
Optimization Tradeoffs!



Why talking about trade-offs!

•  Understand the reasons why there are 
trade-offs when optimizing a GPU program


•  Understand typical trade-offs

•  Analyze the performance of a program 

under different trade-offs




Why we have optimization trade-offs!

•  Large number of possible combination of 
optimizations and configurations 

•  Resources are constrained 
– Local memory 
– Register 
– Global memory bandwidth 

•  Interaction between threads 
– Optimization sensitive to small changes 



Example of constrained resource!
•  Global memory bandwidth 

– 86.4 GB/s 
•  Multiprocessor performance 

– 18 Flop*1.35 Ghz = 24.3 GFLOPS 
•  Peak performance 

– 24.3*16 = 388.8 GFLOPS  
•  Each flop operates on up to 8 bytes of data 

– 388.8*8 >> 86.4 Gbs 
•  Global memory bandwidth can be easily 

saturated 



Another example!
•  The configuration of an application: 

– 256 threads per block 
– 10 registers per thread 
– 4KB shared memory per block 
– 48 blocks -> 3 blocks per multiprocessor 

•  Two simple changes 



Change resource usage!
•  Increase register usage from 10 to 11 

– Now only two blocks can run on a 
multiprocessors, because 

– 8192 registers per multiprocessor 
– Each block uses 11*256=2816 registers 
– 3*2816 > 8192 

•  Increase the shared memory usage from 
4KB to 5KB 
– Can still support 3 blocks 

•  16 KB shared memory per multiprocessor 
•  3*5KB < 16 



A story of two dimensions!
•  Build a mindset of optimizing for CUDA 

•  Dimension 1: Reduce instruction count 
– Common sub-expression elimination 
– Strength reduction 
– … 

•  Diminsion 2: Increase multi-processor 
occupancy 



Methods of increasing occupancy!

•  Schedule sequences of independent 
instructions within a warp 

•  Increase number of threads in a thread 
block 

•  Assign more blocks to a multi-processor 

•  Generally, intra-thread optimizations only 
work when the high-occupancy is 
maintained. 



Source of independent warps!
•  From a few large thread blocks 
•  From many small thread blocks 
•  Different impact on performance 

– Larger thread blocks have better data locality 
– At the same time, larger thread blocks have 

higher thread synchronization overhead 
– Larger thread blocks potentially waste more 

thread space per multi-processor 



Two attacks!
•  Intra-thread optimization 

–  Instruction count reduction 
–  Instruction level parallelism 

•  Inter-thread balancing 
– Work re-distribution 
– Resource balancing 

•  The optimizations interact through their 
effects on register usage. 



Example: Matrix Multiplication!
•  For(…)‏ 

–  __shared__ float As[16][16]; 
–  __shared__ float Bs[16][16]; 

–  As[ty][tx] = A[indexA]; 
–  Bs[ty][tx] = B[indexB]; 
–  indexA += 16; 
–  IndexB += 16*widthB; 
–  __syncthreads(); 

–  For(I=0; I<16; I++)‏ 
•  { 

–  Ctemp+=As[ty][I]*Bs[I][tx]; 
•  } 

–  __syncthreads(); 

–  C[indexC] = Ctemp; 



Intra-thread optimization 1!
•  Instruction count reduction 

– Strength reduction 
– Common subexpression elimination 
– Loop-invariant code motion 

– Loop unrolling 
•  Remove branch instruction 
•  Array subscript calculation 



Unroll matrix multiplication!
•  For(…)‏ 

–  __shared__ float As[16][16]; 
–  __shared__ float Bs[16][16]; 

–  As[ty][tx] = A[indexA]; 
–  Bs[ty][tx] = B[indexB]; 
–  indexA += 16; 
–  IndexB += 16*widthB; 
–  __syncthreads(); 

–  Ctemp+=As[ty][I]*Bs[I][tx]; 
… 
–  Ctemp+=As[ty][15]*Bs[15][tx]; 

–  __syncthreads(); 

–  C[indexC] = Ctemp; 



Intra-thread optimization 2!
•  Reduce instruction latency -> increase 

instruction level parallelism 
•  Unroll 

– Facilitate instruction scheduling 
•  Prefetch and software pipelining 

– Reduce global memory access latency 



Prefetch in matrix multiplication !
•  Atemp = A[indexA]; 
•  Btemp = B[indexB]; 
•  For(…)‏ 

–  __shared__ float As[16][16]; 
–  __shared__ float Bs[16][16]; 

–  As[ty][tx] = Atemp; 
–  Bs[ty][tx] = Btemp; 
–  indexA += 16; 
–  IndexB += 16*widthB; 
–  __syncthreads(); 

–  Atemp = A[indexA]; 
–  Btemp = B[indexB]; 

–  For(I=0; I<16; I++)‏ 
•  { 

–  Ctemp+=As[ty][I]*Bs[I][tx]; 
•  } 

–  __syncthreads(); 

–  C[indexC] = Ctemp; 



Inter-thread optimization 1!
•  Work re-distribution 

– Tile workload 
•  Better amortize the global memory latency 
•  Reduce the pressure of global memory bandwidth 

– CUDA does a imperfect job 
•  Prefer intra-thread performance 

•  Divide a grid into several kernel 
invocations 
– Kind of count-intuitive 
– Effective when kernel use constant memory 

•  More data per grid -> more constant cache 
conflicts 



Tile matrix multiplication!
•  For(…)‏ 

–  __shared__ float As[16][16]; 
–  __shared__ float Bs[16][32]; 

–  As[ty][tx] = A[indexA]; 
–  Bs[ty][tx] = B[indexB]; 
–  Bs[ty][tx+16]=B[indexB+16]; 
–  indexA += 16; 
–  IndexB += 16*widthB; 
–  __syncthreads(); 

–  For(I=0; I<16; I++)‏ 
•  { 

–  Ctemp+=As[ty][I]*Bs[I][tx]; 
–  Dtemp+=As[ty][I]*Bs[I][tx+16]; 

•  } 
–  __syncthreads(); 

–  C[indexC] = Ctemp; 
–  C[indexC+16] = Dtemp; 



Inter-thread optimization 2!
•  Resource balancing 

– Balance usage of register, shared memory 
and global memory accesses 

– Sometimes counter-intuitive 



Balance shared memory and 
global memory acceses!

•  For(…)‏ 
–  __shared__ float As[16][16]; 
–  __shared__ float Bs[16][16]; 

–  As[ty][tx] = A[indexA]; 
–  Bs[ty][tx] = B[indexB]; 
–  indexA += 16; 
–  IndexB += 16*widthB; 
–  __syncthreads(); 

–  For(I=0; I<16; I++)‏ 
•  { 

–  Ctemp+=As[ty][I]*Bs[I][tx]; 
–  Ctemp+=As[ty][I]*B[I*widthB+tx] 

•  } 
–  __syncthreads(); 

–  C[indexC] = Ctemp; 



AoS vs SoA!
on the G80 architecture!



AoS vs SoA !

struct S{ 

 float x; 

 float y; 

}; 

struct S myData[N] 

•  preventing coalesced reads 

struct S{ 

 float x[N]; 

 float y[N]; 

}; 

struct S myData; 

•  Leading to coalesced reads 

In this case a SoA seems preferable to an AoS 



When is an AoS still preferable on 
the G80 architecture?!

•  Alignment specifiers and 
aut
o
matically aligned build in types allow for 64 or 128 bit reads from global memory. 

•  Reduction of number of memory operations.  
•  By adding an alignment 

specifier to 
the SoA from the previous slide and reading from global memory into registers… 

struct __align__(8) S { 
 float x; 
 float y; 

}; 

 … we can improve the performance drastically 

–  SoA: contiguous reads for x and y ( up to 600 cycles)‏ 
–  AoS: one still contiguous 64bit read to get x and y (up to 300 cycles)‏ 

–  Even more obvious for 128 bit structures. SoA ~1200  vs  AoS ~300 cycles 



AoS and shared memory!
•  When reading AoS from global memory 

always think about the shared memory 
layout. 
– Share memory only supports 32 bit reads/writes 
– AoS that allow for good access to global 

memory will result in bank conflicts in shared 
memory. 

•  Global memory: 64 bit or 128 bit 
•  Shared memory: multiples of a stride of 3  96bit 

 Changing the layout of the date from an AoS in 
global memory to a SoA in shared memory 
might be beneficial 



One step further: SoAoS!

struct__align__(16) S { 
float a; 
float b; 
float c; 
float d; 
float e; 
float f; 

}; 

struct S myData[N]; 

•  Each thread will have to 
perform 2 128-bit reads. 

•  The single reads are no longer 
contiguous. 

•  Idea: a Structure of Arrays of 
Structures (SoAoS). 

For structures that exceed the 128-bit alignment boundary 

a b c d e f a b c d e f 

tid 0 tid 0 tid 1 tid 1 



One step further: SoAoS!
struct__align__(16) S16 { 

float a; 

float b; 
float c; 

float d; 

}; 
struct__align__(8) S8 { 

float e; 

float f; 

}; 

struct S { 
struct S16 x[N]; 

struct S8  y[N]; 

}; 

struct S myData; 

•  The single reads are now again 
contiguous across threads  

•  This is just an idea to show that 
there are many things to try that 
might lead to better performance 
for global memory access 

a b c d a b c d 

tid 0 tid 1 

… … 

tid n 

e f … … e f 

tid 1 tid 0 tid n 


