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Abstract
Java program execution times vary greatly with different
garbage collection algorithms. Until now, it has not been
possible to determine the best GC algorithm for a particu-
lar program without exhaustively profiling that program for
all available GC algorithms. This paper presents a new ap-
proach. We use machine learning techniques to build a pre-
diction model that, given a single profile run of a previously
unseen Java program, can predict a good GC algorithm for
that program. We implement this technique in Jikes RVM
and test it on several standard benchmark suites. Our tech-
nique achieves 5% speedup in overall execution time (aver-
aged across all test programs for all heap sizes) compared
with selecting the default GC algorithm in every trial. We
present further experiments to show that an oracle predic-
tor could achieve an average 17% speedup on the same ex-
periments. In addition, we provide evidence to suggest that
GC behaviour is sometimes independent of program inputs.
These observations lead us to propose that intelligent selec-
tion of GC algorithms is suitably straightforward, efficient
and effective to merit further exploration regarding its poten-
tial inclusion in the general Java software deployment pro-
cess.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Memory management (garbage
collection)

General Terms Performance, Experimentation

Keywords Machine learning, application-specific garbage
collection
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1. Introduction
1.1 Importance of GC

In managed runtime environments such as the Java Vir-
tual Machine (JVM) and the Common Language Runtime
(CLR), the total execution time of a user application in-
cludes both application execution and VM execution. The
most time-consuming tasks performed by the VM are gener-
ally optimizing compilation and garbage collection (GC). In
this paper, we largely ignore compilation time and focus on
improving GC time.

GC has a significant effect on overall execution time for
two reasons. There is adirect impact, which is apparent in
the experiments conducted in this paper. In the most extreme
case, one configuration (213 javac, 32MB heap, SemiS-
pace collector) spent 89% of its execution time perform-
ing GC. The mean proportion of execution time spent in
GC is 12.2%, for all 1566 experimental configurations we
recorded. There is also anindirect impact of GC. This is
caused by the manner in which the GC algorithm rearranges
heap-allocated data after collection [12]. This can affectsub-
sequent program execution time due to significant changes in
the spatial locality of data.

It is well-known that different garbage collectors work
best for different programs. The concept of selecting a spe-
cialized GC algorithm for each program is termedapplication-
specific garbage collection.

Figure 1 shows that different programs perform better
with different GC algorithms. These timings were measured
using Jikes RVM 2.4.6 with a fixed 512MB heap for a se-
lection of benchmarks from the DaCapo suite, on a lightly
loaded Linux IA32 workstation with 1GB RAM. For each
benchmark, execution results are reported as speedup per-
centages relative to the default GenMS GC scheme. Thus
scores above 100 represent an improvement on the default
scheme, whereas scores below 100 represent a degradation.
There are six different GC algorithms tested for each bench-
mark program. Note that there is a wide variation in the dif-
ferent GC algorithms’ performance. In relation to GenMS,
each of the other five GC algorithms perform better for at
least one program. The best case is the SemiSpace GC on
the pmd benchmark, which is over 20% faster than the de-
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Figure 1. Relative performance of DaCapo benchmarks us-
ing various GC algorithms, normalized to the GenMS exe-
cution for that benchmark
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Figure 2. Relative performance of DaCapo pmd benchmark
at different fixed heap sizes using various GC algorithms,
normalized to the GenMS execution for that heap size

fault case. However it can also be seen that each of the five
GC algorithms performs worse than GenMS for at least one
program. The worst case is the MarkCompact GC on the
hsqldb benchmark, which is almost 65% slower than the de-
fault case.

Figure 2 shows that the optimal GC algorithm for a sin-
gle application can change depending on the size of the JVM
heap. All these measurements were taken using the same ex-
perimental framework as above, only with various different
fixed heap sizes and a single benchmark. Again it is clear
to see that there is a wide variation in the relative execution
times for the different GC algorithms.

A key point is that it is not at all obvious how to determine
which GC algorithm works well with each program and heap
size. It would be better to derive this kind of relationship
automatically using machine learning techniques.

1.2 Application-Specific GC

To date, attempts to select automatically the optimal GC al-
gorithm have been fairly restricted. They generally require
exhaustive profiling of all different GC configurations for
the candidate program. This exhaustive search technique is
a common element for both static and dynamic selection of
GC algorithms.Staticselection [10] chooses a single GC al-
gorithm for the entire program execution, whereasdynamic
selection [17] uses several GC algorithms, and switches be-
tween them at runtime when certain heuristic thresholds are
crossed.

Both these techniques have been implemented on re-
search JVM systems (see Section 6 for full details). They
demonstrate nontrivial speedups using application-specific
GC as opposed to a default ‘one-size-fits-all’ GC algorithm.
The major drawback of these techniques is that they require
large numbers of profiling runs.

Our paper presents a novel approach that usesmachine
learning to select efficiently a good GC algorithm for a
program that has not been seen before, by looking at how
‘similar’ programs perform with the whole range of GC
algorithms.

There are several complications that need to be resolved
to make this machine learning technique effective. We have
seen that the optimal GC algorithm depends on other factors
apart from just the program itself. For instance, as the JVM
heap size varies, different GC algorithms have different rel-
ative changes in performance. In general, the generational
collector with a mark-and-sweep mature space (GenMS) al-
gorithm does best with a small heap, whereas other algo-
rithms can outperform GenMS with larger heaps. Another
question is whether the GC behaviour of a program could
be dependent on that program’s input. We consider this in
detail in Section 4.3 although earlier work has found input
to have negligible effects [17]. All our experimental work
is conducted using Jikes RVM. This is a Java-in-Java VM,
so VM activity (most notably adaptive compilation activity)
also has an impact on GC. In the version of Jikes RVM that
we used, the VM shares the same heap as the user applica-
tion. It is possible to incorporate compilation activity into the
GC profile, by profiling the initial execution of each program
(one-off run). Alternatively, it is possible to ignore compila-
tion activity by profiling thenth iteration of a program in a
test harness (steady-state run) where we assume that all hot
methods have been identified and recompiled as necessary in
earlier iterations. Unless explicitly stated, the data in this pa-
per concerns steady-state runs of benchmark programs. An-
other difficulty is that we need to identify suitable program
features that can be used to detect similarities between pro-
grams for GC performance prediction. This feature selection
task is not really intuitive. Section 3.1 describes our feature
set in detail.

To summarize, our new approach works like this. We
build a model that relates programs with optimal GC algo-



rithms. Then we examine a new programp that is not part of
the model, find the most ‘similar’ program top in our model
based on its features, and select the GC algorithm that our
model predicts. Our approach should be quicker and easier
than existing profile-guided GC selection techniques. Note
that in this paper,optimumis always in terms of mimimal
overall execution time. We recognise that there are other
definitions of optimization (such as minimization of space
or power consumption) for which our technique would also
be applicable. However we do not consider these throughout
this paper.

1.3 Our contributions

This paper makes four main contributions:

• It is the first use of machine learning for application-
specific GC selection.

• We achieve a 5% speedup for standard benchmark pro-
grams (averaged over all benchmarks and heap sizes) us-
ing GC algorithms predicted by our model, rather than
using the default generational mark-and-sweep scheme
in Jikes RVM.

• The paper quantifies the maximum possible speedup that
an oracle GC predictor could achieve. This maximum
speedup is 17% when averaged over all benchmarks and
heap sizes, in relation to always using the default GC
algorithm. No previous limits guidance was available for
such a wide range of benchmarks and GC algorithms.

• Given a possible choice betweenN GC algorithms,
our technique requiresO(1) profiling runs whereas pre-
vious techniques useO(N) profiling runs. Our new
approach could easily become part of an automated
build/deployment process for managed software.

2. Background
This section considers a simple example scenario, to moti-
vate and explain how machine learning can be applied to the
problem of application-specific GC.

Suppose we know that program X executes in the shortest
time with GC algorithm foo, and program Y executes in
the shortest time with GC algorithm bar. We would like to
be able to predict which GC algorithm to use for program
Z, without having to profile the executions of Z with every
possible GC algorithm.

Our approach is to take some simple measurements on X
and Y, which we call thefeaturesof these programs. In this
simplistic example, let the number of explicit invocationsof
System.gc() in the program source code be the only fea-
ture. Now we use standard machine learning techniques that
relate these features with the best GC algorithms. We deter-
mine the best GC algorithms by running X and Y with all
GC algorithms, and recording which GC algorithm causes
each program to execute in the shortest amount of time. This
gives us a table oftraining datathat looks like Figure 3.

program num calls ofSystem.gc best GC algorithm
X 4 foo
Y 1 bar

Figure 3. Training data table for GC prediction

if (num calls of System.gc > 2)

then foo else bar

Figure 4. Decision tree for GC prediction

We apply a decision tree generator to this training data,
which produces a series of conditional statements to deter-
mine the best GC algorithm for a program. To continue our
trivial example, the decision tree is shown in Figure 4.

Now we measure the same feature for program Z. Say
Z calls System.gc three times. We feed this data into the
decision tree, which therefore recommends that we use GC
algorithm foo for Z.

This machine learning approach is beneficial if:

• it is relatively easy and quick to extract features from a
program.

• we already have a large corpus of reliable training data
that covers a broad range of programs and GC be-
haviours.

• the recommended algorithm performs better than the de-
fault algorithm. (Ideally, we would like the recommended
algorithm to be the optimum.)

3. Intelligent Selection
The problem is actually more complicated than the sce-
nario in Section 2. In our real-world system there are six
garbage collection algorithms. Basically, a machine learn-
ing approach takes a description of a program execution and
predicts which GC algorithm performs best for a given JVM
heap size, without running all six GC algorithms on that pro-
gram. In order to obtain program execution descriptions, we
take some measurements of benchmarks. These act asfea-
tureswhich are inputs for the machine learning algorithm.

3.1 Features

Various measurements can be used to characterize the differ-
ent benchmark programs. We consider static program met-
rics (Section 3.1.1) which measure properties of the Java
bytecode independent of any VM or GC algorithm, dynamic
program metrics (3.1.2) which measure runtime behaviour
of the program running on a specific JVM with specific
GC algorithm, and VM metrics (3.1.3) which measure heap
properties of the JVM. Some of the dynamic metrics are GC-
invariant, whereas others are highly GC-specific.



3.1.1 Static Metrics

We adopt the Chidamber and Kemerer metrics suite for
object-oriented programs [8]. This includes the followingsix
measurements for each class: weighted methods per class
(WMC); depth of inheritance tree (DIT); number of chil-
dren (NOC); coupling between object classes (CBO); re-
sponse for a class (RFC); and, lack of cohesion of methods
(LCOM).

WMC has a unit weight, so it is simply a count of the
number of methods in a class. DIT measures the length
of the maximum path in the inheritance tree from the root
java.lang.Object to that class. NOC counts the number
of direct subclasses of the current class. CBO measures how
often code in a class uses methods or instance fields defined
in another class. Multiple accesses to the same class are only
counted as a single coupling. The relationship is symmetric.
Coupling occurs in both the used class and the user class.
RFC counts how many methods are executed in response to
a single method call, i.e. how many sub-methods a method
executes in its body. This is summed over all methods in
the class. LCOM measures the diversity of instance variable
usage by different methods of a class. A low LCOM score
means that most methods in the class use a similar subset
of instance variables in that class. A high LCOM score
means that most methods use disjoint subsets of the set of
all instance variables in that class.

The aim of the CK metrics suite is to measure the main-
tainability and object-orientation of program source code. In
general, high scores for CK metrics are presumed to indi-
cate complex, poorly maintained source code, that needs to
be refactored. Conversely, low scores denote simple, main-
tainable, object-oriented code.

We used the source code figures from the DaCapo study
[6] where possible, and used the same metrics reporting tool
(ckjm [18]) for our supplementary benchmark programs.
Each metric value is for a single class. To obtain a metric
value for an entire program, we sum each metric value over
over all the application classes (excluding standard Java li-
braries) that are loaded during benchmark execution. Our
motivation to include these static metrics is that genuinely
object-oriented code may be more allocation-intensive. Per-
haps it is possible to predict allocation behaviour from the
source code using such static metrics.

We note that these metrics are all absolute values. They
could be translated into relative values by dividing each
summed metric value by the number of classes in that bench-
mark program, to get an average per-class metric value.

3.1.2 Dynamic Metrics on Reference VM

We use an instrumented build of Jikes RVM to obtain certain
object demographics for each benchmark program. These
are independent of GC and heap size. They reflect program
allocation behaviour in general. These metrics are: number
of allocated objects; mean size of allocated objects; number

of allocated arrays; mean size of allocated arrays; number
of allocated bytes; number of bytes allocated in nursery;
proportion of objects that arejava.lang.String objects;
and, bins for different ranges of array sizes (excluding very
large arrays that are allocated in the large object space).

Our expectation is that different GC algorithms may be
better for differently sized objects or arrays. Note that ob-
jects and arrays above a threshold size of 8KB are automat-
ically placed in a separate large object space (LOS) that is
not subject to the same GC regime as the standard heap.
These LOS allocations are included in the figures for most
of these metrics, however nursery-allocated bytes and array
bins specifically exclude large objects and arrays. The allo-
cation and collection of the LOS is orthogonal to the general
purpose JVM heap, and is independent of the six MMTk GC
schemes outlined in Section 3.3. Therefore our GC optimiza-
tion scheme should not change the behaviour of the LOS.

Other object demographics are GC-dependent. We col-
lect these using a reference GC algorithm for each heap
size. In all our tests, the reference algorithm is generational
mark-and-sweep (GenMS) which is the default setting in
Jikes RVM. Recall that a generational collector has a nurs-
ery space, where objects are initially allocated, and a mature
space, to which long-lived objects are promoted. GCs can
be ‘minor’ which means that only the nursery space is col-
lected, or ‘major’ which means that both the nursery and the
mature space are collected. Generational collectors generally
rely on a low proportion of allocated objects surviving the
nursery to be promoted to the mature space. This is known
as the ‘weak generational hypothesis’ which states that most
objects die young [19]. Thus nursery survival rate might in-
dicate whether the program is a suitable candidate for gen-
erational collection. However note that even programs with
high survival rates can perform well with generational col-
lection. The hsqldb program in the DaCapo suite illustrates
this point [6]. These GC-dependent dynamic metrics are:
nursery survival rate; number of major GCs; and, number
of minor GCs.

Finally for dynamic metrics we run a ‘reference’ VM
with various heap sizes and the default GenMS GC algo-
rithm. For each heap size we use the default MMTk tim-
ing harness to record: overall execution time; total number
of (major+minor) GCs; proportion of time spent in mutator;
and, proportion of time spent in GC.

This information gives us an insight into the program’s
GC behaviour as the heap size changes. We note that these
metrics all provide absolute figures. These scores may be
turned into relative figures by dividing by number of allo-
cated bytes or by total execution time. However, this rela-
tivization of the metrics does not improve prediction accu-
racy. In fact it has the opposite effect.

3.1.3 VM Metrics

We treat JVM heap size as an input metric. The initial heap
size is specified to a JVM by the command line flag-Xms,



and the maximum heap size by-Xmx. We set both these
parameters to the same value to ensure a fixed heap size
throughout benchmark execution. As we have already noted,
various GC algorithms perform relatively differently when
heap size is varied, so this is an important feature. We also
note that using runs with different heap sizes is an impor-
tant technique for obtaining large amounts of training data
for our machine learning technique. For instance, if we only
have 20 benchmark programs, then this provides very little
training data if we fix a standard heap size. With varied heap
sizes, we could have 80 rows of training data, with 4 differ-
ent heap sizes for each benchmark program. In fact, some
benchmarks cannot run with small heap sizes, so there are
fewer heap size choices for some benchmarks than others.
The heap sizes we use in our experiments are 16, 32, 48, 64,
96, 128, 160, 192, 224, 256 and 512MB.

Soman et al [17] use a single metric to determine when
to switch GC algorithms. Their metric is the ratio of the cur-
rent heap size to the minimum possible heap size for each
benchmark. For each program, they determine an optimal
value for GC algorithm switch. Since they single out this
metric as important, we include it as one of our features for
the machine learning technique. This means that we need to
determine the minimum possible heap sizes for each bench-
mark program. Note that our figures will be different to the
minimum sizes in the DaCapo study [6] since they have sep-
arate heaps for VM objects and for application objects, and
they only report the minimum size for the application heap.
In contrast, we use the default Jikes RVM heap layout which
shares a single heap for both VM and application objects.
We obtain the minimum heap size for each benchmark to
a megabyte granularity, by running each benchmark several
times for a range of heap sizes between 8 and 512MB. Note
that Jikes RVM fails to boot fully in less than 8MB. We
record the smallest heap size for which the application suc-
cessfully completes and there are no out-of-memory errors
from the Jikes RVM optimizing compiler.

For each benchmark run (that generates a row of feature
data in the training table) we calculate the ratio of the current
heap size with the minimum possible heap size and use this
ratio as an additional feature. So the VM-specific dynamic
features are: current JVM heap size; and, ratio of current
JVM heap size to minimum possible heap size in which this
benchmark completes.

3.2 Benchmarks

Figure 5 shows the benchmarks used in all experiments.
There is clearly a wide range of user applications from all
different genres of general purpose software. Other bench-
marks from these suites are excluded because they are too
trivial (such as 200 check from SPECjvm98) or they do not
run reliably on Jikes RVM (such as eclipse from DaCapo).

All DaCapo benchmark executions use the default input
set. All SPECjvm98 benchmark executions use the default
size 100 input set. The pseudojbb benchmark uses the de-

benchmark suite description
201 compress SPECjvm98 zip compression algorithm

202 jess SPECjvm98 expert system shell
205 raytrace SPECjvm98 raytracer

209 db SPECjvm98 database system
213 javac SPECjvm98 Java compiler

222 mpegaudio SPECjvm98 MP3 decoder
227 mtrt SPECjvm98 multi-threaded raytracer
228 jack SPECjvm98 parser generator

pseudojbb SPECjbb2000 database engine
antlr DaCapo parser generator
bloat DaCapo bytecode optimizer
fop DaCapo print formatter

hsqldb DaCapo relational database engine
luindex DaCapo text indexing tool

pmd DaCapo Java source code analyzer
bh JOlden mathematical computation

bisort JOlden sorting
em3d JOlden mathematical computation
health JOlden process simulation
mst JOlden minimum spanning tree

perimeter JOlden image processing
power JOlden process simulation
treeadd JOlden tree traversal

tsp JOlden graph optimization
voronoi JOlden image processing

Figure 5. Table of benchmarks used in experiments

fault 7000 transactions setting. The JOlden benchmark exe-
cutions use the default command line settings, with the ex-
ception of the treeadd benchmark. In this case, we altered
the levels parameter from 20 to 22. After this alteration,
the treeadd program takes around 1s for total execution time,
whereas before it ran in 0.05s, which is too short for mean-
ingful feature collection. All benchmark executions take at
least 0.1s. The mean overall execution time across all bench-
mark executions is 4.0s.

From the DaCapo paper [6], it is clear to see that the
DaCapo benchmarks stress the GC system far more than
the SPECjvm98 and pseudojbb benchmarks. Similarly the
JOlden benchmarks are small though pointer-intensive. Our
aim is to have a wide range of GC behaviour for our training
corpus.

3.3 GC algorithms

All our experiments are conducted using Jikes RVM 2.4.6.
This is an open-source Java-in-Java virtual machine. It was
originally developed by IBM Research but now is actively
maintained by a worldwide community of academics and
software engineers [1, 2]. The memory management sub-
system of Jikes RVM is known as the memory management
toolkit (MMTk). This is a highly modular, retargetable GC
framework [5]. At VM build time, it is possible to specify
which MMTk GC algorithm should be incorporated with the
target VM. Of the available MMTk GC algorithms, there are



only six algorithms that work reliably with Jikes RVM 2.4.6.
These are:

1. CopyMS: copying mark-and-sweep collector

2. GenMS: generational scheme with mark-and-sweep ma-
ture space

3. GenCopy: generational scheme with copying mature
space

4. MarkSweep: simple mark-and-sweep collector

5. MarkCompact: simple compacting collector

6. SemiSpace: semispace copying collector

For the production-quality build configuration of Jikes
RVM, the default selected GC algorithm is GenMS. In our
experiments, we build six VMs that have identical build
configurations except that each incorporates a different GC
algorithm from the above MMTk range. Note that there
is no fundamental reason why a single VM image cannot
incorporate support for multiple GC algorithms. There are
some engineering complications regarding write barriers and
runtime compilation, but it should be possible to solve these
issues.

3.4 Predictor Organization

The prediction problem is six-class, since there are six pos-
sible GC algorithms. A single predictor does not work very
well in this case. The difficulty in predicting accurate an-
swers increases exponentially with the class of the prediction
problem. So a single predictor is not scalable if the number
of GC algorithms increases, for instance if new algorithms
were developed for MMTk.

Instead we reduce the six-class problem into a complex
predictor that is a series of simpler two-class (binary) prob-
lems. The complex predictor is organized according to the
schematic diagram in Figure 6. Each circle represents a bi-
nary predictor. Each arrow represents a prediction. Arrows
with no children represent final predictions from the com-
plex predictor.

Given a feature vector, the complex predictor first checks
a filtering GenMS predictor to determine whether the GenMS
GC algorithm is suitable for this program. If ‘yes’, we take
GenMS as the final prediction. If ‘no’, then the feature vec-
tor is supplied to a full tournament predictor (shown in right
hand box of Figure 6) where the remaining five GC algo-
rithms ‘play off’ to see which one wins the tournament. Each
round of the tournament is a single predictor that selects be-
tween two GC algorithms, to say which GC algorithm would
give shorter overall execution time (these figures are ob-
tained from the timings database). The winner then plays the
next GC algorithm, until all GC algorithms have competed
at least once in the tournament and the winning algorithm is
the final prediction.

The order of GC algorithms in the tournament does have
a slight effect on the outcome of the prediction. We evalu-

ated several arbitrary orderings (without considering allm!
orderings of them GCs) and chose the ordering that gave
the best results. This is (GenCopy, CopyMS, MarkCompact,
MarkSweep, SemiSpace).

The GenMS GC algorithm gets special treatment since
it is the default GC algorithm in Jikes RVM. GenMS is
most likely to give the fastest overall execution time for
many programs, so we hope it will be the easiest to predict
accurately. Thus we make this the first choice in our complex
predictor. Note that we did consider a six-way tournament
predictor, treating GenMS in the same way as the other five
GC algorithms, but the prediction results were generally less
accurate.

Each individual binary predictor is a decision tree gener-
ated by the C4.5 algorithm, a series of if/then/else tests on
feature values. The predictors are automatically generated
using the weka system [20], then interfaced together with
custom perl scripts.

4. Evaluation
4.1 Experimental Method

We harvest values for static features from the DaCapo pa-
per [6] as far as possible. The JOlden benchmarks are not
considered in this paper, so we use the same tool as the
DaCapo researchers (ckjm) to gather the static feature val-
ues for JOlden. We gather GC-independent dynamic data for
each benchmark by running that benchmark using an instru-
mented build of Jikes RVM with a reference setup, namely
GenMS GC with a heap size of 256MB. We gather GC-
dependent dynamic data from another instrumented build of
Jikes RVM using the reference GenMS collector, with speci-
fied heap sizes. We gather execution time information for all
benchmarks, for all GC algorithms and all appropriate heap
sizes using the GC-customized production builds of Jikes
RVM as described above.

In an attempt to eliminate adaptive compilation activ-
ity from our dynamic and timing measurements, we take
all measurements from the fifth iteration of a benchmark
program in a test harness loop. By this stage, hot meth-
ods should have been recompiled and optimizing recom-
pilation should be negligible. We refer to this situation as
‘steady-state’ benchmark execution. Even though the mea-
surements are intended to be steady-state, they are still non-
deterministic due to the inevitable noise in a managed adap-
tive runtime system. To compensate for this, we take five
measurements for each feature and select the features from
the run with the median execution time of these five.

In this way, we generate two databases. There is a
database of feature vectors for each (benchmark, heap-
size) combination, and a database of execution times for
each (benchmark, heapsize, GC algorithm) combination. We
identify the GC algorithm that gives the shortest overall ex-
ecution time for each (benchmark, heapsize) combination.
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Figure 6. Structure of complex predictor for application-specific GC, showing the initial GenMS filter predictor and the
tournament component

This optimal GC algorithm is the answer that our complex
predictor should be able to predict.

We postprocess the database of feature vectors and send
it to the weka machine learning system [20]. We generate
decision trees using the C4.5 algorithm, particularly the
weka.classifiers. trees.J48 implementation. This
decision tree learner does not require its inputs to be nor-
malized and generally produces accurate predictors.

We perform leave-out-one cross-validation (LOOCV) for
all our evaluations. This means that we separate our database
of feature vectors into two sections. One section is known
as thetraining data. This contains data for all benchmarks
except one. The other section is known as thetesting data.
This only contains data for the various executions of a sin-
gle benchmark. We apply the weka system using the feature
vectors in the training data to construct a prediction model,
then assess the accuracy of this model on the testing data.
This LOOCV approach should be similar to how a predic-
tion model would work, given a Java program that had not
been used to construct the model, i.e. a previously unseen
program.

For each (benchmark, heapsize) combination, we have a
prediction generated by the LOOCV predictor model. We
can convert these predictions into execution times by look-
ing up the actual execution time for this (benchmark, heap-
size, predicted GC algorithm) combination in our timings
database. We can compare this predictive execution time
with the default execution time by examining the time for
(benchmark, heapsize, GenMS) in the timings database. This

is how we measure the performance of our complex predic-
tor model in the following section.

4.2 Results

Figure 7 shows how our predictor performs, in relation to the
default GenMS GC algorithm and the optimal GC selection,
which would require an oracle predictor. We can determine
the optimal GC selection since we have a complete execu-
tion timings database so we can see which GC algorithm
gives the minimum overall execution time for each (bench-
mark, heapsize) combination. In the graph, a score of 100
represents the default GenMS execution. A lower score rep-
resents a slowdown and a higher score represents a speedup.
The results are reported as the mean score for all benchmarks
at each given heap size. Note that for the smaller heap sizes,
only a handful of benchmarks are included. The minimum
heap size for which all benchmarks can execute is 128MB.
The mean speedup over all benchmarks and heap sizes is
5% for our complex predictor, compared with a theoretical
optimum limit of 17% for an oracle predictor.

An exhaustive profiling approach would require at least
one execution run of each (benchmark, heapsize) test for
each GC algorithm, which would make six runs of Jikes
RVM. Our intelligent approach requires two execution runs
of each (benchmark, heapsize) test. The first is a profiling
run with an instrumented JVM to collect all the necessary
dynamic feature information. (In fact, we have two profiling
runs with instrumented JVMs but there is no technical reason
to prevent their unification.) The second is a profiling run
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Figure 7. Results of complex predictor, with GenMS filter
and 5-way tournament, for all benchmarks described in Sec-
tion 3.2 at various heap sizes between 16 and 512MB

with a default GenMS JVM to collect the timing information
for this reference GC. So our approach requires two runs
of Jikes RVM. Thus, roughly speaking, we have reduced
the amount of profiling required by 66%. This does not
consider the fact that we need to use multiple runs and
take median values (we assume this would be the same in
both approaches). Also it does not take into account the
slowdown that occurs in Jikes RVM for instrumentation and
data gathering. However this is not overly significant.

4.3 Discussion

A possible concern is that the number of GCs may be mini-
mal at larger heap sizes such as 512MB. Figure 8 shows how
the mean number of garbage collections varies with heap
size for the reference GenMS collector, over all benchmarks.
Note the logarithmic scale on they-axis. Also note that the
spikes in the curves are due to new benchmarks being intro-
duced at various heap sizes. Above 128MB all benchmarks
are included.

At larger heap sizes, very few benchmarks require major
GC collection. From these statistics it may be argued that
learning about the best GC algorithm is not valid at such
large heap sizes. However, there are still large variationsin
benchmark performance with different GCs. This is mostly
due to the relative efficiencies of the allocators rather than
the collectors. However learning based on allocator perfor-
mance is definitely valid, since allocators are GC specific.
We notice that at large heap sizes, GC algorithms that em-
ploy simple bump-pointer style allocators are favoured over
more complicated schemes.

The problem with machine learning techniques is that
they are highly dependent on training data to be represen-
tative and to have broad coverage. We have already noted
that the hsqldb benchmark has extraordinary behaviour, as
acknowledged in the DaCapo survey paper [6]. From our
investigations, hsqldb is quite unlike the other benchmarks.
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Figure 8. Mean number of GCs at various heap sizes at
various heap sizes between 16 and 512MB

For instance, when the JVM starts with a small heap which
is permitted to grow in size towards a limit of 1GB, the
hsqldb benchmark increases the heap to 345MB, whereas
no other benchmark increases past 128MB. Thus our com-
plex predictor is unable to make accurate GC predictions
for this unusual program. The hsqldb benchmark works best
with GenMS and GenCopy predictors, but according to our
complex predictor model, it should do better with SemiS-
pace. In fact, SemiSpace gives hsqldb an execution time of
around 1.75 times the GenMS time for 512MB. If we elim-
inate hsqldb from our results, then the mean speedup over
all benchmarks and heap sizes rises to 7%, with the optimal
speedup for an oracle predictor rising to 18%. Such prob-
lems should be solved with a larger training corpus.

This application-specific GC prediction is not useful if
GC behaviour is highly input-dependent. So far we have
only profiled each benchmark with a single set of input data.
In order to determine whether GC behaviour will vary with
inputs, we run some DaCapo benchmarks using the small in-
put set, rather than the default, to examine differences in GC
behaviour. We use all GC algorithms with the DaCapo small
inputs and determine the optimal GC algorithm for each pro-
gram. This is the information we need to construct an or-
acle predictor for the small inputs. Now we use the small
input oracle predictor to predict the best GC algorithm, and
test this on the DaCapo benchmarks running with default in-
put sizes. If the DaCapo benchmark GC behaviour is highly
input-dependent then it should not be possible to get any per-
formance improvement from using the GC predictions based
on small input execution to select GC algorithms for default
input execution. Figure 9 shows the results. For one heap
size, there is a slight speedup. For the other four heap sizes,
there are slowdowns, with a 26% slowdown at 32MB being
the most severe. The graph also shows the maximum pos-
sible speedup from exhaustive profiling of all default input
executions. The mean optimal speedup is 4%.
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Figure 9. DaCapo benchmark speeds for various heap sizes,
when training with small inputs and testing with default
inputs using an oracle predictor

From a careful examination of the relative GC algorithm
performance, we have found that across input sets, the opti-
mum algorithm often changes, but the worst-case algorithm
rarely differs. So testing on a different input set to the train-
ing data should avoid the worst-case GC, but it is not always
possible to predict the best GC. This GC prediction problem
shares the common weakness of all ahead-of-time profiling
techniques, that it is always going to be heavily reliant on
representative input data for the profiling executions.

Recall that all our program executions are from steady-
state runs in test harnesses. To assess the impact of JVM
optimizing compiler activity, we train with one-off program
executions and test on steady-state. Similar to the above in-
vestigation, we run all one-off benchmark executions to con-
struct an oracle predictor, then use this one-off oracle predic-
tor to predict the best GC algorithm for steady-state runs. If
the DaCapo benchmark GC behaviour changes greatly from
the first execution of a program to thenth consecutive exe-
cution then there should be no performance improvement by
using GC predictions obtained from the the one-off execu-
tions to select GC algorithms for the steady-state executions.
Figure 10 shows the results. For three heap sizes, there is a
slight speedup. The other two remain unchanged. The mean
speedup is 1%, compared with a theoretical optimum of 4%.
This is mostly due to the fact that optimizing compiler activ-
ity, if it accounts for a significant proportion of allocations,
will tend to favour the default GenMS GC algorithm. The
optimizing compiler allocates many short-lived objects dur-
ing its analysis phases, ideal for generational collection. For
program executions in which optimizing compilation activ-
ity is insignificant, the same GC algorithm should be best for
both one-off and steady-state executions.

5. Analysis of Prediction Schemes
Machine learning techniques are simply automatic heuris-
tic generation tools. It is often instructive for systems re-
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Figure 10. DaCapo benchmark speeds for various heap
sizes, when training with one-off runs and testing with
steady-state runs using oracle predictor

searchers to examine the heuristics created by such tools,
both as a sanity check, and to gain insight into how predic-
tors work.

5.1 Decision Tree to Predict Generational Collection

The first question we ask is: Do automatically generated
decision trees make sense to the domain expert?

Note that for the LOOCV technique employed in our
evaluation above, a different decision tree would be gen-
erated for each benchmark, since each benchmark has a
slightly different training set of data. In this section, wetrain
on all the benchmarks at once.

We choose to analyse a new prediction problem that has
not been considered previously in this paper—whether or
not a (benchmark, heapsize) combination is amenable to
generational GC. We group the six GC algorithms into two
groups. TheGen group of generational collection schemes
comprises GenCopy and GenMS. TheNonGen group of
non-generational collection schemes comprises CopyMS,
SemiSpace, MarkSweep and MarkCompact. We use the
same benchmarks and feature sets as above, only now the
classification is binary—either one of theGen schemes gives
the shortest time, or one of theNonGen schemes does. This
simplified study has some practical value. Fitzgerald and
Tarditi state that the most significant choice affecting perfor-
mance is whether to use a generational collector [10].

We use all the benchmarks to create a C4.5 decision tree.
Weka performs cross-validation by randomly selecting half
of the input data for training, and the other half for testing.
The generated decision tree gets 87% accuracy on the test
data. So it is very good at predicting which programs will
perform well under a generational collection scheme. Note
that as a whole, 37% of the entries should beNonGen and
63%Gen.

Figure 11 shows the decision tree for this problem. It only
includes five features. These are as follows:



dynamic_num_bytes <= 91306040

|static_lack_of_cohesion_of_methods <= 5: Gen

|static_lack_of_cohesion_of_methods > 5

||dynamic_num_minor_gcs <= 6: NonGen

||dynamic_num_minor_gcs > 6: Gen

dynamic_num_bytes > 91306040

|static_lack_of_cohesion_of_methods <= 47371

||dynamic_arrays_size_u128B <= 0.11: Gen

||dynamic_arrays_size_u128B > 0.11

|||ratio_curr_to_min_heap <= 15.515152: Gen

|||ratio_curr_to_min_heap > 15.515152: NonGen

|static_lack_of_cohesion_of_methods > 47371: NonGen

Figure 11. Decision Tree for Generational Collection

1. number of allocated bytes during program execution

2. value of the static LCOM metric from the CK suite

3. number of minor GCs during program execution

4. number of arrays allocated with sizes between 64 and 128
bytes, during program execution

5. ratio of current fixed heap size to minimum heap size in
which this program will execute successfully.

A notable absentee is the ‘nursery survival rate’ feature.
A low nursery survival rate indicates a program that satis-
fies the weak generational hypothesis [19] that most objects
die young, which is the original basis for generational col-
lection. However, as others have noted [6], even programs
that have a high nursery survival rate do well with genera-
tional collection. Our decision tree shows that generational
collection is actually dependent on other less intuitive pro-
gram features.

5.2 Feature Selection

The ‘curse of dimensionality’ is a common problem in ma-
chine learning. A large number of features makes the learn-
ing problem take longer, and often leads to inferior solutions.
Therefore it is useful to reduce the feature set to a subset of
most relevant features. These should correlate well with the
classifier, in this case with the optimal GC algorithm. Infor-
mation theory provides tools to identify these features. The
weka system uses theinformation gainmetric to measure
the significance each feature has in determining the class of
the observation. When using the information gain metric on
thisGen/NonGen classification problem, the top five features
ranked in order of importance are:

1. total execution time with GenMS GC

2. number of allocated arrays during program execution

3. mean size of object in bytes

4. number of allocated bytes during program execution

5. value of the static LCOM metric from the CK suite

dynamic_num_bytes <= 91306040

|static_lack_of_cohesion_of_methods <= 5: Gen

|static_lack_of_cohesion_of_methods > 5: NonGen

dynamic_num_bytes > 91306040

|static_lack_of_cohesion_of_methods <= 47371: Gen

|static_lack_of_cohesion_of_methods > 47371: NonGen

Figure 12. Decision Tree for Generational Collection after
Feature Selection

A decision tree trained using just these features achieves
1% higher accuracy than the previous decision tree on its test
set. The new decision tree is shown in Figure 12.

So, there are interesting issues here for GC researchers.
Nursery survival rate appears to be relatively unimportantin
determining whether generational collection is applicable.
Instead, a combination of other features seems to be more
useful.

For future work, it would be good to analyse each of
the predictors in the tournament setup, to determine which
features are most important for identifying suitable programs
for each GC algorithm. There will probably be different
key features for each GC algorithm. Perhaps we could use
customised feature subsets for each predictor component in
the tournament.

6. Related Work
6.1 Application-Specific GC

There is a great deal of previous work that shows how dif-
ferent programs perform better under different GC regimes
[21, 16, 10, 14, 17]. Three recent papers that apply to Java
and select from a range of GC algorithms are reviewed in
depth below.

Fitzgerald and Tarditi [10] advocate static selection of
a GC algorithm. They choose the best GC algorithm at
program compile time, since they compile Java programs
into native code ahead-of-time using the Marmot optimizing
compiler. They suggest having profiling runs for a program
with sample input data, for all available GC algorithms. Then
they select the GC algorithm that gives the fastest overall ex-
ecution time for the program. Our approach shares the static
GC selection philosophy, although we do not require exhaus-
tive profiling and we use a wider range of GC algorithms.

Printezis [14] describes a system that dynamically selects
between mark-and-sweep and mark-and-compact GC algo-
rithms for the mature space in a generational scheme. He
shows how to switch between these two algorithms at GC
time, and presents a simple heuristic based on heap space
fragmentation to determine when to switch. Our approach
is static rather than dynamic, but we use a more complex
heuristic based on over 20 features, and we have a wider
range of GC algorithms.

Soman et al [17] extend Jikes RVM to perform dynamic
switching of GC algorithms. Effectively they fragment the



JVM heap into smaller heaplets, each of which is collected
according to a different GC algorithm. They perform exhaus-
tive profiling for all benchmark and heap size combinations.
They find that either one GC algorithm works best for all
heap sizes in some programs, or else there is a heap size
switching pointbelow which one GC algorithm performs
best, and above which another GC algorithm is better. Our
experimental data largely confirms their findings. Their only
input to a prediction model is the ratio of the current heap
size to the minimum heap size for that particular program.
They store minimum heap size and switching point for each
program as bytecode annotations in the class files for that
program. These values are read by the JVM at class loading
time. When the VM changes the size of the heap, it checks
to see if it has crossed the switching point and changes GC
algorithm if necessary. They give details on how each GC-
specific heaplet can transfer to every other GC algorithm.

In contrast, our approach has only dealt with static GC
selection on fixed size heaps to date. It may be possible to
extend our ideas to dynamic GC switching. It would be good
to see if we could learn the heap size switching point using
our prediction techniques. Then, we could use our existing
data to predict the heap size switching point for a previously
unseen benchmark, again avoiding the requirement for ex-
haustive profiling. Their speedup figures are similar to ours
for most cases.

6.2 Machine Learning and GC

There has been little previous work on the application of
machine learning to garbage collection. One seminal paper
[3] uses machine learning techniques (particularly reinforce-
ment learning) for GC in a JVM. Their paper presents a
broad overview of how machine learning may be applied in
the field of GC. In a preliminary case study, they describe a
tool that addresses the issue ofwhento collect rather than
how to collect, for a concurrent GC algorithm. They use re-
inforcement learning to compute optimal points in program
execution for GC to occur. They have a small number of fea-
tures based on heap space usage. They demonstrate a perfor-
mance advantage from the learning system.

6.3 Tournament Prediction

Although tournament prediction is a term used in computer
architecture, in that field it generally refers to a set of paral-
lel predictors with a selector mechanism that chooses the re-
sult of the most accurate predictor. The Alpha 21264 branch
prediction unit is constructed in this manner [11]. Our tour-
nament is different since it runs a series of individual pre-
dictors, where each prediction result determines which pre-
dictor to run in the next round. In earlier work on instruction
scheduling, one of us used a similar tournament prediction
scheme to select an optimal schedule of instructions for a
basic block in an Alpha 21064 simulator [13].

In the machine learning community, Beygelzimer et al [4]
have recently proposed a new scheme to reduce ak-class

prediction problem into2k − 1 binary prediction problems.
Their scheme is calledfilter tree. They describe it as a ‘sin-
gle elimination tournament.’ Like our tournament predictor,
they have individual rounds that produce a binary result,
with the winners going through to the next round. However
whereas Beygelzimer et al build one large model to drive the
whole tournament, we train many individual trees that each
correspond to a decision node in the tournament.

7. Conclusions
This paper has demonstrated that application-specific garbage
collectors can be predicted with custom predictors. We show
a 5% speedup over the default execution time, compared
with a 17% maximum possible speedup, averaged over all
benchmarks and heap sizes. This is coupled with a 66% re-
duction in profiling time. We are not too disappointed about
poorer results with smaller heap sizes. For tiny heaps, spe-
cialized algorithms such as MC2 [15] are more appropriate.
In addition, a larger training corpus and more careful fea-
ture selection could potentially improve prediction accuracy
a great deal.

In deciding on a single default GC algorithm, the Jikes
RVM development team certainly made the most appropri-
ate choice. GenMS is the most common ‘best-performing’
algorithm on all our benchmark tests. Perhaps GenMS is the
best-performing algorithm because it is most finely tuned,
since it is the default. Or perhaps GenMS is the default since
it is the best-performing algorithm. An adequate distinction
between cause and effect may not be possible in this case. In
fact, both arguments may be true.

Each of the six GC algorithms gives optimal performance
for several (benchmark, heapsize) combinations. The three
GC algorithms that give optimal performance for the most
experiments are GenMS, GenCopy and SemiSpace. The
SemiSpace GC is particularly popular for large heap sizes,
and our complex predictor correctly selects SemiSpace in
many such cases.

In order for this technique to be properly effective, the GC
prediction scheme requires access to a large corpus of train-
ing data. Obviously, it takes a significant amount of time to
profile each of the training programs with each of the GC
algorithms, in addition to collecting feature information. We
anticipate that this high cost is incurred at JVM install time,
which users expect to be a lengthy process. Thus training
should be a one-off cost, although retraining may be nec-
essary if system parameters change dramatically at a later
date (for instance after a RAM upgrade). We envisage that
such technology may become commonplace, and that a ‘GC
auto-tuning’ phase will be a standard step in the Java soft-
ware development lifecycle.

For future work, we hope to extend these intelligent
GC selection techniques to dynamic switching of GC al-
gorithms, similar to [17]. However rather than having a
statically determined switching criterion, we could have an



online learning system that is updated on-the-fly with data
from the GC system, adapting to dynamic phase changes
in program. We are convinced that there are many other
applications of machine learning in GC. Andreasson et al
[3] mention some of these issues and sketch a possible ML
implementation. Brecht et al [7] use simple heuristics to con-
trol heap growth policies. We could easily replace such static
heuristics with learned policies. Dieckmann and Hölzle [9]
describe how GC implementations generally have ‘a wag-
gonload of knobs and levers which impact performance, but
tuning is difficult since the right settings depend on the char-
acteristics of the executed program.’ GC algorithm selection
is only the first problem—once we have an algorithm there
are many parameters to set for this GC. For instance, Sun’s
HotSpot JVM has many different GC command line options.
A few minor changes result in large variation in benchmark
execution times. We feel that machine learning is particu-
larly useful for generational style collection, since there are
so many parameters to vary. These values are generally set
according to contrived heuristics, which could easily be re-
placed by machine learning techniques in both offline and
online scenarios.
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