
Intermediate
Representations

• Rest of the course: compiler writer
needs to choose among alternatives
®Choices affect

§ the quality of compiled code
§ time to compile

®There may be no “best answer”

Where In The Course Are We?

Intermediate Representations

• Front end - produces an intermediate representation (IR)
• Middle end - transforms the IR into an equivalent IR that

runs more efficiently
• Back end - transforms the IR into native code

• IR encodes the compiler’s knowledge of the program
• Middle end usually consists of many passes

Front
End

Middle
End

Back
End

IR IRSource
Code

Target
Code

JikesRVM
(IBM Open Source
Java JIT compiler)

Middle End

Back End

JikesRVM (IBM Open Source Java JIT compiler)

Middle End HIR= High-level Intermediate
Representation

JikesRVM (IBM Open Source Java JIT compiler)

Middle End

LIR=Low-level Intermediate
Representation

JikesRVM (IBM Open Source Java JIT compiler)

Back End MIR=Machine Intermediate
Representation

Intermediate Representations
• Decisions in IR design affect the speed and

efficiency of the compiler

• The importance of different properties varies
between compilers
®Selecting the ”right” IR for a compiler is

critical

Some Important IR Properties
• Ease of generation

® speed of compilation
• Ease of manipulation

® improved passes
• Procedure size

® compilation�footprint
• Level of abstraction

® improved passes

Types of Intermediate Representations
Three major categories
• Structural

• Linear

• Hybrid

Types of Intermediate Representations

Three major categories
• Structural

® Graphically oriented
® Heavily used in source-to-source

translators
® Tend to be large

• Linear

• Hybrid Examples: Trees, DAGs

Types of Intermediate Representations

Three major categories
• Structural

• Linear
® Pseudo-code for an abstract machine
® Level of abstraction varies
® Simple, compact data structures
® Easier to rearrange

• Hybrid

Examples: 3 address code,
Stack machine code

Types of Intermediate Representations

Three major categories
• Structural

• Linear

• Hybrid

® Combination of graphs and linear code

Examples:
Control Flow Graph

Level of Abstraction
• Two different representations of an array ref:

subscript

A i j

loadI 1 => r1
sub rj, r1 => r2
loadI 10 => r3
mult r2, r3 => r4
sub ri, r1 => r5
add r4, r5 => r6
loadI @A => r7
add r7, r6 => r8
load r8 => rAij

Good for memory
disambiguation

Good for address calculation

High level AST Low level Linear Code

Level of Abstraction
• Structural IRs are usually considered high-level
• Linear IRs are usually considered low-level
• Not necessarily true:

+

*

10

j 1

- i 1

-

+

@A

load

Low level AST

loadArray A,i,j

High level linear code

Abstract Syntax Tree
An abstract syntax tree is parse tree with the

nodes for most non-terminal nodes removed

x - 2 * y

-

x

2 y

*

Goal

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact.Term

Term

*

Parse Tree Abstract Syntax Tree

Directed Acyclic Graph
A directed acyclic graph (DAG) is an AST with a unique

node for each value

• Makes sharing explicit
• Encodes redundancy

x

2 y

*

-

¬

z /

¬

w

z ¬ x - 2 * y
w ¬ x / 2

With two copies of the same
expression, the compiler
might be able to arrange the
code to evaluate it only once.

Stack Machine Code
Originally used for stack-based computers,

now Java
• Example:

x - 2 * y becomes push x
push 2
push y
multiply
subtract

Stack Machine Code
• Operations take operands from a stack
• Compact form
• A form of one-address code
• Introduced names are implicit, not explicit
• Simple to generate and execute code

Stack Machine Code Advantages

x - 2 * y

Result is stored
in a temporary!
Explicit name for
result.

push 2
push y
multiply
push x
subtract

Multiply pops two items off
of stack and pushes result!
Implicit name for result

Three Address Code
Different representations of three address code
• In general, three address code has statements

of the form:
x ¬ y op z

With 1 operator (op) and
(at most) 3 names (x, y, & z)

Three Address Code

Example:
z ¬ x - 2 * y becomes t ¬ 2 * y

z ¬ x - t

Explicit name for result.

Three Address Code Advantages
• Resembles many real (RISC) machines
• Introduces a new set of names
• Compact form

Three Address Code: Simple Array
Naïve representation of three address code
• Table of k * 4 small integers

load 1 y

loadi 2 2

mult 3 2 1

load 4 x

sub 5 4 3

load r1, y
loadI r2, 2
mult r3, r2, r1
load r4, x
sub r5, r4, r3

RISC assembly code Simple Array

Destination
Two operands

Three Address Code: Array of Pointers
• Index causes level of indirection
• Easy (and cheap) to reorder
• Easy to add (delete) instructions

Three Address Code: Array of Pointers
• Index causes level of indirection
• Easy (and cheap) to reorder
• Easy to add (delete) instructions

Three Address Code: Linked List
• No additional array of indirection
• Easy (and cheap) to reorder than simple table
• Easy to add (delete) instructions

Control-Flow Graphs

Linear IR Hybrid IR : CFG

Control-Flow Graphs
• Node: an instruction or sequence of

instructions (a basic block)
®Two instructions i, j in same basic block

iff execution of i guarantees execution of j
• Directed edge: potential flow of control
• Distinguished start node Entry

®First instruction in program

Control-flow Graph
Models the transfer of control in the procedure
• Nodes in the graph are basic blocks

® Can be represented with quads or any other linear
representation

• Edges in the graph represent control flow

Example
if (x = y)

a ¬ 2
b ¬ 5

a ¬ 3
b ¬ 4

c ¬ a * b

Basic blocks —
Maximal length
sequences of
straight-line code

Using Multiple Representations

• Repeatedly lower the level of the
intermediate representation
®Each intermediate representation

is suited towards certain
optimizations

Front
End

Middle
End

Back
End

IR 1 IR 3
Source
Code

Target
Code

Middle
End

IR 2

Memory Models
Two major models
• Register-to-register model

® Keep all values that can legally be stored in a register in
registers

® Ignore machine limitations on number of registers
® Compiler back-end must insert loads and stores

• Memory-to-memory model
® Keep all values in memory
® Only promote values to registers directly before they are used
® Compiler back-end can remove loads and stores

• Compilers usually use register-to-register
® Reflects programming model
® Easier to determine when registers are used

The Rest of the Story…
Representing the code is only part of an IR

There are other necessary components
• Symbol table
• Constant table

®Representation, type
®Storage class, offset

• Storage map
®Overall storage layout
®Overlap information
®Virtual register assignments

Symbol Tables
Traditional approach to building a symbol table uses

hashing
• One table scheme

® Lots of wasted space

h(“foe”)
h(“fum”)

fie | char * | array | …

fee | integer | scalar | …

fum | float | scalar | …

Hash table

h(“fee”)

h(“fie”)

foe | x | …

