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• Rest of the course: compiler writer 
needs to choose among alternatives
®Choices affect 

§ the quality of compiled code
§ time to compile

®There may be no “best answer”

Where In The Course Are We?



Intermediate Representations

• Front end - produces an intermediate representation (IR)
• Middle end - transforms the IR into an equivalent IR that 

runs more efficiently
• Back end - transforms the IR into native code

• IR encodes the compiler’s knowledge of the program
• Middle end usually consists of many passes
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JikesRVM (IBM Open Source Java JIT compiler)

Middle End HIR= High-level Intermediate
Representation



JikesRVM (IBM Open Source Java JIT compiler)

Middle End

LIR=Low-level Intermediate
Representation



JikesRVM (IBM Open Source Java JIT compiler)

Back End MIR=Machine Intermediate
Representation



Intermediate Representations
• Decisions in IR design affect the speed and 

efficiency of the compiler

• The importance of different properties varies 
between compilers
®Selecting the ”right” IR for a compiler is 

critical



Some Important IR Properties
• Ease of generation

® speed of compilation
• Ease of manipulation

® improved passes 
• Procedure size

® compilation�footprint
• Level of abstraction

® improved passes



Types of Intermediate Representations
Three major categories
• Structural

• Linear

• Hybrid



Types of Intermediate Representations

Three major categories
• Structural

® Graphically oriented
® Heavily used in source-to-source 

translators
® Tend to be large

• Linear

• Hybrid Examples: Trees, DAGs 



Types of Intermediate Representations

Three major categories
• Structural

• Linear
® Pseudo-code for an abstract machine
® Level of abstraction varies
® Simple, compact data structures
® Easier to rearrange

• Hybrid

Examples: 3 address code, 
Stack machine code 



Types of Intermediate Representations

Three major categories
• Structural

• Linear

• Hybrid

® Combination of graphs and linear code

Examples: 
Control Flow Graph



Level of Abstraction
• Two different representations of an array ref:

subscript

A i j

loadI 1 => r1
sub   rj, r1 => r2
loadI 10 => r3
mult  r2, r3 => r4
sub   ri, r1 => r5
add   r4, r5 => r6
loadI @A => r7
add   r7, r6 => r8
load  r8 => rAij

Good for memory 
disambiguation

Good for address calculation

High level AST Low level Linear Code 



Level of Abstraction
• Structural IRs are usually considered high-level
• Linear IRs are usually considered low-level
• Not necessarily true:
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Low level AST

loadArray A,i,j

High level linear code



Abstract Syntax Tree
An abstract syntax tree is parse tree with the 

nodes for most non-terminal nodes removed
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Directed Acyclic Graph
A directed acyclic graph (DAG) is an AST with a unique 

node for each value

• Makes sharing explicit
• Encodes redundancy

x

2 y

*

-

¬
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w

z ¬ x - 2 * y
w ¬ x  /  2

With two copies of the same 
expression, the compiler 
might be able to arrange the 
code to evaluate it only once.



Stack Machine Code
Originally used for stack-based computers, 

now Java
• Example:

x - 2 * y becomes push x
push 2
push y
multiply
subtract



Stack Machine Code
• Operations take operands from a stack
• Compact form
• A form of one-address code
• Introduced names are implicit, not explicit
• Simple to generate and execute code



Stack Machine Code Advantages

x - 2 * y

Result is stored 
in a temporary!
Explicit name for 
result.

push 2
push y
multiply
push x
subtract

Multiply pops two items off 
of stack and pushes result!
Implicit name for result



Three Address Code
Different representations of three address code
• In general, three address code has statements 

of the form:
x ¬ y op z

With 1 operator (op ) and
(at most) 3 names (x, y, & z)



Three Address Code

Example:
z ¬ x - 2 * y becomes t ¬ 2 * y

z ¬ x - t

Explicit name for result.



Three Address Code Advantages
• Resembles many real (RISC) machines
• Introduces a new set of names
• Compact form



Three Address Code: Simple Array
Naïve representation of three address code
• Table of k * 4 small integers

load 1 y

loadi 2 2

mult 3 2 1

load 4 x

sub 5 4 3

load  r1, y
loadI r2, 2
mult  r3, r2, r1
load  r4, x
sub   r5, r4, r3

RISC assembly code Simple Array

Destination
Two operands



Three Address Code: Array of Pointers
• Index causes level of indirection
• Easy (and cheap) to reorder
• Easy to add (delete) instructions



Three Address Code: Array of Pointers
• Index causes level of indirection
• Easy (and cheap) to reorder
• Easy to add (delete) instructions



Three Address Code: Linked List
• No additional array of indirection
• Easy (and cheap) to reorder than simple table
• Easy to add (delete) instructions



Control-Flow Graphs

Linear IR Hybrid IR : CFG



Control-Flow Graphs
• Node: an instruction or sequence of 

instructions (a basic block)
®Two instructions i, j in same basic block

iff execution of i guarantees execution of j
• Directed edge: potential flow of control
• Distinguished start node Entry

®First instruction in program



Control-flow Graph
Models the transfer of control in the procedure
• Nodes in the graph are basic blocks

® Can be represented with quads or any other linear 
representation

• Edges in the graph represent control flow

Example
if  (x = y)

a ¬ 2
b ¬ 5

a ¬ 3
b ¬ 4

c ¬ a * b

Basic blocks —
Maximal length 
sequences of 
straight-line code



Using Multiple Representations

• Repeatedly lower the level of the 
intermediate representation
®Each intermediate representation 

is suited towards certain 
optimizations

Front
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Middle
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Back
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IR 1 IR 3
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Memory Models
Two major models
• Register-to-register model

® Keep all values that can legally be stored in a register in 
registers

® Ignore machine limitations on number of registers
® Compiler back-end must insert loads and stores

• Memory-to-memory model
® Keep all values in memory
® Only promote values to registers directly before they are used
® Compiler back-end can remove loads and stores

• Compilers usually use register-to-register
® Reflects programming model
® Easier to determine when registers are used



The Rest of the Story…
Representing the code is only part of an IR

There are other necessary components
• Symbol table
• Constant table

®Representation, type
®Storage class, offset

• Storage map
®Overall storage layout
®Overlap information
®Virtual register assignments



Symbol Tables
Traditional approach to building a symbol table uses 

hashing
• One table scheme

® Lots of wasted space

h(“foe”)
h(“fum”)

fie  | char *  | array | …

fee | integer | scalar | …

fum | float    | scalar | …

Hash table

h(“fee”)

h(“fie”)

foe  | x         | …


