
Execution in the Kingdom of
Nouns
 March 2006

by Steve Yegge
“They've a temper, some of them—particularly verbs: they're the proudest—adjec-
tives you can do anything with, but not verbs—however, I can manage the whole
lot of them! Impenetrability! That's what I say!” — Humpty Dumpty

 Hello, world! Today we're
going to hear the story of
Evil King Java and his
quest for worldwide verb
stamp-outage1.

Caution: This story does
not have a happy ending.
It is neither a story for the
faint of heart nor for the
critical of mouth. If you're

easily offended, or prone to being a dis-
agreeable knave in blog comments, please
stop reading now.

Before we begin the story, let's get some
conceptual gunk out of the way.

The Garbage Overfloweth
All Java people love “use cases”, so let's be-
gin with a use case: namely, taking out the
garbage. As in, “Johnny, take out that gar-
bage! It's overflowing!”

If you're a normal, everyday, garden-variety,
English-speaking person, and you're asked

to describe the act of taking out the garbage,
you probably think about it roughly along
these lines:

 get the garbage bag from under the sink
 carry it out to the garage
 dump it in the garbage can
 walk back inside
 wash your hands
 plop back down on the couch
 resume playing your video game (or what-

ever you were doing)

Even if you don't think in English, you still
probably still thought of a similar set of ac-
tions, except in your favorite language. Re-
gardless of the language you chose, or the
exact steps you took, taking out the garbage
is a series of actions that terminates in the
garbage being outside, and you being back
inside, because of the actions you took.

Our thoughts are filled with brave, fierce,
passionate actions: we live, we breathe, we
walk, we talk, we laugh, we cry, we hope, we
fear, we eat, we drink, we stop, we go, we
take out the garbage. Above all else, we are
free to do and to act. If we were all just rocks
sitting in the sun, life might still be OK, but

1

1 Beginning with the verb "to stamp out", which is being replaced by a call to
VerbEliminatorFactory.createVerbEliminator(currentContext).operate(). But that's getting waaaaay ahead of ourselves...

we wouldn't be free. Our freedom comes
precisely from our ability to do things.

Of course our thoughts are also filled with
nouns. We eat nouns, and buy nouns from
the store, and we sit on nouns, and sleep on
them. Nouns can fall on your head, creating
a big noun on your noun. Nouns are things,
and where would we be without things? But
they're just things, that's all: the means to an
end, or the ends themselves, or precious
possessions, or names for the objects we ob-
serve around around us. There's a building.
Here's a rock. Any child can point out the
nouns. It's the changes happening to those
nouns that make them interesting.

Change requires action. Action is what gives
life its spice. Action even gives spices their
spice! After all, they're not spicy until you
eat them. Nouns may be everywhere, but
life's constant change, and constant interest,
is all in the verbs.

And of course in addition to verbs and
nouns, we also have our adjectives, our
prepositions, our pronouns, our articles, the
inevitable conjunctions, the yummy exple-
tives, and all the other lovely parts of speech
that let us think and say interesting things. I
think we can all agree that the parts of
speech each play a role, and all of them are
important. It would be a shame to lose any
of them.

Wouldn't it be strange if we suddenly de-
cided that we could no longer use verbs?

Let me tell you a story about a place that did
exactly that...

The Kingdom of Nouns
In the Kingdom of Javaland, where King
Java rules with a silicon fist, people aren't
allowed to think the way you and I do. In
Javaland, you see, nouns are very impor-
tant, by order of the King himself. Nouns are
the most important citizens in the Kingdom.
They parade around looking distinguished
in their showy finery, which is provided by
the Adjectives, who are quite relieved at
their lot in life. The Adjectives are nowhere
near as high-class as the Nouns, but they
consider themselves quite lucky that they
weren't born Verbs.

Because the Verb citizens in this Kingdom
have it very, very bad.

In Javaland, by King Java's royal decree,
Verbs are owned by Nouns. But they're not
mere pets; no, Verbs in Javaland perform all
the chores and manual labor in the entire
kingdom. They are, in effect, the kingdom's
slaves, or at very least the serfs and inden-
tured servants. The residents of Javaland
are quite content with this situation, and are
indeed scarcely aware that things could be
any different.

Verbs in Javaland are responsible for all the
work, but as they are held in contempt by
all, no Verb is ever permitted to wander
about freely. If a Verb is to be seen in public
at all, it must be escorted at all times by a
Noun.

Of course “escort”, being a Verb itself, is
hardly allowed to run around naked; one
must procure a VerbEscorter to facilitate the
escorting. But what about “procure” and “fa-
cilitate?” As it happens, Facilitators and
Procurers are both rather important Nouns

2

whose job is is the chaperonement of the
lowly Verbs “facilitate” and “procure”, via
Facilitation and Procurement, respectively.

The King, consulting with the Sun God on
the matter, has at times threatened to ban-
ish entirely all Verbs from the Kingdom of
Java. If this should ever to come to pass, the
inhabitants would surely need at least one
Verb to do all the chores, and the King, who
possesses a rather cruel sense of humor, has
indicated that his choice would be most as-
suredly be "execute".

The Verb "execute", and its synonymous
cousins "run", "start", "go", "justDoIt",
"makeItSo", and the like, can perform the
work of any other Verb by replacing it with
an appropriate Executioner and a call to
execute(). Need to wait? Waiter.execute().
Brush your teeth?
ToothBrusher(myTeeth).go(). Take out the
garbage? TrashDisposalPlanExecutor.doIt().
No Verb is safe; all can be replaced by a
Noun on the run.

In the more patriotic corners of Javaland,
the Nouns have entirely ousted the Verbs. It
may appear to casual inspection that there
are still Verbs here and there, tilling the
fields and emptying the chamber pots. But if
one looks more closely, the secret is soon re-
vealed: Nouns can rename their execute()
Verb after themselves without changing its
character in the slightest. When you observe
the FieldTiller till(), the ChamberPotEmp-
tier empty(), or the RegistrationManager
register(), what you're really seeing is one of
the evil King's army of executioners, masked
in the clothes of its owner Noun.

Verbs in Neighboring Kingdoms
In the neighboring programming-language
kingdoms, taking out the trash is a straight-
forward affair, very similar to the way we
described it in English up above. As is the
case in Java, data objects are nouns, and
functions are verbs2. But unlike in Javaland,
citizens of other kingdoms may mix and
match nouns and verbs however they please,
in whatever way makes sense for conducting
their business.

For instance, in the neighboring realms of C-
land, JavaScript-land, Perl-land and Ruby-
land, someone might model taking out the
garbage as a series of actions — that is to
say, verbs, or functions. Then if they apply
the actions to the appropriate objects, in the
appropriate order (get the trash, carry it
outside, dump it in the can, etc.), the
garbage-disposal task will complete success-
fully, with no superfluous escorts or chaper-
ones required for any of the steps.

There's rarely any need in these kingdoms to
create wrapper nouns to swaddle the verbs.
They don't have GarbageDisposalStrategy
nouns, nor GarbageDisposalDestinationLo-
cator nouns for finding your way to the ga-
rage, nor PostGarbageActionCallback nouns
for putting you back on your couch. They
just write the verbs to operate on the nouns
lying around, and then have a master verb,
take_out_garbage(), that springs the sub-
tasks to action in just the right order.

These neighboring kingdoms generally pro-
vide mechanisms for creating important
nouns, when the need arises. If the diligent
inventors in these kingdoms create an en-

3

2 And variable names are proper nouns, attributes are adjectives, operators often serve as conjunctions, varargs are the
pronoun "y'all", and so on. But this is all beside the point of our story.

tirely new, useful concept that didn't exist
before, such as a house, or a cart, or a ma-
chine for tilling fields faster than a person
can, then they can give the concept a Class,
which provides it with a name, a description,
some state, and operating instructions.

The difference is that when Verbs are al-
lowed to exist independently, you don't need
to invent new Noun concepts to hold them.

Javalanders look upon their neighbors with
disdain; this is the way of things in the
Kingdoms of Programming.

If You Dig a Hole Deep Enough...
On the other side of the world is a sparsely
inhabited region in whose kingdoms Verbs
are the citizens of eminence. These are the
Functional Kingdoms, including Haskellia,
Ocamlica, Schemeria, and several others.
Their citizens rarely cross paths with the
kingdoms near Javaland. Because there are
few other kingdoms nearby, the Functional
Kingdoms must look with disdain upon each
other, and make mutual war when they have
nothing better to do.

In the Functional Kingdoms, Nouns and
Verbs are generally considered equal-caste
citizens. However, the Nouns, being, well,
nouns, mostly sit around doing nothing at
all. They don't see much point in running or
executing anything, because the Verbs are
quite active and see to all that for them.
There are no strange laws mandating the
creation of helper Nouns to escort each
Verb, so there are only exactly as many
Nouns as there are Things in each kindgom.

As a result of all this, the Verbs have the run
of the place, if you'll pardon the expression.
As an outsider, you could easily form the
impression that Verbs (i.e., the functions)
are the most important citizens by far. That,
incidentally, is why they're called the Func-
tional Kingdoms and not the Thingy King-
doms.

In the remotest regions, beyond the Func-
tional Kingdoms, lies a fabled realm called
Lambda the Ultimate. In this place it is said
that there are no nouns at all, only verbs!
There are “things” there, but all things are
created from verbs, even the very integers
for counting lambs, which are the most
popular form of trading currency there, if
the rumors speak truth. The number zero is
simply lambda(), and 1 is lambda(lambda()),
2 is lambda(lambda(lambda())), and so on.
Every single Thing in this legendary region,
be it noun, verb or otherwise, is constructed
from the primal verb “lambda”3.

To be quite honest, most Javalanders are
blissfully unaware of the existence of the
other side of the world. Can you imagine
their culture shock? They would find it so
disorienting that they might have to invent
some new nouns (such as “Xenophobia”) to
express their new feelings.

Are Javalanders Happy?
You might think daily life in Javaland would
be at best a little strange, and at worst
grossly inefficient. But you can tell how
happy a society is through their nursery
rhymes, and Javaland's are whimsically po-
etic. For instance, Javaland children oft re-
cite the famous cautionary tale:

4

3 The meaning of the verb “lambda” is allegedly “to lambda”.

5

For the lack of a nail,
 throw new HorseshoeNailNotFoundException("no nails!");

For the lack of a horseshoe,
 EquestrianDoctor.getLocalInstance().getHorseDispatcher().shoot();

For the lack of a horse,
 RidersGuild.getRiderNotificationSubscriberList().getBroadcaster().run(
 new BroadcastMessage(StableFactory.getNullHorseInstance()));

For the lack of a rider,
 MessageDeliverySubsystem.getLogger().logDeliveryFailure(
 MessageFactory.getAbstractMessageInstance(
 new MessageMedium(MessageType.VERBAL),
 new MessageTransport(MessageTransportType.MOUNTED_RIDER),
 new MessageSessionDestination(BattleManager.getRoutingInfo(
 BattleLocation.NEAREST))),
 MessageFailureReasonCode.UNKNOWN_RIDER_FAILURE);

For the lack of a message,
 ((BattleNotificationSender)
 BattleResourceMediator.getMediatorInstance().getResource(
 BattleParticipant.PROXY_PARTICIPANT,
 BattleResource.BATTLE_NOTIFICATION_SENDER)).sendNotification(
 ((BattleNotificationBuilder)
 (BattleResourceMediator.getMediatorInstance().getResource(
 BattleOrganizer.getBattleParticipant(Battle.Participant.GOOD_GUYS),
 BattleResource.BATTLE_NOTIFICATION_BUILDER))).buildNotification(
 BattleOrganizer.getBattleState(BattleResult.BATTLE_LOST),
 BattleManager.getChainOfCommand().getCommandChainNotifier()));

For the lack of a battle,
 try {
 synchronized(BattleInformationRouterLock.getLockInstance()) {
 BattleInformationRouterLock.getLockInstance().wait();
 }
 } catch (InterruptedException ix) {
 if (BattleSessionManager.getBattleStatus(
 BattleResource.getLocalizedBattleResource(Locale.getDefault()),
 BattleContext.createContext(
 Kingdom.getMasterBattleCoordinatorInstance(
 new TweedleBeetlePuddlePaddleBattle()).populate(
 RegionManager.getArmpitProvince(Armpit.LEFTMOST)))) ==
 BattleStatus.LOST) {
 if (LOGGER.isLoggable(Level.TOTALLY_SCREWED)) {
 LOGGER.logScrewage(BattleLogger.createBattleLogMessage(
 BattleStatusFormatter.format(BattleStatus.LOST_WAR,
 Locale.getDefault())));
 }
 }
 }

It remains wonderful advice, even to this
very day.

Although the telling of
the tale in Javaland dif-
fers in some ways from
Ben Franklin's original,
Javalanders feel their
rendition has a distinct
charm all its own.

The main charm is that the architecture is
there for all to see. Architecture is held in
exceptionally high esteem by King Java, be-
cause architecture consists entirely of
nouns. As we know, nouns are things, and
things are prized beyond all actions in the
Kingdom of Java. Architecture is made of
things you can see and touch, things that
tower over you imposingly, things that emit
a satisfying clunk when you whack them
with a stick. King Java dearly loves clunking
noises; he draws immense satisfaction from
kicking the wheels when he's trying out a
new horse-drawn coach. Whatever its flaws

may be, the tale above does not want for
things.

One of our first instincts as human beings is
to find shelter from the elements; the
stronger the shelter, the safer we feel. In
Javaland, there are many strong things to
make the citizens feel safe. They marvel at
the massive architectural creations and
think "this must be a strong design". This
feeling is reinforced when they try to make
any changes to the structure; the architec-
tural strength then becomes daunting
enough that they feel nobody could bring
this structure down.

In addition to the benefits of a strong archi-
tecture, everything in Javaland is nicely or-
ganized: you'll find every noun in its proper
place. And the stories all take a definite
shape: object construction is the dominant
type of expression, with a manager for each
abstraction and a run() method for each
manager. With a little experience at this
kind of conceptual modeling, Java citizens

6

For the lack of a war,
 new ServiceExecutionJoinPoint(
 DistributedQueryAnalyzer.forwardQueryResult(
 NotificationSchemaManager.getAbstractSchemaMapper(
 new PublishSubscribeNotificationSchema()).getSchemaProxy().
 executePublishSubscribeQueryPlan(
 NotificationSchema.ALERT,
 new NotificationSchemaPriority(SchemaPriority.MAX_PRIORITY),
 new PublisherMessage(MessageFactory.getAbstractMessage(
 MessageType.WRITTEN,
 new MessageTransport(MessageTransportType.WOUNDED_SURVIVOR),
 new MessageSessionDestination(
 DestinationManager.getNullDestinationForQueryPlan()))),
 DistributedWarMachine.getPartyRoleManager().getRegisteredParties(
 PartyRoleManager.PARTY_KING ||
 PartyRoleManager.PARTY_GENERAL ||
 PartyRoleManager.PARTY_AMBASSADOR)).getQueryResult(),
 PriorityMessageDispatcher.getPriorityDispatchInstance())).
 waitForService();

All for the lack of a horseshoe nail.

realize they can express any story in this
style. There's a kind of "noun calculus" back-
ing it that permits the expression of any ab-
straction, any computation you like. All one
needs are sufficient nouns, constructors for
those nouns, accessor methods for travers-
ing the noun-graph, and the all-important
execute() to carry out one's plans.

The residents of the Kingdom of Java aren't
merely happy — they're bursting with pride!

StateManager.getConsiderationSetter
("Noun Oriented Thinking",
State.HARMFUL).run()
Or, as it is said outside the Kingdom of Java,
“Noun Oriented Thinking Considered
Harmful”.

Object Oriented Programming puts the
Nouns first and foremost. Why would you go
to such lengths to put one part of speech on
a pedestal? Why should one kind of concept
take precedence over another? It's not as if
OOP has suddenly made verbs less impor-
tant in the way we actually think. It's a
strangely skewed perspective. As my friend
Jacob Gabrielson once put it, advocating
Object-Oriented Programming is like advo-
cating Pants-Oriented Clothing.

Java's static type system, like any other, has
its share of problems. But the extreme em-
phasis on noun-oriented thought processes
(and consequently, modeling processes) is
more than a bit disturbing. Any type system
will require you to re-shape your thoughts
somewhat to fit the system, but eliminating
standalone verbs seems a step beyond all ra-
tionale or reason.

C++ doesn't exhibit the problem, because
C++, being a superset of C, allows you to de-
fine standalone functions. Moreover, C++
provides a distinct namespace abstraction;
Java overloads the idea of a Class to repre-
sent namespaces, user-defined types, syn-
tactic delegation mechanisms, some visibil-
ity and scoping mechanisms, and more be-
sides.

Don't get me wrong; I'm not claiming C++ is
“good”. But I do find myself appreciating the
flexibility of its type system, at least com-
pared with Java's. C++ suffers from prob-
lems causing reasonable-looking sentences
to cause listeners to snap and try to kill you
(i.e., unexpected segfaults and other pitfalls
for the unwary), and it can be extremely dif-
ficult to find the exact incantation for ex-
pressing a particular thought in C++. But
the range of succinctly expressible thoughts
far exceeds Java's, because C++ gives you
verbs, and who'd want to speak in a lan-
guage that doesn't?

Classes are really the only modeling tool
Java provides you. So whenever a new idea
occurs to you, you have to sculpt it or wrap it
or smash at it until it becomes a thing, even
if it began life as an action, a process, or any
other non-“thing” concept.

I've really come around to what Perl folks
were telling me 8 or 9 years ago: “Dude, not
everything is an object.”

It's odd, though, that Java4 appears to be the
only mainstream object-oriented language
that exhibits radically noun-centric behav-

7

4 And arguably C#, due to its similar roots.

ior. You'll almost never find an Abstract-
ProxyMediator, a NotificationStrategyFac-
tory, or any of their ilk in Python or Ruby.
Why do you find them everywhere in Java?
It's a sure bet that the difference is in the
verbs. Python, Ruby, JavaScript, Perl, and of
course all Functional languages allow you to
declare and pass around functions as dis-
tinct entities without wrapping them in a
class.

It’s certainly easier to do this in dynamically
typed languages; you just pass a reference to
the function, obtained from its name, and
it's up to the caller to invoke the function
with the proper arguments and use its re-
turn value correctly.

But many statically-typed languages have
first-class functions as well. This includes
verbosely-typed languages like C and C++,
and also type-inferring [functional] lan-
guages like Haskell and ML. The languages
just need to provide a syntax for creating,
passing and invoking function literals with
an appropriate type signature.

There's no reason Java couldn't simply add
first-class functions and finally enter the
grown-up, non-skewed world that allows
people to use verbs as part of their thought
processes. In fact there's a JVM language
called The Nice programming language that
sports a very Java-like syntax, but also in-
cludes expressive facilities for using verbs:
standalone functions, which Java forces you
to wrap with Callbacks or Runnables or
other anonymous interface implementation
classes to be able to refer to them.

Sun wouldn't even have to break their con-
vention of requiring all functions to be
"owned" by classes. Every anonymous func-

tion could carry an implicit "this" pointer to
the class in which it was defined; problem
solved.

I don't know why Sun insists on keeping
Java squarely planted in the Kingdom of
Nouns. I doubt it's a matter of underesti-
mating their constituency; they added ge-
nerics, which are a far more complex con-
cept, so they clearly no longer care deeply
about keeping the language simple. And
that's not a bad thing, necessarily, because
Java's established now: it makes more sense
to start giving Java programmers tools that
let them program the way they think.

I sure hope they fix this, so I can take the
trash out and get back to my video game. Or
whatever I was doing.

8

http://nice.sourceforge.net/
http://nice.sourceforge.net/

