Optimization Tradeoffs

Why talking about trade-offs

- Understand the reasons why there are trade-offs when optimizing a GPU program
- Understand typical trade-offs
- Analyze the performance of a program under different trade-offs

Why we have optimization trade-offs

- Large number of possible combination of optimizations and configurations
- Resources are constrained
 - Local memory
 - Register
 - Global memory bandwidth
- Interaction between threads
 - Optimization sensitive to small changes

Example of constrained resource

- Global memory bandwidth – 86.4 GB/s
- Multiprocessor performance
 - 18 Flop*1.35 Ghz = 24.3 GFLOPS
- Peak performance

 24.3*16 = 388.8 GFLOPS
- Each flop operates on up to 8 bytes of data – 388.8*8 >> 86.4 Gbs
- Global memory bandwidth can be easily saturated

Another example

- The configuration of an application:
 - 256 threads per block
 - 10 registers per thread
 - 4KB shared memory per block
 - 48 blocks -> 3 blocks per multiprocessor
- Two simple changes

Change resource usage

- Increase register usage from 10 to 11
 - Now only two blocks can run on a multiprocessors, because
 - 8192 registers per multiprocessor
 - Each block uses 11*256=2816 registers
 - 3*2816 > 8192
- Increase the shared memory usage from 4KB to 5KB
 - Can still support 3 blocks
 - 16 KB shared memory per multiprocessor
 - 3*5KB < 16

A story of two dimensions

- Build a mindset of optimizing for CUDA
- Dimension 1: Reduce instruction count Common sub-expression elimination
 - Strength reduction

. . .

 Diminsion 2: Increase multi-processor occupancy

Methods of increasing occupancy

- Schedule sequences of independent instructions within a warp
- Increase number of threads in a thread block
- Assign more blocks to a multi-processor
- Generally, intra-thread optimizations only work when the high-occupancy is maintained.

Source of independent warps

- From a few large thread blocks
- From many small thread blocks
- Different impact on performance
 - Larger thread blocks have better data locality
 - At the same time, larger thread blocks have higher thread synchronization overhead
 - Larger thread blocks potentially waste more thread space per multi-processor

Two attacks

- Intra-thread optimization
 - Instruction count reduction
 - Instruction level parallelism
- Inter-thread balancing
 - Work re-distribution
 - Resource balancing

• The optimizations interact through their effects on register usage.

Example: Matrix Multiplication

- For(...)
 - <u>shared</u> float As[16][16];
 - <u>shared</u> float Bs[16][16];
 - As[ty][tx] = A[indexA];
 - Bs[ty][tx] = B[indexB];
 - indexA += 16;
 - IndexB += 16*widthB;
 - ____syncthreads();
 - For(I=0; I<16; I++) • {
 - Ctemp+=As[ty][I]*Bs[I][tx];
 }

 - C[indexC] = Ctemp;

Intra-thread optimization 1

- Instruction count reduction
 - Strength reduction
 - Common subexpression elimination
 - Loop-invariant code motion
 - Loop unrolling
 - Remove branch instruction
 - Array subscript calculation

Unroll matrix multiplication

- For(...)
 - <u>shared</u> float As[16][16];

 - As[ty][tx] = A[indexA];
 - Bs[ty][tx] = B[indexB];
 - indexA += 16;
 - IndexB += 16*widthB;
 - ____syncthreads();
 - Ctemp+=As[ty][I]*Bs[I][tx];
 - Ctemp+=As[ty][15]*Bs[15][tx];
 - ____syncthreads();
 - C[indexC] = Ctemp;

Intra-thread optimization 2

- Reduce instruction latency -> increase instruction level parallelism
- Unroll
 - Facilitate instruction scheduling
- Prefetch and software pipelining
 - Reduce global memory access latency

Prefetch in matrix multiplication

- Atemp = A[indexA];
- Btemp = B[indexB];
- For(...)
 - ____shared___ float As[16][16];
 - ____shared___float Bs[16][16];
 - As[ty][tx] = Atemp; Bo[ty][tx] = Btomp;
 - Bs[ty][tx] = Btemp;
 - indexA += 16;
 - IndexB += 16*widthB;
 - ____syncthreads();
 - Atemp = A[indexA];
 - Btemp = B[indexB];
 - For(I=0; I<16; I++)
 - _ Ctemp+=As[ty][I]*Bs[I][tx];
 - }
 ____syncthreads();
 - C[indexC] = Ctemp;

Inter-thread optimization 1

- Work re-distribution
 - Tile workload
 - Better amortize the global memory latency
 - Reduce the pressure of global memory bandwidth
 - CUDA does a imperfect job
 - Prefer intra-thread performance
- Divide a grid into several kernel invocations
 - Kind of count-intuitive
 - Effective when kernel use constant memory
 - More data per grid -> more constant cache conflicts

Tile matrix multiplication

- For(...)
 - _____shared___ float As[16][16];
 - _____shared___ float Bs[16][32];
 - As[ty][tx] = A[indexA];
 - Bs[ty][tx] = B[indexB];
 - Bs[ty][tx+16]=B[indexB+16];
 - indexA += 16;
 - IndexB += 16*widthB;
 - ___syncthreads();
 - For(I=0; I<16; I++)
 - Ctemp+=As[ty][l]*Bs[l][tx];
 - Dtemp+=As[ty][I]*Bs[I][tx+16];
 - }
 ___syncthreads();
 - C[indexC] = Ctemp;
 - C[indexC+16] = Dtemp;

Inter-thread optimization 2

- Resource balancing
 - Balance usage of register, shared memory and global memory accesses
 - Sometimes counter-intuitive

Balance shared memory and global memory acceses

- For(...)

 - _____shared____float Bs[16][16];
 - As[ty][tx] = A[indexA];
 - -Bs[ty][tx] = B[indexB];
 - indexA += 16;
 - IndexB += 16*widthB;
 - __syncthreads();

 - C[indexC] = Ctemp;

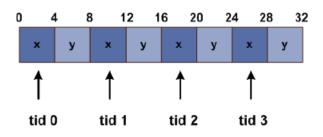
AoS vs SoA on the G80 architecture

AoS vs SoA

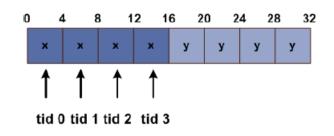
struct S{
 float x;
 float y;
};
struct S myData[N]

struct S{
 float x[N];
 float y[N];
};
struct S myData;

• preventing coalesced reads



• Leading to coalesced reads



In this case a SoA seems preferable to an AoS

When is an AoS still preferable on the G80 architecture?

 Alignment specifiers and aut o

matically aligned build in types allow for 64 or 128 bit reads from global memory.

- Reduction of number of memory operations.
- By adding an alignment specifier to the SoA from the previous slide and reading from global memory into registers...

```
struct __align__(8) S {
  float x;
  float y;
};
```

- ... we can improve the performance drastically
- SoA: contiguous reads for x and y (up to 600 cycles)
- AoS: one still contiguous 64bit read to get x and y (up to 300 cycles)
- Even more obvious for 128 bit structures. SoA ~1200 vs AoS ~300 cycles

AoS and shared memory

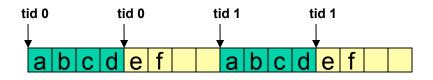
- When reading AoS from global memory always think about the shared memory layout.
 - Share memory only supports 32 bit reads/writes
 - AoS that allow for good access to global memory will result in bank conflicts in shared memory.
 - Global memory: 64 bit or 128 bit
 - Shared memory: multiples of a stride of $3 \rightarrow 96$ bit
 - → Changing the layout of the date from an AoS in global memory to a SoA in shared memory might be beneficial

One step further: SoAoS

For structures that exceed the 128-bit alignment boundary

```
struct align (16) S {
   float a;
   float b;
   float c;
   float d;
   float e;
   float f;
};
```

```
struct S myData[N];
```

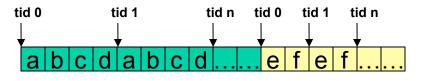


- Each thread will have to perform 2 128-bit reads.
- The single reads are no longer contiguous.
- Idea: a Structure of Arrays of Structures (SoAoS).

One step further: SoAoS

```
struct align (16) S16 {
    float a;
    float b;
    float c;
    float d;
};
struct align (8) S8 {
    float e;
    float f;
};
struct S {
    struct S16 x[N];
    struct S8 y[N];
};
```

```
struct S myData;
```



- The single reads are now again contiguous across threads
- This is just an idea to show that there are many things to try that might lead to better performance for global memory access