
Context-sensitive Analysis
Part II

Chapter 4 (up to Section 4.3)



Attribute Grammars
Add rules to compute the decimal value of a signed binary number



Two kinds of Attributes

• Synthesized attribute
®Bottom-Up flow of values
®Depends on values from the node itself,  

children, or constants
• Inherited attribute

®Top-down flow of values
®Depends on values from siblings, parent 

and constants
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List.val ¬ Bit.val 
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Sign Sign

Sign.neg ¬ trueSign.neg ¬ false

Constants

Depends on values from 
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Inherited Attributes 

List0

Bit

Top-down flow 

List1.pos ¬ List0.pos + 1 
Bit.pos ¬ List0.pos 

List1

Depends on values from 
siblings, parent and 
constants
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One possible 
evaluation order:

1 List.pos 

2 Sign.neg

3 Bit.pos

4 Bit.val

5 List.val

6 Number.val

Other orders are 
possibleEvaluation order must be 

consistent with the attribute 
dependence graph



Attributes + Parse Tree
• Attributes associated with nodes in parse tree
• Rules are value assignments associated with 

productions
• Rules & parse tree define an attribute 

dependence graph
®Dependence graph must be non-circular (no cycles)

This produces a high-level, functional specification



Using Attribute Grammars

Attribute grammars can specify context-
sensitive actions

• Take values from syntax
• Perform computations with values
• Insert type tests, type inference, logic, …



Evaluation Methods
Dynamic, dependence-based methods
• Build the parse tree
• Build the dependence graph
• Topological sort the dependence graph
• Define attributes in topological order

Rule-based methods                               (treewalk)
• Analyze rules at compiler-generation time
• Determine a fixed (static) ordering
• Evaluate nodes in that order

Oblivious methods                       (passes, dataflow)
• Ignore rules & parse tree
• Pick a convenient order (at design time) & use it
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If  we show the 
computation ...

then peel away the parse 
tree ...
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All that is left is the 
attribute 
dependence graph.

This succinctly 
represents the flow 
of  values in the 
problem instance.

The dependence graph must be acyclic 
(no cycles!)
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An Extended Example
Grammar for a basic block

a = -5
b = a * 17
c = b / 2
d = a + b - c 

Example basic block

How many clock 
cycles will this 
block take to 
execute?



An Extended Example
Grammar for a basic block

Estimate cycle count for the 
block of  instructions

• Each operation has a COST

• Add them, bottom up

• Assume a load per value

• Assume no reuse

Simple Attribute Grammar
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Adding attribution rules All these attributes are synthesized!
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An Extended Example

Properties of the example grammar
• All attributes are synthesized Þ S-attributed 

grammar
• Rules can be evaluated bottom-up in a single pass

® Good fit to bottom-up, shift/reduce parser
• Easily understood solution
• Seems to fit the problem well

What about an improvement? (see backup slides)
• Values are loaded only once per block (not at each 

use)
• Need to track which values have been already loaded



Backup Slides



Adding load tracking
• Need sets Before and After for each production
• Must be initialized, updated, and passed around the tree

A Better Execution Model

This looks more complex!
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• Load tracking adds complexity
• Every production needs rules to copy Before & After

A sample production

Lots of work, lots of space, lots of rules to write

A Better Execution Model



What about accounting for finite register sets?
• Before & After must be of limited size
• Adds complexity to Factor®Identifier 
• Requires more complex initialization

Jump from tracking loads to tracking registers is small
• Copy rules are already in place
• Some local code to perform the allocation

An Even Better Model


