

Why talking about trade-offs

- Understand the reasons why there are
trade-offs when optimizing a GPU program

- Understand typical trade-offs

» Analyze the performance of a program
under different trade-offs

Why we have optimization trade-offs

« Large number of possible combination of
optimizations and configurations
* Resources are constrained
— Local memory
— Register
— Global memory bandwidth
* Interaction between threads
— Optimization sensitive to small changes

Example of constrained resource

Global memory bandwidth
— 86.4 GB/s

Multiprocessor performance
— 18 Flop*1.35 Ghz = 24.3 GFLOPS

Peak performance

—24.3"16 = 388.8 GFLOPS

Each flop operates on up to 8 bytes of data
— 388.8*8 >> 86.4 Gbs

Global memory bandwidth can be easily
saturated

Another example

* The configuration of an application:
— 256 threads per block
— 10 registers per thread
— 4KB shared memory per block
— 48 blocks -> 3 blocks per multiprocessor

* Two simple changes

Change resource usage

* Increase register usage from 10 to 11

— Now only two blocks can run on a
multiprocessors, because

— 8192 registers per multiprocessor
— Each block uses 11*256=2816 registers
— 372816 > 8192

* Increase the shared memory usage from
4KB to 5KB

— Can still support 3 blocks

* 16 KB shared memory per multiprocessor
« 3*5KB < 16

A story of two dimensions

* Build a mindset of optimizing for CUDA

 Dimension 1: Reduce instruction count
— Common sub-expression elimination
— Strength reduction

* Diminsion 2: Increase multi-processor
occupancy

Methods of increasing occupancy

« Schedule sequences of independent
iInstructions within a warp

* Increase number of threads in a thread
block

* Assign more blocks to a multi-processor

* Generally, intra-thread optimizations only
work when the high-occupancy is
maintained.

 From a few large thread blocks
 From many small thread blocks

» Different impact on performance
— Larger thread blocks have better data locality

— At the same time, larger thread blocks have
higher thread synchronization overhead

— Larger thread blocks Fotentially waste more
thread space per multi-processor

* Intra-thread optimization
— Instruction count reduction
— Instruction level parallelism

* Inter-thread balancing
— Work re-distribution
— Resource balancing

* The optimizations interact through their
effects on register usage.

Example: Matrix Multiplication

* For(...)
— shared__ float As[16][16];
— shared_ float Bs[16][16];

— As[ty][tx] = AlindexA];
— Bs[ty][tx] = B[indexB];
— indexA += 16;

— IndexB += 16*widthB;
— __syncthreads();

— For(1=0; I1<16; |++)
{ — Ctemp+=As[ty][I]*Bs[I][tx];
— __syncthreads();

— C[indexC] = Ctemp;

* Instruction count reduction
— Strength reduction
— Common subexpression elimination
— Loop-invariant code motion

— Loop unrolling
 Remove branch instruction
 Array subscript calculation

Unroll matrix multiplication

* For(...)
— shared__ float As[16][16];
— shared_ float Bs[16][16];

— As[ty][tx] = AlindexA];
— Bs[ty][tx] = B[indexB];
— indexA += 16;

— IndexB += 16*widthB;
— __syncthreads();

— Ctemp+=As]ty][I]*Bs[I][tx];
— Ctemp+=As]ty][15]*Bs[15][tx];
— __syncthreads();

— CJindexC] = Ctemp;

Intra-thread optimization 2

* Reduce instruction latency -> increase
Instruction level parallelism

* Unroll
— Facilitate instruction scheduling

* Prefetch and software pipelining
— Reduce global memory access latency

Prefetch in matrix multiplication

Atemp = A[indexA];
Btemp = B[indexB];
For(...)

__shared___float As[16][16];
__shared___float Bs[16][16];

Asty][tx] = Atemp;
Bs[ty][tx] = Btemp;
indexA += 16;

IndexB += 16*widthB;
__syncthreads();

Atemp = AJindexA];
Btemp = B[indexB];

For(I=0; I<16; |++)
— Ctemp+=As[ty][I]*Bs[l][tx];

__syncthreads();

ClindexC] = Ctemp;

Inter-thread optimization 1

 Work re-distribution

— Tile workload
» Better amortize the global memory latency
» Reduce the pressure of global memory bandwidth

— CUDA does a imperfect job
» Prefer intra-thread performance

* Divide a grid into several kernel
Invocations
— Kind of count-intuitive

— Effective when kernel use constant memory

* More data per grid -> more constant cache
conflicts

Tile matrix multiplication

* For(...)
— _ shared__ float As[16][16];
— _ shared__ float Bs[16][32];

— As[ty][tx] = A[indexA];

— BsJ[ty][tx] = B[indexB];

— Bs[ty][tx+16]=B[indexB+16];
— indexA += 16;

— IndexB += 16*widthB;

— ___syncthreads();

— For(I=0; 1<16; [++)

— Ctemp+=As[ty][I]*Bs[I][tx];
— Dtemp+=As[ty][I]*Bs[l][tx+16];

— __syncthreads();

— CJindexC] = Ctemp;
— C[indexC+16] = Dtemp;

Inter-thread optimization 2

* Resource balancing

— Balance usage of register, shared memory
and global memory accesses

— Sometimes counter-intuitive

memory anc

global memory ac«eses

* For(...)
— shared__ float As[16][16];
— _shared__ float Bs[16][16];

— As[ty][tx] = A[indexA];
— BsJty][tx] = B[indexB];
— IndexA += 16;

— IndexB += 16*widthB;
— __syncthreads();

— For(1=0; 1<16; |++)
+ {

— Ctemp+=As[ty][I]*Bs[l][tx];
— Ctemp+=As[ty][l]*B[I*widthB+tx]

— __syncthreads();

— C[indexC] = Ctemp;

AoS vs SoA

on the 680 architecture

AoS vs SoA

struct S{ struct S{
float x; float x[N];
float vy; float y[N];

i I

struct S myData[N] struct S myData;

« preventing coalesced reads « Leading to coalesced reads

0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
o e nant

tid 0 tid 1 tid 2 tid 3

tid 0 tid 1 tid 2 tid 3

In this case a SoA seems preferable to an AoS

en is an AoS still preteral

the G80 architecture?

Alignment specifiers and
aut
0

matically aligned build in types allow for 64 or 128 bit reads from global memory.
Reduction of number of memory operations.

By adding an alignment
specifier to

the SoA from the previous slide and reading from global memory into registers...

struct __ align_ (8) s {
float x;
float vy

}i
... we can improve the performance drastically

— SoA: contiguous reads for x and y (up to 600 cycles)
— Ao0S: one still contiguous 64bit read to get x and y (up to 300 cycles)

— Even more obvious for 128 bit structures. SoA ~1200 vs AoS ~300 cycles

AoS aund shared memory

* When reading AoS from global memory
Ialwayts think about the shared memory
ayout.

— Share memory only supports 32 bit reads/writes

— AoS that allow for good access to global
memory will result in bank conflicts in shared
memory.

» Global memory: 64 bit or 128 bit

« Shared memory: multiples of a stride of 3 - 96bit

- Changing the layout of the date from an AoS in
global memory to a SoA in shared memory
might be beneficial

One step further: SoAo$

For structures that exceed the 128-bit alignment boundary

struct__align (16) S | * Each thread will have to
float a; .
oat b perform 2 128-bit reads.
float c; .
float d; * The single reads are no longer
froat e; contiguous.
float £;

}i Idea: a Structure of Arrays of

struct S myData[N]; Structures (So0Ao0S).

tid 0 tid 0 tid 1 tid 1

aTBIeTa e T JanBtel=T

One step further: SoAoS

struct__align__ (16) S16 {
float a;
float b;
float c;
float d;

I

struct__align__ (8) S8 {
float e;
float £;

b
struct S {

struct Sl6 x[N];

struct S8 y[N];

struct S myData;

tid 0 tid 1 tidn tid0

tid 1

A

tidn

A

lalblolalalblolal Llelt

e

fl..l..

* The single reads are now again
contiguous across threads

« This 1s just an 1dea to show that
there are many things to try that
might lead to better performance
for global memory access

