
Optimization Tradeoffs!

Why talking about trade-offs!

•  Understand the reasons why there are
trade-offs when optimizing a GPU program

•  Understand typical trade-offs

•  Analyze the performance of a program

under different trade-offs

Why we have optimization trade-offs!

•  Large number of possible combination of
optimizations and configurations

•  Resources are constrained
– Local memory
– Register
– Global memory bandwidth

•  Interaction between threads
– Optimization sensitive to small changes

Example of constrained resource!
•  Global memory bandwidth

– 86.4 GB/s
•  Multiprocessor performance

– 18 Flop*1.35 Ghz = 24.3 GFLOPS
•  Peak performance

– 24.3*16 = 388.8 GFLOPS
•  Each flop operates on up to 8 bytes of data

– 388.8*8 >> 86.4 Gbs
•  Global memory bandwidth can be easily

saturated

Another example!
•  The configuration of an application:

– 256 threads per block
– 10 registers per thread
– 4KB shared memory per block
– 48 blocks -> 3 blocks per multiprocessor

•  Two simple changes

Change resource usage!
•  Increase register usage from 10 to 11

– Now only two blocks can run on a
multiprocessors, because

– 8192 registers per multiprocessor
– Each block uses 11*256=2816 registers
– 3*2816 > 8192

•  Increase the shared memory usage from
4KB to 5KB
– Can still support 3 blocks

•  16 KB shared memory per multiprocessor
•  3*5KB < 16

A story of two dimensions!
•  Build a mindset of optimizing for CUDA

•  Dimension 1: Reduce instruction count
– Common sub-expression elimination
– Strength reduction
– …

•  Diminsion 2: Increase multi-processor
occupancy

Methods of increasing occupancy!

•  Schedule sequences of independent
instructions within a warp

•  Increase number of threads in a thread
block

•  Assign more blocks to a multi-processor

•  Generally, intra-thread optimizations only
work when the high-occupancy is
maintained.

Source of independent warps!
•  From a few large thread blocks
•  From many small thread blocks
•  Different impact on performance

– Larger thread blocks have better data locality
– At the same time, larger thread blocks have

higher thread synchronization overhead
– Larger thread blocks potentially waste more

thread space per multi-processor

Two attacks!
•  Intra-thread optimization

–  Instruction count reduction
–  Instruction level parallelism

•  Inter-thread balancing
– Work re-distribution
– Resource balancing

•  The optimizations interact through their
effects on register usage.

Example: Matrix Multiplication!
•  For(…)‏

–  __shared__ float As[16][16];
–  __shared__ float Bs[16][16];

–  As[ty][tx] = A[indexA];
–  Bs[ty][tx] = B[indexB];
–  indexA += 16;
–  IndexB += 16*widthB;
–  __syncthreads();

–  For(I=0; I<16; I++)‏
•  {

–  Ctemp+=As[ty][I]*Bs[I][tx];
•  }

–  __syncthreads();

–  C[indexC] = Ctemp;

Intra-thread optimization 1!
•  Instruction count reduction

– Strength reduction
– Common subexpression elimination
– Loop-invariant code motion

– Loop unrolling
•  Remove branch instruction
•  Array subscript calculation

Unroll matrix multiplication!
•  For(…)‏

–  __shared__ float As[16][16];
–  __shared__ float Bs[16][16];

–  As[ty][tx] = A[indexA];
–  Bs[ty][tx] = B[indexB];
–  indexA += 16;
–  IndexB += 16*widthB;
–  __syncthreads();

–  Ctemp+=As[ty][I]*Bs[I][tx];
…
–  Ctemp+=As[ty][15]*Bs[15][tx];

–  __syncthreads();

–  C[indexC] = Ctemp;

Intra-thread optimization 2!
•  Reduce instruction latency -> increase

instruction level parallelism
•  Unroll

– Facilitate instruction scheduling
•  Prefetch and software pipelining

– Reduce global memory access latency

Prefetch in matrix multiplication !
•  Atemp = A[indexA];
•  Btemp = B[indexB];
•  For(…)‏

–  __shared__ float As[16][16];
–  __shared__ float Bs[16][16];

–  As[ty][tx] = Atemp;
–  Bs[ty][tx] = Btemp;
–  indexA += 16;
–  IndexB += 16*widthB;
–  __syncthreads();

–  Atemp = A[indexA];
–  Btemp = B[indexB];

–  For(I=0; I<16; I++)‏
•  {

–  Ctemp+=As[ty][I]*Bs[I][tx];
•  }

–  __syncthreads();

–  C[indexC] = Ctemp;

Inter-thread optimization 1!
•  Work re-distribution

– Tile workload
•  Better amortize the global memory latency
•  Reduce the pressure of global memory bandwidth

– CUDA does a imperfect job
•  Prefer intra-thread performance

•  Divide a grid into several kernel
invocations
– Kind of count-intuitive
– Effective when kernel use constant memory

•  More data per grid -> more constant cache
conflicts

Tile matrix multiplication!
•  For(…)‏

–  __shared__ float As[16][16];
–  __shared__ float Bs[16][32];

–  As[ty][tx] = A[indexA];
–  Bs[ty][tx] = B[indexB];
–  Bs[ty][tx+16]=B[indexB+16];
–  indexA += 16;
–  IndexB += 16*widthB;
–  __syncthreads();

–  For(I=0; I<16; I++)‏
•  {

–  Ctemp+=As[ty][I]*Bs[I][tx];
–  Dtemp+=As[ty][I]*Bs[I][tx+16];

•  }
–  __syncthreads();

–  C[indexC] = Ctemp;
–  C[indexC+16] = Dtemp;

Inter-thread optimization 2!
•  Resource balancing

– Balance usage of register, shared memory
and global memory accesses

– Sometimes counter-intuitive

Balance shared memory and
global memory acceses!

•  For(…)‏
–  __shared__ float As[16][16];
–  __shared__ float Bs[16][16];

–  As[ty][tx] = A[indexA];
–  Bs[ty][tx] = B[indexB];
–  indexA += 16;
–  IndexB += 16*widthB;
–  __syncthreads();

–  For(I=0; I<16; I++)‏
•  {

–  Ctemp+=As[ty][I]*Bs[I][tx];
–  Ctemp+=As[ty][I]*B[I*widthB+tx]

•  }
–  __syncthreads();

–  C[indexC] = Ctemp;

AoS vs SoA!
on the G80 architecture!

AoS vs SoA !

struct S{

 float x;

 float y;

};

struct S myData[N]

•  preventing coalesced reads

struct S{

 float x[N];

 float y[N];

};

struct S myData;

•  Leading to coalesced reads

In this case a SoA seems preferable to an AoS

When is an AoS still preferable on
the G80 architecture?!

•  Alignment specifiers and
aut
o
matically aligned build in types allow for 64 or 128 bit reads from global memory.

•  Reduction of number of memory operations.
•  By adding an alignment

specifier to
the SoA from the previous slide and reading from global memory into registers…

struct __align__(8) S {
 float x;
 float y;

};

 … we can improve the performance drastically

–  SoA: contiguous reads for x and y (up to 600 cycles)‏
–  AoS: one still contiguous 64bit read to get x and y (up to 300 cycles)‏

–  Even more obvious for 128 bit structures. SoA ~1200 vs AoS ~300 cycles

AoS and shared memory!
•  When reading AoS from global memory

always think about the shared memory
layout.
– Share memory only supports 32 bit reads/writes
– AoS that allow for good access to global

memory will result in bank conflicts in shared
memory.

•  Global memory: 64 bit or 128 bit
•  Shared memory: multiples of a stride of 3  96bit

 Changing the layout of the date from an AoS in
global memory to a SoA in shared memory
might be beneficial

One step further: SoAoS!

struct__align__(16) S {
float a;
float b;
float c;
float d;
float e;
float f;

};

struct S myData[N];

•  Each thread will have to
perform 2 128-bit reads.

•  The single reads are no longer
contiguous.

•  Idea: a Structure of Arrays of
Structures (SoAoS).

For structures that exceed the 128-bit alignment boundary

a b c d e f a b c d e f

tid 0 tid 0 tid 1 tid 1

One step further: SoAoS!
struct__align__(16) S16 {

float a;

float b;
float c;

float d;

};
struct__align__(8) S8 {

float e;

float f;

};

struct S {
struct S16 x[N];

struct S8 y[N];

};

struct S myData;

•  The single reads are now again
contiguous across threads

•  This is just an idea to show that
there are many things to try that
might lead to better performance
for global memory access

a b c d a b c d

tid 0 tid 1

… …

tid n

e f … … e f

tid 1 tid 0 tid n

