENCES
[1] G. Amati and C. J. V. Rijsbergen. Probabilistic

models of information retrieval based on measuring
the divergence from randomness. ACM Transactions
on Information Systems, 20(4):357–389, 2002.

[2] N. Fuhr. Language models and uncertain inference in
information retrieval. In Proceedings of the Language
Modeling and IR workshop.

[3] N. Fuhr. Probabilistic models in information retrieval.
The Computer Journal, 35(3):243–255, 1992.

[4] J. Kleinberg. An impossibility theorem for clustering.
In Advances in NIPS 15, 2002.

[5] J. Lafferty and C. Zhai. Probabilistic relevance models
based on document and query generation. In W. B.
Croft and J. Lafferty, editors, Language Modeling and
Information Retrieval. Kluwer Academic Publishers,
2003.

[6] J. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In Proceedings of
the ACM SIGIR’98, pages 275–281, 1998.

[7] S. Robertson and K. Sparck Jones. Relevance
weighting of search terms. Journal of the American
Society for Information Science, 27:129–146, 1976.

[8] S. Robertson and S. Walker. Some simple effective
approximations to the 2-poisson model for
probabilistic weighted retrieval. In Proceedings of
SIGIR’94, pages 232–241, 1994.

[9] S. Robertson and S. Walker. On relevance weights
with little relevance information. In Proceedings of
SIGIR’97, pages 16–24, 1997.

[10] G. Salton. Automatic Text Processing: The
Transformation, Analysis and Retrieval of
Information by Computer. Addison-Wesley, 1989.

[11] G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing
and Management, 24:513–523, 1988.

[12] G. Salton and M. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, 1983.

[13] G. Salton, C. S. Yang, and C. T. Yu. A theory of term
importance in automatic text analysis. Journal of the
American Society for Information Science,
26(1):33–44, Jan-Feb 1975.

[14] A. Singhal. Modern information retrieval: A brief
overview. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering,
24(4):35–43, 2001.

[15] H. Turtle and W. B. Croft. Evaluation of an inference
network-based retrieval model. ACM Transactions on
Information Systems, 9(3):187–222, 1991.

[16] C. J. van Rijbergen. A theoretical basis for theuse of
co-occurrence data in information retrieval. Journal of
Documentation, pages 106–119, 1977.

[17] C. J. van Rijsbergen. A non-classical logic for
information retrieval. The Computer Journal, 29(6),
1986.

[18] E. Voorhees and D. Harman, editors. Proceedings of
Text REtrieval Conference (TREC1-9). NIST Special
Publications, 2001. http://trec.nist.gov/pubs.html.

[19] S. K. M. Wong and Y. Y. Yao. On modeling
information retrieval with probabilistic inference.
ACM Transactions on Information Systems,
13(1):69–99, 1995.

[20] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to ad hoc
information retrieval. In Proceedings of SIGIR’01,
pages 334–342, Sept 2001.

[21] J. Zobel and A. Moffat. Exploring the similarity
space. SIGIR Forum, 31(1):18–34, 1998.


