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Abstract

We present a user-level thread scheduler for shared-memory mul-
tiprocessors, and we analyze its performance under multiprogram-
ming. We model multiprogramming with two scheduling levels:
our scheduler runs at user-level and schedules threads onto a fixed
collection of processes, while below, the operating-system kernel
schedules processes onto a fixed collection of processors. We con-
sider the kernel to be an adversary, and our goal is to schedule
threads onto processes such that we make efficient use of whatever
processor resources are provided by the kernel.

Our thread scheduler is a non-blocking implementation of the
work-stealing algorithm. For any multithreaded computation with
work T4 and critical-path length T, and for any number P of pro-
cesses, our scheduler executes the computation in expected time
O(T1/Pa + Too P/ Pa), where Py is the average number of pro-
cessors allocated to the computation by the kernel. This time bound
is optimal to within a constant factor, and achieves linear speedup
whenever P is small relative to the average parallelism Ty /T .

1 Introduction

For shared-memory multiprocessors, parallel applications use mul-
tiple threads and are coded using a parallelizing compiler, a threads
library, or a multithreaded language such as Cilk [7, 18] or Java [3].
In addition to supporting multithreaded applications, multiproces-
sors also support multiprogrammed workloads in which a mix of
serial and parallel, interactive and batch applications may execute
concurrently. A major factor in the performance of such workloads
is the operation of the thread scheduler.

Prior work on thread scheduling [4, 5, 8, 11, 12] has dealt exclu-
sively with non-multiprogrammed environments in which a multi-
threaded computation executes on P dedicated processors. Such
scheduling algorithms dynamically map threads onto the proces-
sors with the goal of achieving P-fold speedups. Though such
algorithms will work in some multiprogrammed environments, in
particular those that employ static space partitioning [13, 26] or co-
scheduling [15, 26, 29], they do not work in the multiprogrammed
environments being supported by modern shared-memory multi-
processors and operating systems [9, 13, 14, 20]. The problem
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lies in the assumption that a fixed collection of processors are fully
available to perform a given computation.

In a multiprogrammed environment, a parallel computation runs
on a collection of processors that grows and shrinks over time. Ini-
tially the computation may be the only one running, and it may use
all P processors. A moment later, someone may launch another
computation, possibly a serial computation, that runs on some pro-
cessor. In this case, the parallel computation gives up one processor
and continues running on the remaining P — 1 processors. Later, if
the serial computation terminates or waits for 1/O, the parallel com-
putation can resume its use of all processors. In general, other se-
rial and parallel computations may use processors in a time-varying
manner that is beyond our control. Thus, we assume that an adver-
sary controls the set of processors on which a parallel computation
runs.

Specifically, rather than mapping threads to processors, our
thread scheduler maps threads to a fixed collection of P processes,
and an adversary maps processes to processors. Thus, we model
a multiprogrammed environment with two levels of scheduling. A
user-level scheduler — our scheduler — maps threads to processes,
and below this level, the kernel — an adversary — maps processes
to processors. In this environment, we cannot expect to achieve
P-fold speedups, because the kernel may run our computation on
fewer than P processors. Rather, we let P4 denote the time-average
number of processors on which the kernel executes our computa-
tion, and we strive to achieve a P4-fold speedup.

As with much previous work, we model a multithreaded compu-
tation as a directed acyclic graph, or dag. Each node in the dag
represents a single instruction, and the edges represent ordering
constraints. The nodes of a thread are linked by edges that form
a chain corresponding to the dynamic instruction execution order
of the thread. In addition, when an instruction in one thread spawns
anew thread, then the dag has an edge from the “spawning” node in
the first thread to the first node in the new thread. Likewise, when-
ever threads synchronize such that an instruction in one thread can-
not be executed until after some instruction in another thread, then
the dag contains an edge from the node representing the latter in-
struction to the node representing the former instruction. The work
T, of the computation is the number of nodes in the dag, and the
critical-path length T is the length of a longest (directed) path in
the dag. The ratio 71 /T is called the average parallelism. The
dag is generated dynamically during execution, and a scheduler op-
erates in an on-line fashion. When all of the parents of a node are
executed we say that the node is ready, and only ready nodes may
be executed.

We make two assumptions related to the structure of the dag.
First, we assume that each node has out-degree at most 2. This
assumption is consistent with our convention that a node represents
asingle instruction. Second, we assume that the dag has exactly one
root node with in-degree 0 and one final node with out-degree 0.

We present a non-blocking implementation of the work-stealing
algorithm [8], and we analyze the performance of this non-blocking
work stealer in multiprogrammed environments. In this implemen-
tation, all concurrent data structures are non-blocking [23, 24] so
that if the kernel preempts a process, it does not hinder other pro-



cesses, for example by holding locks. Moreover, this implemen-
tation makes use of “yield” system calls that constrain the kernel
adversary in a manner that models the behavior of yield system
calls found in current multiprocessor operating systems. We show
that for any multithreaded computation with work 74 and critical-
path length T, the non-blocking work stealer runs in expected
time O(T1/Pa + TooP/Pa). This bound is optimal to within a
constant factor and achieves linear speedup — that is, execution
time O(T1/Pa) — whenever P = O(T1/Tw ). We also show that
for any € > 0, with probability at least 1 — ¢, the execution time is
O(T1/Pa + (T +1g(1/€))P/Pa).

This result improves on previous results [8] in two ways. First,
we consider arbitrary multithreaded computations as opposed to the
special case of “fully strict” computations. Second, we consider
multiprogrammed environments as opposed to dedicated environ-
ments. A multiprogrammed environment is a generalization of a
dedicated environment, because we can view a dedicated environ-
ment as a multiprogrammed environment in which the kernel exe-
cutes the computation on P dedicated processors. Moreover, note
that in this case, we have P4 = P, and our bound for multipro-
grammed environments specializes to match the O(T1/P + Too)
bound established earlier for fully strict computations executing in
dedicated environments.

Our non-blocking work stealer has been implemented and nu-
merous performance studies have been conducted [9]. These stud-
ies show that application performance conforms to the O(T1/Pa +
TooP/P4) bound and that the constant hidden in the big-Oh no-
tation is small, roughly 1. Moreover, these studies show that non-
blocking data structures and the use of yields are essential in prac-
tice. If any of these implementation mechanisms are omitted, then
performance degrades dramatically for P4 < P.

The remainder of this paper is organized as follows. In Section 2,
we formalize our model of multiprogrammed environments. We
also prove a lower bound implying that the performance of the non-
blocking work stealer is optimal to within a constant factor. We
present the non-blocking work stealer in Section 3, and we prove
an important structural lemma that is needed for the analysis. In
Section 4 we establish optimal upper bounds on the performance
of the work stealer under various assumptions with respect to the
kernel. In Section 5, we consider related work. In Section 6 we
offer some concluding remarks.

2 Multiprogramming

We model a multiprogrammed environment with a kernel that be-
haves as an adversary. Whereas a user-level scheduler maps threads
onto a fixed collection of P processes, a kernel-level scheduler
maps processes onto processors. In this section, we define exe-
cution schedules, and we prove upper and lower bounds on the
length of execution schedules. These bounds are straightforward
and are included primarily to give the reader a better understanding
of the model of computation and the central issues that we intend
to address. The lower bound demonstrates the optimality of the
O(T1/Pa + Too P/ P4) upper bound that we will establish for our
non-blocking work stealer.

The kernel operates in discrete steps, numbered from 1, as fol-
lows. At each step ¢, the kernel chooses any subset of the P pro-
cesses, and then these chosen processes are allowed to execute a
single instruction. We let p; denote the number of chosen processes,
and we say that these p; processes are scheduled at step 7. The ker-
nel may choose to schedule any number of processes between 0
and P,so 0 < p; < P. We can view the kernel as producing a
kernel schedule that maps each positive integer to a subset of the
processes. That is, a kernel schedule maps each step 7 to the set of
processes that are scheduled at step %, and p; is the size of that set.

The processor average P4 over T steps is defined as

T
1

Though our analysis is based on this step-by-step, synchronous ex-
ecution model, our work stealer is asynchronous and does not de-
pend on synchrony for correctness. The synchronous model admits
the possibility that at a step 4, two or more processes may execute
instructions that reference a common memory location. We assume
that the effect of step 7 is equivalent to some serial execution of the
pi instructions executed by the p; scheduled processes, where the
order of execution is determined in some arbitrary manner by the
kernel.

Given a kernel schedule, an execution schedule specifies, for
each step ¢, the particular subset of at most p; ready nodes to be
executed by the p; scheduled processes at step 7. We define the
length of an execution schedule to be the number of steps in the
schedule. An execution schedule is determined both by the user-
level scheduler and by the kernel. Specifically, an on-line user-level
scheduler does not know the kernel schedule for future steps. At
each step, a user-level scheduler can determine what instruction a
process should execute next, but it has no way to determine when
the kernel will actually let the process execute that next instruction.

The following theorem shows that 71 /P4 and Too P/Pa are
both lower bounds on the length of any execution schedule. The
lower bound of T1 /P4 holds regardless of the kernel schedule,
while the lower bound of T, P/ P4 holds only for some kernel
schedules. That is, there exists kernel schedules such that any exe-
cution schedule has length at least To, P/ P4. Moreover, there exist
such kernel schedules with P4 ranging from P down to values ar-
bitrarily close to 0. These lower bounds imply corresponding lower
bounds on the performance of any user-level scheduler.

Theorem 1 Consider any multithreaded computation with work
Ty and critical-path length T, and any number P of processes.
Then for any kernel schedule, every execution schedule has length
at least Ty / P4, where Py is the processor average over the length
of the schedule. In addition, for any number P} of the form
T P/(k + Too) Where k is a nonnegative integer, there exists a
kernel schedule such that every execution schedule has length at
least T, P/ P4, and P4 isin the range | Py | < P4 < Pj.

Proof: The processor average over the length 7' of the schedule is
defined by Equation (1), so we have

T
1
T—P—A;pi. @)

For both lower bounds, we bound T by bounding E?lei.
The lower bound of T1/P4 is immediate from the lower bound

Z?zlpi > T4, which follows from the fact that any execution
schedule is required to execute all of the nodes in the multithreaded
computation. For the lower bound of T, P/ P4, we prove the lower
bound "7, pi > Too P.

We construct a kernel schedule that forces every execution sched-
ule to satisfy this bound as follows. Let & be as defined in the state-
ment of the lemma. The kernel schedule sets p; = 0for1 <i < k,
setsp; = Pfork +1 < i < k+ T, and sets p; = | P} for
k + Too < . Any execution schedule has length T > k + T,
so we have the lower bound Z;f:l pi > Too P. It remains only to
show that Py is in the desired range. The processor average for the
first k + Too Steps is Too P/(k + Too) = Pj. For all subsequent
steps ¢ > k + Too, We have p; = | P} |. Thus, P4 falls within the
desired range. [ |

We say that an execution schedule is greedy if at each step 7 the
number of ready nodes executed is equal to the minimum of p; and



the number of ready nodes. Note that an on-line user-level sched-
uler cannot always produce greedy execution schedules, because
some amount of scheduling overhead is often unavoidable. The
following theorem about greedy execution schedules also holds for
level-by-level (Brent [10]) execution schedules, with only trivial
changes to the proof.

Theorem 2 (Greedy Schedules) Consider any multithreaded
computation with work T4 and critical-path length T, any num-
ber P of processes, and any kernel schedule. Any greedy execution
schedule has length at most Ty /P4 + Too (P — 1)/ P4, where Py
is the processor average over the length of the schedule.

Proof: Consider any greedy execution schedule, and let 7" denote
its length. As in the proof of Theorem 1, we bound T" by bounding

Elepi. For each step 4 = 1,...,T, we collect p; tokens, one
from each process that is scheduled at step %, and then we bound the
total number of tokens collected. Moreover, we collect the tokens
in two buckets: a work bucket and an idle bucket. Consider a step ¢
and a process that is scheduled at step . If the process executes a
node of the computation, then it puts its token into the work bucket,
and otherwise we say that the process is idle and it puts its token
into the idle bucket. After the last step, the work bucket contains
exactly Ty tokens — one token for each node of the computation. It
remains only to prove that the idle bucket contains at most T, (P —
1) tokens.

Consider a step during which some process places a token in the
idle bucket. We refer to such a step as an idle step. At an idle step
we have an idle process and since the schedule is greedy, it follows
that every ready node is executed at an idle step. This observation
leads to two further observations. First, at every step there is at least
one ready node, so of the p; processes scheduled at an idle step 7,
atmost p; — 1 < P — 1 could be idle. Second, for each step 4, let
G; denote the sub-dag of the computation consisting of just those
nodes that have not yet been executed after step 4. If step 7 is an
idle step, then every node with in-degree 0 in G;_1 gets executed
at step %, so a longest path in G; is one node shorter than a longest
path in G;_1. Since the longest path in G has length T, there can
be at most T+, idle steps. Putting these two observations together,
we conclude that after the last step, the idle bucket contains at most
Too (P — 1) tokens. ]

Theorems 1 and 2 show that for some kernel schedules, any
greedy execution schedule is within a factor of two of optimal. In
addition, though we shall not prove it, for any kernel schedule, some
greedy execution schedule is optimal. We remark that the latter fact
does not imply the existence of a polynomial-time algorithm for
computing an optimal execution schedule. In fact, the related deci-
sion problem is NP-complete [33].

3 Non-blocking work stealing

In this section we review the work-stealing algorithm [8], and then
describe our non-blocking implementation, which involves the use
of a yield system call and a non-blocking implementation of the
concurrent data structures. We conclude this section with an impor-
tant “structural lemma” that is used in our analysis.

3.1 The work-stealing algorithm

In the work-stealing algorithm, each process maintains its own pool
of ready threads from which it obtains work. If the pool of a process
becomes empty, that process becomes a thief and steals a thread
from the pool of a victim process chosen at random. Each pool of
threads is maintained as a double-ended queue, or deque, which has
a bottom and a top.

To obtain work, a process pops the ready thread from the bottom
of its deque and commences executing that thread. The process

continues to execute that thread until the thread either blocks or ter-
minates, at which point the process returns to the deque to obtain
another ready thread. During the course of executing a thread, if
the thread creates a new thread or unblocks a blocked thread, then
the process pushes the newly ready thread onto the bottom of its
deque. As an alternative, the process may preempt the thread that
it was working on, push that thread onto the bottom of its deque,
and commence executing the newly ready thread. This alternative
admits optimizations in thread management such as lazy-task cre-
ation [18, 19, 27]. So long as the deque of a process is non-empty,
the process manipulates the deque in a LIFO (stack-like) manner.

When a process goes to obtain work by popping a thread off
the bottom of its deque, if it finds that its deque is empty, then the
process becomes a thief. It picks a victim process at random (using
a uniform distribution) and attempts to obtain work by removing
the thread at the top of the deque of the victim process. If the deque
of the victim process is empty, then the thief picks another victim
process and tries again. The thief repeatedly attempts to steal until
it finds a victim whose deque is non-empty, at which point the thief
“reforms” (i.e., ceases to be a thief) and commences work on the
stolen thread as described above. Since steals take place at the top
of the victim’s deque, stealing operates in a FIFO manner.

The details of our work-stealing scheduler are presented in Fig-
ure 1. In our non-blocking implementation, each process performs a
yield system call between every pair of consecutive steal attempts.
We describe the semantics of the yield system call later in Sec-
tion 4.4. These system calls are not needed for correctness, but
as we shall see in Section 4.4, the yields are sometimes needed in
order to prevent the kernel from starving a process.

3.2 Specification of the deque methods

In this section we develop a specification for the deque object,
discussed informally above. The deque supports three methods:
pushBottom, popBottom, and popTop. A pushTop method is not
supported, because it is not needed by the work-stealing algorithm.
A deque implementation is defined to be constant-time if and only
if each of the three methods terminates within a constant number of
instructions. Below we define the “ideal” semantics of these meth-
ods. Any constant-time deque implementation meeting the ideal
semantics is wait-free [24]. Unfortunately, we are not aware of any
constant-time wait-free deque implementation. For this reason, we
go on to define a “relaxed” semantics for the deque methods. Any
constant-time deque implementation meeting the relaxed semantics
is non-blocking [23, 24] and is sufficient for us to prove our perfor-
mance bounds.

We now define the ideal deque semantics. To do so, we first de-
fine whether a given set of invocations of the deque methods meets
the ideal semantics. We view an invocation of a deque method as a
4-tuple specifying: (i) the name of the deque method invoked (i.e.,
pushBottom, popBottom, or popTop), (ii) the initiation time, (iii)
the completion time, and (iv) the return value (if any). A set of
invocations meets the ideal semantics if and only if there exists a
linearization time for each invocation such that: (i) the lineariza-
tion time lies between the initiation time and the completion time,
(i) no two linearization times coincide, and (iii) the return values
are consistent with a serial execution of the method invocations in
the order given by the linearization times. A deque implementa-
tion meets the ideal semantics if and only if for any execution, the
associated set of invocations meets the ideal semantics. \We remark
that a deque implementation meets the ideal semantics if and only if
each of the three deque methods is linearizable, as defined in [22].

It is convenient to define a set of invocations to be good if and
only if no two pushBottom Or popBottom invocations are con-
current. Note that any set of invocations associated with some ex-
ecution of the work-stealing algorithm is good since the (unique)
owner of each deque is the only process to ever perform either a
pushBottom or popBottom on that deque. Thus, for present pur-



1 Thread* assignedThread = NULL;
2 if (self == processZero)
3 assignedThread = rootThread;

// Run scheduling loop.
4 while (!computationDomne) {

// Assign root thread to process zero.

// Deque is empty but we may have an assigned thread.

// Deque is empty and we have no assigned thread, so try to steal.

5 while (assignedThread != NULL) {

6 dispatch (assignedThread);

7 assignedThread = self->popBottom();
8 yield();

9 Process* victim = randomProcess();

10 assignedThread = victim->deque.popTop(); // Try to steal thread.

// Execute until terminate or block.
// Get next thread.

// Before steal, yield processor.
// Select victim process at random.

Figure 1: The non-blocking work stealer. All P processes execute this scheduling loop. Each process is represented with a Process data structure,
stored in shared memory, that contains the deque of the process, and each process has a private variable self that points to its Process structure. Initially,
all deques are empty and the computationDone flag, which is stored in shared memory, is not set. The root thread is assigned to an arbitrary process,
designated processZero, prior to entering the main scheduling loop. The scheduling loop terminates when a thread executes the final node and sets the

computationDone flag

poses, it is sufficient to design a constant-time wait-free deque im-
plementation that meets the ideal semantics on any good set of in-
vocations. Unfortunately, we do not know how to do this. On the
positive side, we are able to establish optimal performance bounds
for the work-stealing algorithm even if the deque implementation
satisfies only a relaxed version of the ideal semantics.

In the relaxed semantics, popTop is allowed to abort (i.e., re-
turn a special value ABORT) under certain circumstances. More for-
mally, a set of invocations meets the relaxed semantics if and only
if there exists a set of linearization times for the non-aborting invo-
cations such that: (a) conditions (i) through (iii) of the ideal seman-
tics are satisfied, and (b) for each aborted popTop invocation z, the
linearization time of some invocation removing the top-most item
from the deque falls between the initiation and completion times
of z. Informally, condition (b) says that it is okay for popTop to
abort as long as some concurrent popBottom or popTop succeeds
in removing an item from the top of the deque. In the next sec-
tion we provide a constant-time non-blocking deque implementa-
tion that meets the relaxed semantics on any good set of invocations.
Our implementation is not wait-free, because we do not consider a
call to popTop that aborts as having successfully completed.

3.3 The deque implementation

The deques support concurrent method invocations, and we im-
plement the deques using non-blocking synchronization. Such an
implementation requires the use of a universal primitive such as
compare-and-swap or load-linked/store-conditional [24]. Almost
all modern microprocessors have such instructions. In our deque
implementation we employ a compare-and-swap instruction, but
this instruction can be replaced with a load-linked/store-conditional
pair in a straightforward manner [28].

The compare-and-swap instruction cas operates as follows. It
takes three operands: a register addr that holds an address and two
other registers, o1d and new, holding arbitrary values. The instruc-
tion cas (addr, old, new) compares the value stored in mem-
ory location addr with o1d, and if they are equal, the value stored
in memory location addr is swapped with new. In this case, we say
the cas succeeds. Otherwise, it loads the value stored in memory
location addr into new, without modifying the memory location
addr. In this case, we say the cas fails. This whole operation
— comparing and then either swapping or loading — is performed
atomically with respect to all other memory operations. We can de-
tect whether the cas fails or succeeds by comparing o1d with new
after the cas. If they are equal, then the cas succeeded; otherwise,
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Figure 2: A Deque object contains an array deq of pointers to threads,
a variable bot that is the index below the bottom thread, and a variable
age that contains two fields: top, the index of the top thread, and tag, a
“uniquifier” needed to ensure correct operation. The variable age fits in a
single word of memory that can be operated on with atomic load, store,
and cas instructions.

it failed.

In order to implement a deque of threads in a non-blocking man-
ner using cas, we employ an array of pointers to threads, and we
store the indices of the top and bottom entries in the variables top
and bot respectively, as shown in Figure 2. An additional variable
tag is required for correct operation, as described below. The tag
and top variables are implemented as fields of a structure age, and
this structure must fit within a single word, which we define as the
maximum number of bits that can be transfered to and from mem-
ory atomically with 1load, store, and cas instructions. The age
structure fits easily within either a 32-bit or a 64-bit word size.

The tag field is needed to address the following potential prob-
lem. Suppose that a thief process is preempted after executing
Line 5 but before executing Line 8 of popTop. Subsequent oper-
ations may empty the deque and then build it up again so that the
top index points to the same location. When the thief process re-
sumes and executes Line 8, the cas will succeed because the top
index has been restored to its previous value. But the thread that
the thief obtained at Line 5 is no longer the correct thread. The tag
field eliminates this problem, because every time the top index is
reset (Line 11 of popBottom), the tag is changed. This changing of
the tag will cause the thief’s cas to fail. For simplicity, in Figure 3
we show the tag being manipulated as a counter, with a new tag be-
ing selected by incrementing the old tag (Line 12 of popBottom).
Such a tag might wrap around, so in practice, we implement the tag
by adapting the “bounded tags” algorithm [28].

We claim that the deque implementation presented above is



void pushBottom (Thread#* thr)
localBot = bot;
deq[localBot] = thr;
localBot++;
bot = localBot;

}

B wWN =

Thread* popTop()

oldAge = age;

localBot = bot;

if (localBot <= oldAge.top)
return NULL;

thr = deq[oldAge.top];

newAge = oldAge;

newAge.top++;

cas(age, oldAge, newAge)

if (oldAge == newAge)
return thr;

return ABORT;

= OO ~NOO R WNR

= o

Thread* popBottom()

localBot = bot;
if (localBot == 0)

return NULL;
localBot--;
bot = localBot;
thr = deq[localBot];
oldAge = age;
if (localBot > oldAge.top)
9 return thr;
10 bot = 03
11  newAge.top = 0;
12  newAge.tag = oldAge.tag + 1;
13 if (localBot == oldAge.top) {
14 cas(age, oldAge, newAge)

if (oldAge == newAge)
15 return thr;
}

16 age = newAge;
17 return NULL;

}

O~NOOWNE

Figure 3: The three Deque methods. Each Deque object resides in shared
memory along with its instance variables age, bot, and deq; the remaining
variables in this code are private. The 1oad, store, and cas instructions
operate atomically. On a multiprocessor that does not support sequential
consistency, extra memory-operation ordering instructions may be needed.
The work-stealing algorithm performs the same action whether popTop re-
turns NULL or ABORT. Thus, for the purposes of the work-stealing algorithm,
we may assume that ABORT is equal to NULL.

constant-time, non-blocking, and meets the relaxed semantics on
any good set of invocations. Due to space constraints, the proof of
this claim is omitted. The claim greatly simplifies the performance
analysis of the work-stealing algorithm. For example, by enforcing
the linearizability of all the non-aborting invocations, the claim al-
lows us to view such invocations as atomic. Under this view, the
precise state of the deque at any given point in the execution has a
clear definition in terms of the usual serial semantics of the deque
methods pushBottom, popBottom, and popTop.
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Figure 4: The structure of the nodes in the deque of some process. Node vg
is the assigned node. Nodes v1, v2, and vs are the nodes in the deque
ordered from bottom to top. For ¢ = 0,1, 2,3, node u; is the designated
parent of node v;. Then nodes us, u2, u1, and ug lie (in that order) on a
root-to-leaf path in the enabling tree.

3.4 A structural lemma

In this section we establish a key lemma that is used in the perfor-
mance analysis of our work-stealing scheduler. Before stating the
lemma, we provide a number of technical definitions.

For our analysis, we ignore threads and treat a multithreaded
computation as a dag, where each node of the dag corresponds
to one instruction of the computation. We treat the deques as if
they contain ready nodes instead of ready threads, and we treat the
scheduler as if it operates on nodes instead of threads. In particu-
lar, we replace each ready thread in a deque with its currently ready
node — that is, the node representing the instruction addressed by
the current value of the thread’s program counter. In addition, if a
process is executing a thread, then we define the assigned node of
the process to be the currently ready node of the assigned thread.
Applied to nodes instead of threads, the scheduler operates as fol-
lows. If a process does not have an assigned node, then it pops
the bottom-most node off its deque, and that node becomes the as-
signed node. If the deque is empty, then it pops the top-most node
off the deque of a randomly chosen victim, and that node becomes
the assigned node. The process then executes the assigned node. If
execution of the assigned node enables two child nodes, then one
child is pushed onto the bottom of the deque and the other child
becomes the assigned node. If one child is enabled, then that child
becomes the assigned node. If no child is enabled, then the process
has no assigned node, and it returns to its deque or becomes a thief
to obtain an assigned node.

Though each node of the dag represents one instruction and is
therefore executed atomically, for the case of a node whose execu-
tion enables two children, we define the execution to occur at the
linearization time of the ensuing pushBottom.

If the execution of node u enables node v, then we call the edge
(u,v) an enabling edge, and we call u the designated parent of v.
Note that every node except the root node has exactly one desig-
nated parent, so the subgraph of the dag consisting of only enabling
edges forms a rooted tree that we call the enabling tree. Note that
each execution of the computation may have a different enabling
tree. If d(w) is the depth of a node w in the enabling tree, then its
weight is defined as w(u) = Too —d(u). The root of the dag, which
is also the root of the enabling tree, has weight T, . Our analysis of
Section 4 employs a potential function based on the node weights.

As illustrated in Figure 4, the structural lemma states that for
any deque, at all times during the execution of the work-stealing
algorithm, the designated parents of the nodes in the deque lie on
some root-to-leaf path of the enabling tree. Moreover, the order-
ing of these designated parents along this path corresponds to the
top-to-bottom ordering of the nodes in the deque. As a corollary,
we observe that the weights of the nodes in the deque are strictly
decreasing from top to bottom.

Lemma 3 (Structural Lemma) Let & be the number of nodes in
a given deque at some time in the (linearized) execution of the work-
stealing algorithm, and let vy, ..., v denote those nodes ordered



from the bottom of the deque to the top. Let vo denote the assigned
node if there is one. In addition, for ¢ = 0,...,k, let u; denote
the designated parent of v;. Then for7 = 1,...,k, node u; is an
ancestor of u;_1 in the enabling tree. Moreover, though we may
have up = uq, fori = 2,3,...,k, we have u;—1 # u; — that is,
the ancestor relationship is proper.

Proof sketch:  Fix a particular deque. The deque state and assigned
node change only when the assigned node is executed or a non-
aborting invocation occurs. We prove the claim by induction on the
number of assigned-node executions and non-aborting invocations.
When execution begins, the claim holds vacuously. We now as-
sume that the claim holds before a given assigned-node execution
or non-aborting invocation, and show that it holds after. The most
interesting case is when the execution of the assigned node vo en-
ables two children z and y, with z being pushed onto the bottom of
the deque and y becoming the new assigned node. These changes
to the deque and assigned node occur atomically (in the linearized
execution). Observing that (vo,z) and (vo,y) are both enabling
edges, it is straightforward to verify that if the lemma holds before
the node execution, then it also holds after. This case gives rise to
the possibility that the bottom-most node in the deque and the as-
signed node both have the same designated parent. Other cases are

checked in a similar fashion. [ |
Corollary 4 If vo,v1,...,v; are as defined in the statement of
Lemma 3, then we have w(vo) < w(v1) < ... < w(vg_1) <
w(vg). [

4 Analysis of the work stealer

In this section we establish optimal bounds on the running time
of the non-blocking work stealer under various assumptions about
the kernel. It should be emphasized that the work stealer performs
correctly for any kernel. We consider various restrictions on kernel
behavior in order to demonstrate environments in which the running
time of the work stealer is optimal.

The following definitions will prove to be useful in our analy-
sis. An instruction in the sequence executed by some process ¢ is a
milestone if and only if one of the following two conditions holds:
(i) execution of a node by process g occurs at that instruction, or
(ii) a popTop invocation completes. It is straightforward to argue
that a given process may execute at most some constant number of
instructions between successive milestones. Throughout this sec-
tion, we let C denote a sufficiently large constant such that in any
sequence of C consecutive instructions executed by a process, at
least one is a milestone.

The remainder of this section is organized as follows. Section 4.1
reduces the analysis to bounding the number of “throws”. Sec-
tion 4.2 defines a potential function that is central to all of our
upper-bound arguments. Sections 4.3 and 4.4 present our upper
bounds for dedicated and multiprogrammed environments.

4.1 Throws

In this section we show that the execution time of our work stealer
is O(T1/Pa + S/Pa), where S is the number of “throws”, that
is, steal attempts satisfying a technical condition stated below. This
goal cannot be achieved without restricting the kernel, so in addition
to proving this bound on execution time, we shall state and justify
certain kernel restrictions.

One fundamental obstacle prevents us from proving the desired
performance bound within the (unrestricted) multiprogramming
model of Section 2. The problem is that the kernel may bias the
random steal attempts towards the empty deques. In particular, con-
sider the steal attempts initiated within some fixed interval of steps.

The adversary can bias these steal attempts towards the empty de-
ques by delaying those steal attempts that choose non-empty deques
as victims so that they occur after the end of the interval.

To address this issue, we restrict the kernel to schedule in rounds
rather than steps. A process that is scheduled in a particular round
gets to execute between 2C and 3C' instructions without preemp-
tion, where C'is the constant defined at the beginning of Section 4.
The precise number of instructions that a process executes during
around is determined by the kernel in an arbitrary manner. We as-
sume that the process executes these 2C to 3C instructions in serial
order, but we allow the instruction streams of different processes to
be interleaved arbitrarily, as determined by the kernel. We claim
that our requirement that processes be scheduled in rounds of 2C
to 3C instructions is a reasonable one. Because of the overhead
associated with context-switching, practical kernels tend to assign
processes to processors for some nontrivial scheduling quantum. In
fact, a typical scheduling quantum is orders of magnitude higher
than the modest value of C' needed to achieve our performance
bounds.

Recall that a steal attempt executed by some process ¢ completes
at a milestone. We define such a steal attempt to be a throw if it
completes at ¢’s second milestone in a round. Such a throw com-
pletes in the same round as the round in which the identity of the
associated random victim is determined. This property is useful
because it ensures that the random victim distribution cannot be bi-
ased by the kernel. The following lemma bounds the execution time
in terms of the number of throws.

Lemma 5 Consider any multithreaded computation with work T
being executed by the non-blocking work stealer. Then the exe-
cution time is at most O(T1/Pa + S/Pa), where S denotes the
number of throws.

Proof:  As in the proof of Theorem 2, we bound the execution time
by using Equation (2) and bounding Z;.T:lpi. At each round, we
collect a token from each scheduled process. We will show that
the total number of tokens collected is 73 + S. Since each round
consists of at most 3C' steps, this bound on the number of tokens
implies the desired time bound.

When a process ¢ is scheduled in a round, it executes at least two
milestones, and the process places its token in one of two buck-
ets, as determined by the second milestone. There are two types
of milestones. If ¢’s second milestone marks the occurrence of a
node execution, then g places its token in the work bucket. Clearly
there are at most 75 tokens in the work bucket. The second type of
milestone marks the completion of a steal attempt, and if ¢’s second
milestone is of this type, then ¢ places its token in the steal bucket.
In this case, we observe that the steal attempt is a throw, so there
are exactly S tokens in the steal bucket. [ |

4.2 The potential function

As argued in Section 4.1, it remains only to analyze the number
of throws. We perform this analysis using an amortization argu-
ment based on a potential function that decreases as the algorithm
progresses. Our high-level strategy is to divide the execution into
phases and show that the potential decreases by at least a constant
fraction in each phase with constant probability.

We define the potential function in terms of node weights. Recall
that each node u has aweight w(u) = Teo—d(u), where d(u) is the
depth of node w in the enabling tree. Atany given round 4, we define
the potential by assigning potential to each ready node. Let R;
denote the set of ready nodes at the beginning of round 4. A ready
node is either assigned to a process or it is in the deque of some
process. For each ready node u in R;, we define the associated
potential ¢;(u) as

32w)=1  jf 4 is assigned;
diw) = { 32w otherwise.



Then the potential at round 7 is defined as

®i= Y ¢ilu).

uER;

When execution begins, the only ready node is the root node which
has weight T and is assigned to some process, so we start with
&, = 32T=~1  When execution terminates, there are no ready
nodes, so the final potential is 0.

Throughout the execution, the potential never increases. That is,
for each round 4, we have ®;; < ®;. The work stealer performs
only two actions that may change the potential, and both of them
decrease the potential. The first action that changes the potential
is the removal of a node « from a deque when v is assigned to a
process (Lines 7 and 10 of the scheduling loop). In this case, the
potential decreases by ¢i(u) — ¢iy1(u) = 320 ™) — g2ww)-1
(2/3)¢i(u), which is positive. The second action that changes the
potential is the execution of an assigned node u. If the execution
of w enables two children, then one child z is placed in the deque
and the other y becomes the assigned node. Thus, the potential
decreases by

¢i(u) — pit1(x) — di+1(y)
32w(u)—1 _ 32w(m) _ 32w(y)—1
_ 32w(u)—1 _ 32(w(u)—1) _ 32(w(u)—1)—1

— 2w(u)—1 1— 1 _ 1)
3 ( 3 9

5
= §¢Z (’U.) )

which is positive. If the execution of « enables fewer than two chil-
dren, then the potential decreases even more. Thus, the execution of
anode w at round ¢ decreases the potential by at least (5/9)¢; (u).

To facilitate the analysis, we partition the potential among the
processes and we separately consider the processes whose deque
is empty and the processes whose deque is non-empty. At the be-
ginning of round 4, for any process g, let R;(¢q) denote the set of
ready nodes that are in ¢’s deque along with the ready node, if any,
that is assigned to gq. We say that each node u in R;(q) belongs to
process g. Then the potential that we associate with g is

®i()= Y, ¢i(u).

u€ER;(q)

In addition, let A; denote the set of processes whose deque is empty
at the beginning of round 4, and let D; denote the set of all other
processes. We partition the potential @; into two parts

®; = ®;(A4;) + @4(Di) ,

where

®i(Ai)= > ®i(q) ad  B(Di)= ) ®i(q),

gEA; q€ED;

and we analyze the two parts separately.

We now wish to show that whenever P or more throws take place
over a sequence of rounds, the potential decreases by a constant
fraction with constant probability. This claim will be proved in two
stages. First, we show that 3/4 of the potential ®;(D;) is sitting
“exposed” at the top of the deques where it is accessible to steal
attempts. Second, we use a “balls and weighted bins” argument to
show that 1/2 of this exposed potential is stolen with 1/4 probabil-
ity. The potential ®;(A;) is considered separately.

Lemma 6 (Top-Heavy Deques) Consider any round ¢ and any
process ¢ in D;. The top-most node w in ¢’s deque contributes
at least 3/4 of the potential associated with ¢g. That is, we have

#i(u) > (3/4)2i(q).

Proof: This lemma follows directly from the Structural Lemma
(Lemma 3), and in particular from Corollary 4. Suppose the top-
most node u in ¢’s deque is also the only node in ¢’s deque, and
in addition, u has the same designated parent as the node y that is
assigned to g. In this case, we have

®i(q) = ¢i(u) +¢i(y)
— 32w(u) +32w(y)—1
32w(u) +32w(u)—1
4
= §¢z(u) .

In all other cases, w contributes an even larger fraction of the poten-
tial associated with g. [ |

Lemma 7 (Balls and Weighted Bins) Suppose that P balls
are thrown independently and uniformly at random into P bins,
where for i = 1,..., P, bin ¢ has a weight W;. The total weight is

W= Zle W;. For each bin i, define the random variable X; as

x. =4 Wi if some ball lands in bin 4;
*7 1 0  otherwise.

IfX = Ef;l X, then for any 3 in the range 0 < 8 < 1, we have
Pr{X > W} >1-1/((1 - B)e).
Proof:  For each bin 4, consider the random variable W; — X;. It
takes on the value W; when no ball lands in bin %, and otherwise it
is 0. Thus, we have

1 P

EWi-Xx] = Wi(1-3)
S W,-/e .

It follows that E[W — X] < W/e. From Markov’s Inequality we
have that

E[W — X]
Thus, we conclude Pr {X < W} < 1/((1 — B)e). [ ]

We now show that whenever P or more throws occur, the po-
tential decreases by a constant fraction of ®;(D;) with constant
probability.

Lemma 8 Consider any round 7 and any later round j such that
at least P throws occur at rounds from ¢ (inclusive) to 5 (exclusive).
Then we have

1 1

PI‘{@,’ —<I>j > Z¢1(D1)} > Z .
Proof:  We first use the Top-Heavy Deques Lemma to show that if
a throw targets a process with a non-empty deque as its victim, then
the potential decreases by at least 1/2 of the potential associated
with that victim process. We then consider the P throws as ball
tosses, and we use the Balls and Weighted Bins Lemma to show
that with more than 1/4 probability, the total potential decreases by
1/4 of the potential associated with all processes with a non-empty
deque.

Consider any process g in D;, and let w denote the node at the
top of ¢’s deque at round ¢. From the Top-Heavy Deques Lemma
(Lemma 6), we have ¢;(u) > (3/4)®i(g). Now, consider any
throw that occurs at a round & > 4, and suppose this throw tar-
gets process g as the victim. We consider two cases. In the
first case, the throw is successful with popTop returning a node.



If the returned node is node w, then after round &, node w has
been assigned and possibly already executed. At the very least,
node u has been assigned, and the potential has decreased by at
least (2/3)¢; (). If the returned node is not node w, then node »
has already been assigned and possibly already executed. Again,
the potential has decreased by at least (2/3)¢;(u). In the other
case, the throw is unsuccessful with popTop returning either NULL
or ABORT. If popTop returns NULL, then ¢’s deque was empty at
some time during round k, so node w has already been assigned
and possibly executed. Yet again, the potential has decreased by
at least (2/3)¢;(u). Finally, if popTop returns ABORT, then some
other popTop Or popBottom returned a top-most node at some
time during round &, and after round &, node u has been assigned
and possibly already executed. In all cases, the potential has de-
creased by at least (2/3)¢:(u). Thus, if a thief targets process ¢
as the victim at a round k& > 1, then the potential drops by at least
(2/3)¢i () > (2/3)(3/4)@i(q) = (1/2)@i(q).

We now consider all P processes and P throws that occur at
or after round . For each process ¢ in D;, if one or more
of the P throws targets ¢ as the victim, then the potential de-
creases by (1/2)®;(qg). If we think of each throw as a ball toss,
then we have an instance of the Balls and Weighted Bins Lemma
(Lemma 7). For each process g in D;, we assign it a weight
W, = (1/2)®i(q), and for each other process ¢ in A;, we as-
sign it a weight W, = 0. The weights sum to W = (1/2)®;(D;).
Using 8 = 1/2 in Lemma 7, we conclude that the potential de-
creases by at least SW = (1/4)®;(D;) with probability greater
than1 —1/((1 — B)e) > 1/4. ]

4.3 Analysis for dedicated environments

In this section we analyze the performance of the non-blocking
work stealer in dedicated environments. In a dedicated (non-
multiprogrammed) environment, all P processes are scheduled in
each round, so we have P4 = P.

Theorem 9 Consider any multithreaded computation with work
T and critical-path length T, being executed by the non-blocking
work stealer with P processes in a dedicated environment. The
expected execution time is O(T: /P + T ). Moreover, for any ¢ >
0, the execution time is O(Ty /P + Two +1g(1/€)) with probability
atleast1 — e.

Proof: Lemma 5 bounds the execution time in terms of the num-
ber of throws. We shall prove that the expected number of throws is
O(Tw P), and that the number of throws is O((Tw + 1g(1/€))P)
with probability at least 1 — .

We analyze the number of throws by breaking the execution into
phases of ©(P) throws. We show that with constant probability, a
phase causes the potential to drop by a constant factor, and since we
know that the potential starts at &, = 327> ! and ends at zero, we
can use this fact to analyze the number of phases. The first phase
begins at round ¢; = 1 and ends at the first round ¢} such that
at least P throws occur during the interval of rounds [¢1,%}]. The
second phase begins at round ¢2 = ¢} + 1, and so on.

Consider a phase beginning at round 7, and let 5 be the round
at which the next phase begins. We will show that we have
Pr{®; < (3/4)®:} > 1/4. Recall that the potential can be parti-
tioned as ®; = ®;(A4;) + ®;(D;). Since the phase contains at least
P throws, Lemma 8 implies that Pr {®; — ®; > (1/4)®;(D;)} >
1/4. We need to show that the potential also drops by a constant
fraction of ®;(A;). Consider a process q in A;. If g does not have
an assigned node, then ®;(¢) = 0. If ¢ has an assigned node w,
then ®;(q) = ¢:(u). In this case, process g executes node u at
round ¢ and the potential drops by at least (5/9)¢;(w). Summing
over each process g in A;, we have ®; —®; > (5/9)®;(A:). Thus,
no matter how ®; is partitioned between ®;(A;) and ®;(D;), we
have Pr{®; — ®; > (1/4)®;} > 1/4.

We shall say that a phase is successful if it causes the potential to
drop by at least a 1/4 fraction. A phase is successful with probabil-
ity at least 1/4. Since the potential starts at &, = 32T>~* and ends
at 0 (and is always an integer), the number of successful phases is at
most (27 — 1) log,,3 3 < 8Tw. The expected number of phases
needed to obtain 87, successful phases is at most 327,. Thus,
the expected number of phases is O(Tw ), and because each phase
contains O(P) throws, the expected number of throws is O(T'« P).
We now turn to the high probability bound.

Suppose the execution takes n = 327, +m phases. Each phase
succeeds with probability at least p = 1/4, so the expected number
of successes is at least np = 8T + m/4. We now compute the
probability that the number X of successes is less than 8T,. We
use the Chernoff bound [2, Theorem A.13],

a2
Pr{X <np—a}<e 27,

with a = m/4. Thus if we choose m = 32T + 161In(1/¢), then
we have

__(m/9)?
Pr{X<8Too} < e 16Toct+m/2
__(m/4)?
< e m/zEm/2
= eiin_é'
_161n(1/¢)
e~ T 16

A

€.

Thus, the probability that the execution takes 64T, + 161n(1/¢)
phases or more is less than e. We conclude that the number of
throws is O((Ts +1g(1/€))P) with probability at least1 —¢. m

4.4 Analysis for multiprogrammed environments

We now generalize the analysis of the previous section to bound
the execution time of the non-blocking work stealer in multipro-
grammed environments. Recall that in a multiprogrammed envi-
ronment, the kernel is an adversary that may choose not to sched-
ule some of the processes at some or all rounds. In particular, at
each round %, the kernel schedules p; processes of its choosing. We
consider three different classes of adversaries, with each class be-
ing more powerful than the previous, and we consider increasingly
powerful forms of the yield system call. In all cases, we find that
the expected execution time is O(T1/Pa + Too P/ Pa).

We prove our upper bounds for multiprogrammed environments
using the results of Section 4.2 and the same general approach as
is used to prove Theorem 9. The only place in which the proof
of Theorem 9 depends on the assumption of a dedicated environ-
ment is in the analysis of progress being made by those processes
in the set A;. In particular, in proving Theorem 9, we considered
a round ¢ and any process g in A;, and we showed that at round ¢,
the potential decreases by at least (5/9)®;(q), because process g
executes its assigned node, if any. This conclusion is not valid in a
multiprogrammed environment, because the kernel may choose not
to schedule process g at round . For this reason, we need the yield
system calls.

The use of yield system calls never constrains the kernel in its
choice of the number p; of processes that it schedules at a step 3.
Yield calls constrain the kernel only in its choice of which p; pro-
cesses it schedules. We wish to avoid constraining the kernel in its
choice of the number of processes that it schedules, because doing
so would admit trivial solutions. For example, if we could force
the kernel to schedule only one process, then all we have to do is
make efficient use of one processor, and we need not worry about
parallel execution or speedup. In general, whenever processors are
available and the kernel wishes to schedule our processes on those
processors, our user-level scheduler should be prepared to make ef-
ficient use of those processors.



4.4.1 Benign adversary

A benign adversary is able to choose only the number p; of pro-
cesses that are scheduled at each round 4. It cannot choose which
processes are scheduled. The processes are chosen at random. With
a benign adversary, the yield system calls are not needed, so Line 8
of the scheduling loop (Figure 1) can be removed.

Theorem 10 Consider any multithreaded computation with work
T and critical-path length T, being executed by the non-blocking
work stealer with P processes in a multiprogrammed environment.
In addition, suppose the kernel is a benign adversary, and the
yield system call does nothing. The expected execution time is
O(T1/Pa + Too P/P4). Moreover, for any e > 0, the execution
time is O(T1/Pa+ (T +1g(1/€)) P/ P4) with probability at least
1—e

Proof: As in the proof of Theorem 9, we bound the number of
throws by showing that in each phase, the potential decreases by
a constant factor with constant probability. We consider a phase
that begins at round 7. The potential is ®; = ®;(A;) + ®;(D;).
From Lemma 8, we know that the potential decreases by at least
(1/4)®:(D;) with probability more than 1/4. It remains to prove
that with constant probability the potential also decreases by a con-
stant fraction of ®;(A;).

Consider a process g in A;. If g is scheduled at some round dur-
ing the phase, then the potential decreases by at least (5/9)®;(q)
as in Theorem 9. During the phase, at least P throws occur, so at
least P processes are scheduled, with some processes possibly be-
ing scheduled multiple times. These scheduled processes are cho-
sen at random, so we can treat them like random ball tosses and
appeal to the Balls and Weighted Bins Lemma (Lemma 7). In fact,
this selection of processes at random is not the same as ball tosses,
because they are not all independent: A process cannot be sched-
uled more than once in a given round. But this dependence only
increases the probability that a bin receives a ball. For each process
q in A;, we assign it weight W, = (5/9)®;(q), and for each other
process ¢ in D;, we assign it weight W, = 0. The total weight is
W = (5/9)®i(A;), so using 8 = 1/2 in Lemma 7, we conclude
that the potential decreases by at least BW = (5/18)®;(A;) with
probability greater than 1/4.

The event that the potential decreases by (5/18)®;(A;) is inde-
pendent of the event that the potential decreases by (1/4)®;(D;),
because the random choices of which processes to schedule are in-
dependent of the random choices of victims. Thus, both events
occur with probability greater than 1/16, and we conclude that
the potential decreases by at least (1/4)®; with probability greater
than 1/16. The remainder of the proof is the same as that of Theo-
rem 9, but with different constants. [ |

4.4.2 Oblivious adversary

An oblivious adversary is able to choose both the number p; of pro-
cesses and which p; processes are scheduled at each round %, but is
required to make these decisions in an off-line manner. Specifically,
before the execution begins the oblivious adversary commits itself
to a complete kernel schedule.

To deal with an oblivious adversary, we employ a directed
yield [1, 25] that we call yieldTo. If at round 7 process ¢ calls
yieldTo(r), then the kernel cannot schedule process g again until it
has scheduled process ». More precisely, the kernel cannot schedule
process g ataround j > 7 unless there exists around &, ¢ < k < 7,
such that process r is scheduled at round k. Of course, this re-
quirement may be inconsistent with the kernel schedule. Suppose
process ¢ is scheduled at rounds ¢ and 7, and process r is not sched-
uledatanyround & =1, ..., J. Inthiscase, if g calls yieldTo(r) at
round 4, then because g cannot be scheduled at round 5 as the sched-
ule calls for, we schedule process = instead. That is, we schedule
process r in place of q. Observe that this change in the schedule

does not change the number of processes scheduled at any round; it
only changes which processes are scheduled.

The non-blocking work stealer uses yieldTo to yield to the last
chosen victim process before the next steal attempt. Specifically,
Line 8 of the scheduling loop (Figure 1) is yieldTo(victim).

Theorem 11 Consider any multithreaded computation with work
T and critical-path length T being executed by the non-blocking
work stealer with P processes in a multiprogrammed environment.
In addition, suppose that the kernel is an oblivious adversary, and
the yield system call is yieldTo(victim). The expected execution
time is O(T1/Pa + Too P/P4). Moreover, for any € > 0, the exe-
cution time is O(T1/ P4 + (T +1g(1/€)) P/ P4) with probability
atleast1 —e.

Proof: As in the proof of Theorem 10, it remains to prove that
in each phase, the potential decreases by a constant fraction of
®;(A;) with constant probability. Again, if ¢ in A; is scheduled
at a round during the phase then the potential decreases by at least
(5/9)®i(g). Thus, if we can show that in each phase at least P
processes chosen at random are scheduled, then we can appeal to
the Balls and Weighted Bins Lemma.

Whereas previously we defined a phase to contain at least P steal
attempts, we now define a phase to contain at least 2P throws.
With at least 2P throws, at least P of these throws have the fol-
lowing property: The throw was performed by a process g at a
round j during the phase, and process ¢ also performed another
throw at a round k& > 7, also during the phase. We say that such
a throw is followed. Observe that in this case, process ¢ called
yieldTo(victim) at some round between rounds j and k. Since
process ¢ is scheduled at round &, the victim process is scheduled
at some round between j and k. Thus, for every throw that is fol-
lowed, there is a randomly chosen victim process that is scheduled
during the phase.

Consider a phase that starts at round ¢, and partition the steal
attempts into two sets, F' and G, such that every throw in F is fol-
lowed, and each set contains at least P throws. Because the phase
contains at least 2P throws and at least P of them are followed,
such a partition is possible. Lemma 8 tells us that the throws in G
cause the potential to decrease by at least (1/4)®;(D;) with prob-
ability greater than 1/4. It remains to prove that the throws in F
cause the potential to decrease by a constant fraction of ®;(A;).

The throws in F' give rise to at least P randomly chosen victim
processes, each of which is scheduled during the phase. Thus, we
treat these P random choices as ball tosses, assigning each process
qin A; a weight W, = (5/9)®:(q), and each other process ¢ in
D; a weight W, = 0. We then appeal to the Balls and Weighted
Bins Lemma with 8 = 1/2 to conclude that the throws in F' cause
the potential to decrease by at least SW = (5/18)®;(A;) with
probability greater than 1/4. Note that if the adversary is not obliv-
ious, then we cannot treat these randomly chosen victim processes
as ball tosses, because the adversary can bias the choices away from
processes in A;. In particular, upon seeing a throw by process g tar-
get a process in A; as the victim, an adaptive adversary may stop
scheduling process g. In this case the throw will not be followed,
and hence, will not be in the set F'. The oblivious adversary has no
such power.

The victims targeted by throws in F' are independent of the vic-
tims targeted by throws in G, so we conclude that the potential de-
creases by at least (1/4)®; with probability greater than 1/16. The
remainder of the proof is the same as that of Theorem 9, but with
different constants. [ |

4.4.3 Adaptive adversary

An adaptive adversary selects both the number p; of processes and
which of the p; processes execute at each round 4, and it may do so



in an on-line fashion. The adaptive adversary is constrained only
by the requirement to obey yield system calls.

To deal with an adaptive adversary, we employ a powerful yield
that we call yieldToAl1l. If at round s process g calls yieldToAll,
then the kernel cannot schedule process ¢ again until it has sched-
uled every other process. More precisely, the kernel cannot sched-
ule process ¢ at a round j > 4, unless for every other process r,
there exists a round k&, in the range ¢ < k, < j, such that process r
is scheduled at round k,.. Note that yieldToA11 does not constrain
the adversary in its choice of the number of processes scheduled at
any round. It constrains the adversary only in its choice of which
processes it schedules.

The non-blocking work stealer calls yieldToAll before each
steal attempt. Specifically, Line 8 of the scheduling loop (Figure 1)
is yieldToA11().

Theorem 12 Consider any multithreaded computation with work
T and critical-path length T, being executed by the non-blocking
work stealer with P processes in a multiprogrammed environment.
In addition, suppose the kernel is an adaptive adversary, and the
yield system call is yieldToAll. The expected execution time is
O(T1/Pa + Too P/P4). Moreover, for any e > 0, the execution
time is O(T1/Pa+ (T +1g(1/€)) P/ P4) with probability at least
1—e¢

Proof:  As inthe proofs of Theorems 10 and 11, it remains to argue
that in each phase the potential decreases by a constant fraction of
®;(A;) with constant probability. We define a phase to contain
at least 2P + 1 throws. Consider a phase beginning at round 3.
Some process g executed at least three throws during the phase, so it
called yieldToAll at some round before the third throw. Since ¢ is
scheduled at some round after its call to yieldToA11, every process
is scheduled at least once during the phase. Thus, the potential
decreases by at least (5/9)®;(A;). The remainder of the proof is
the same as that of Theorem 9. [ |

5 Related work

Prior work on thread scheduling has not considered multipro-
grammed environments, but in addition to proving time bounds,
some of this work has considered bounds on other metrics of in-
terest, such as space and communication. For the restricted class of
“fully strict” multithreaded computations, the work stealing algo-
rithm is efficient with respect to both space and communication [8].
Moreover, when coupled with “dag-consistent” distributed shared
memory, work stealing is also efficient with respect to page faults
[6]. For these reasons, work stealing is practical and variants have
been implemented in many systems [7, 16, 17, 21, 30, 34]. For
general multithreaded computations, other scheduling algorithms
have also been shown to be simultaneously efficient with respect to
time and space [4, 5, 11, 12]. Of particular interest here is the idea
of deriving parallel schedules from serial schedules [4, 5], which
produces strong upper bounds on time and space. The practical ap-
plication and possible adaptation of this idea to multiprogrammed
environments is an open question.

Prior work that has considered multiprogrammed environments
has focused on the kernel-level scheduler. With coscheduling (also
called gang scheduling) [15, 29], all of the processes belonging to a
computation are scheduled simultaneously, thereby giving the com-
putation the illusion of running on a dedicated machine. Interest-
ingly, it has recently been shown that coscheduling can be achieved
with little or no modification to existing multiprocessor operating
systems [14, 31]. Unfortunately, for some job mixes, coscheduling
is not appropriate. For example, a job mix consisting of one paral-
lel computation and one serial computation cannot be coscheduled
efficiently. With process control [32], processors are dynamically
partitioned among the running computations so that each computa-
tion runs on a set of processors that grows and shrinks over time,
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and each computation creates and kills processes so that the number
of processes matches the number of processors. We are not aware
of any commercial operating system that supports process control,
but it is a natural complement for our non-blocking work stealer.
In particular, with work stealing, adding and removing processes is
easy, and with our non-blocking implementation, we can be lazy
about removing processes, because the penalty for operating with
more processes than processors is small.

6 Conclusion

Whereas traditional thread schedulers demonstrate poor perfor-
mance in multiprogrammed environments [9, 13, 14, 20], the non-
blocking work stealer executes with guaranteed high performance
in such environments. By implementing the work-stealing algo-
rithm with non-blocking deques and judicious use of yield sys-
tem calls, the non-blocking work stealer executes any multithreaded
computation with work T4 and critical-path length T, using any
number P of processes, in expected time O(T1/Pa + Too P/ Pa4),
where P4 is the average number of processors on which the com-
putation executes. Thus, it achieves linear speedup — that is, ex-
ecution time O(Th/Pa) — whenever the number of processes is
small relative to the average parallelism T4 /T of the computation.
Moreover, this bound holds even when the number of processes ex-
ceeds the number of processors and even when the computation
runs on a set of processors that grows and shrinks over time. \We
prove this result under the assumption that the kernel, which sched-
ules processes on processors and determines Py, is an adversary.

In addition to the analytical results reported here, we also have
empirical results [9] that attest to the practical application of the
non-blocking work stealer. We have implemented a prototype C++
threads library using the non-blocking work stealer. This library
employs a combination of the UNIX priocntl (priority control)
and yield system calls to implement a yieldToAll. The empiri-
cal results show that application performance does conform to our
analytical bound and that the constant hidden inside the big-Oh no-
tation is small — roughly 1.

In the near future, we plan to transfer this technology into
production-quality systems and investigate its application to real-
time and multimedia systems. Likely targets for technology trans-
fer include the Cilk [7, 18] and Java [3] multithreaded languages,
a POSIX threads library, and a parallelizing compiler. We conjec-
ture that if our user-level thread scheduler is coupled with a kernel
scheduler that can deliver guarantees on P4, then we can deliver
end-to-end execution-time guarantees for real-time and multimedia
applications. Our scheduler effectively relieves the kernel of any
load-balancing burden, allowing the kernel to focus on aggregate
resource allocation with respect to the P4 metric.
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