
Context-sensitive Analysis
Part II

Chapter 4 (up to Section 4.3)

Attribute Grammars
Add rules to compute the decimal value of a signed binary number

Two kinds of Attributes

• Synthesized attribute
®Bottom-Up flow of values
®Depends on values from the node itself,

children, or constants
• Inherited attribute

®Top-down flow of values
®Depends on values from siblings, parent

and constants

Synthesized Attributes

List

Bit

False True

List.val ¬ Bit.val

Bottom-Up flow (Children)

Sign Sign

Sign.neg ¬ trueSign.neg ¬ false

Constants

Depends on values from
the node itself,
children, or constants

Synthesized Attributes

List

Bit

False True

List.val ¬ Bit.val

Bottom-Up flow (Children)

Sign Sign

Sign.neg ¬ trueSign.neg ¬ false

Constants

Depends on values from
the node itself,
children, or constants

Inherited Attributes

List0

Bit

Top-down flow

List1.pos ¬ List0.pos + 1
Bit.pos ¬ List0.pos

List1

Depends on values from
siblings, parent and
constants

Back to the Examples

Sign

–

For “–1”

Sign.neg

Back to the Examples

Bit

1

Sign

–

Sign.neg

Bit.pos

Bit.val

For “–1”

Back to the Examples

List

Bit

1

Sign

–

Sign.neg

Bit.pos

Bit.val

List.pos

List.val

For “–1”

Back to the Examples

Number

List

Bit

1

Sign

–

Sign.neg

Bit.pos

Bit.val

List.pos

List.val

Number.valFor “–1”

Back to the Examples

Number

List

Bit

1

Sign

– Bit.pos

Bit.val

List.pos

List.val

Number.valFor “–1”

Sign.neg

Back to the Examples

Number

List

Bit

1

Sign

– Bit.pos

Bit.val

List.pos

List.val

Number.valFor “–1”

Sign.neg

Back to the Examples

Number

List

Bit

1

Sign

– Bit.pos

Bit.val

List.pos ¬ 0

List.val

Number.valFor “–1”

Sign.neg

Back to the Examples

Number

List

Bit

1

Sign

–

Sign.neg

Bit.pos

Bit.val

List.pos ¬ 0

List.val

Number.valFor “–1”

Back to the Examples

Number

List

Bit

1

Sign

–

Sign.neg¬ true

Bit.pos

Bit.val

List.pos ¬ 0

List.val

Number.valFor “–1”

Back to the Examples

Number

List

Bit

1

Sign

– Bit.pos

Bit.val

List.pos ¬ 0

List.val

Number.valFor “–1”

Sign.neg¬ true

Back to the Examples

Number

List

Bit

1

Sign

– Bit.pos ¬ 0

Bit.val

List.pos ¬ 0

List.val

Number.valFor “–1”

Sign.neg¬ true

Back to the Examples

Number

List

Bit

1

Sign

– Bit.pos ¬ 0

Bit.val

List.pos ¬ 0

List.val

Number.valFor “–1”

Sign.neg¬ true

Back to the Examples

Number

List

Bit

1

Sign

– Bit.pos ¬ 0

Bit.val ¬ 2Bit.pos º 1

List.pos ¬ 0

List.val

Number.valFor “–1”

Sign.neg¬ true

Back to the Examples

Number

List

Bit

1

Sign

–

Sign.neg ¬
true

Bit.pos ¬ 0

Bit.val ¬ 2Bit.pos º 1

List.pos ¬ 0

List.val ¬ Bit.val º 1

Number.val ¬ – List.val º –1For “–1”

Back to the Examples

Number

List

Bit

1

Sign

–

Sign.neg ¬ true

Bit.pos ¬ 0

Bit.val ¬ 2Bit.pos º 1

List.pos ¬ 0

List.val ¬ Bit.val º 1

Number.val ¬ – List.val º –1For “–1”
One possible
evaluation order:

1 List.pos

2 Sign.neg

3 Bit.pos

4 Bit.val

5 List.val

6 Number.val

Other orders are
possibleEvaluation order must be

consistent with the attribute
dependence graph

Attributes + Parse Tree
• Attributes associated with nodes in parse tree
• Rules are value assignments associated with

productions
• Rules & parse tree define an attribute

dependence graph
®Dependence graph must be non-circular (no cycles)

This produces a high-level, functional specification

Using Attribute Grammars

Attribute grammars can specify context-
sensitive actions

• Take values from syntax
• Perform computations with values
• Insert type tests, type inference, logic, …

Evaluation Methods
Dynamic, dependence-based methods
• Build the parse tree
• Build the dependence graph
• Topological sort the dependence graph
• Define attributes in topological order

Rule-based methods (treewalk)
• Analyze rules at compiler-generation time
• Determine a fixed (static) ordering
• Evaluate nodes in that order

Oblivious methods (passes, dataflow)
• Ignore rules & parse tree
• Pick a convenient order (at design time) & use it

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1 For “–101”

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos:
val:

pos: 0
val:

val:

neg:

For “–101”

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Inherited Attributes

Note: downward flow
(pointing arrows) of
information

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Synthesized attributes

Note: upward flow
(pointing arrows) of
information and the
flow from node’s (self)
attributes

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

If we show the
computation ...

then peel away the parse
tree ...

Back to the Example

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

All that is left is the
attribute
dependence graph.

This succinctly
represents the flow
of values in the
problem instance.

The dependence graph must be acyclic
(no cycles!)

An Extended Example
Grammar for a basic block

An Extended Example
Grammar for a basic block

An Extended Example
Grammar for a basic block

An Extended Example
Grammar for a basic block

a = -5
b = a * 17
c = b / 2
d = a + b - c

Example basic block

How many clock
cycles will this
block take to
execute?

An Extended Example
Grammar for a basic block

Estimate cycle count for the
block of instructions

• Each operation has a COST

• Add them, bottom up

• Assume a load per value

• Assume no reuse

Simple Attribute Grammar

An Extended Example (continued)

Adding attribution rules All these attributes are synthesized!

An Extended Example (continued)

Adding attribution rules All these attributes are synthesized!

An Extended Example (continued)

Adding attribution rules All these attributes are synthesized!

An Extended Example (continued)

Adding attribution rules All these attributes are synthesized!

An Extended Example (continued)

Adding attribution rules All these attributes are synthesized!

An Extended Example

Properties of the example grammar
• All attributes are synthesized Þ S-attributed

grammar
• Rules can be evaluated bottom-up in a single pass

® Good fit to bottom-up, shift/reduce parser
• Easily understood solution
• Seems to fit the problem well

What about an improvement? (see backup slides)
• Values are loaded only once per block (not at each

use)
• Need to track which values have been already loaded

Backup Slides

Adding load tracking
• Need sets Before and After for each production
• Must be initialized, updated, and passed around the tree

A Better Execution Model

This looks more complex!

Adding load tracking
• Need sets Before and After for each production
• Must be initialized, updated, and passed around the tree

A Better Execution Model

This looks more complex!

• Load tracking adds complexity
• Every production needs rules to copy Before & After

A sample production

Lots of work, lots of space, lots of rules to write

A Better Execution Model

What about accounting for finite register sets?
• Before & After must be of limited size
• Adds complexity to Factor®Identifier
• Requires more complex initialization

Jump from tracking loads to tracking registers is small
• Copy rules are already in place
• Some local code to perform the allocation

An Even Better Model

