LR(1) Parsers Part III Last Parsing Lecture

LR(1) Parsers

A table-driven LR(1) parser looks like

Tables can be built by hand
However, this is a perfect task to automate

Bottom-up Parser

A simple shift-reduce parser:
push INVALID
token \leftarrow next_token()
repeat until (top of stack = Goal and token = EOF)
if the top of the stack is a handle $A \rightarrow \beta$
then $/ /$ reduce β to A
pop $|\beta|$ symbols off the stack
push A onto the stack
else if (token \neq EOF)
then // shift
push token
token \leftarrow next_token()
else // need to shift, but out of input report an error

LR(1) Parsers (parse tables)

To make a parser for $L(G)$, need a set of tables
The grammar

1	Goal	\rightarrow
SheepNoise		
2	SheepNoise	\rightarrow
SheepNoise $\underline{\text { baa }}$		
3	\mid	$\underline{\text { baa }}$

The tables

ACTION Table		
State	EOF	baa
0	-	shift 2
1	accept	shift 3
2	reduce 3	reduce 3
3	reduce 2	reduce 2

GOTO Table	
State	SheepNoise
0	1
1	0
2	0
3	0

LR(1) Parsers

To make a parser for $L(G)$, need a set of tables
The grammar

1	Goal	\rightarrow
SheepNoise		
2	SheepNoise	\rightarrow
SheepNoise $\underline{\text { baa }}$		
3	\mid	$\underline{\text { baa }}$

The tables

ACTION Table		
State	EOF	baa
0	-	shift
1	accept	shift
2	reduce 3	reduce 3
3	reduce 2	reduce 2

LR(1) Parsers

To make a parser for $L(G)$, need a set of tables
The grammar

1	Goal	\rightarrow	SheepNoise
2	SheepNoise	\rightarrow	SheepNoise baa
3	\mid	$\underline{\text { baa }}$	

The tables

ACTION Table		
State	EOF	baa
0	-	shift 2
1	accept	shift 3
2	reduce 3	reduce 5
3	reduce 2	reduce 2

GOTO Table	
State	SheepNoise
0	1
1	0
2	0
3	0
Correspond to	
production rule	

Building LR(1) Tables : ACTION and GOTO

How do we build the parse tables for an $L R(1)$ grammar?

- Use grammar to build model of Control DFA
- ACTION table
-Provides actions to perform
- GOTO table
-Tells us state to goto next
- If table construction succeeds, the grammar is LR(1)

Building LR(1) Tables: The Big Picture

- Model the state of the parser with "LR(1) items"
- Use two functions:
-goto(s, X)
- closure(s)
- Build up states and transition functions of the DFA

Parenthesis Grammar

1 Goal \rightarrow List
2 List \rightarrow List Pair
3 | Pair
4 Pair \rightarrow (Pair)
$5 \quad \mid$ ()

LR(1) Parsers

The Control DFA for the Parentheses Language

Transitions on terminals represent shift actions
[ACTION]
Transitions on nonterminals represent reduce actions
The table construction derives this DFA from the grammar

LR(1) Items

$L R(1)$ items represent set of valid states
An LR(1) item is a pair $[P, \delta]$, where
P is a production $A \rightarrow \beta$ with a at some position in the rhs
δ is a lookahead string (word or EOF)
The • ("placeholder") in item indicates TOS position

LR(1) Items

[$A \rightarrow \cdot \beta \gamma$, a] means that input seen so far is consistent with use of $A \rightarrow \beta \gamma$ immediately after the symbol on TOS "possibility"
[$A \rightarrow \beta \cdot \gamma, a]$ means that input seen so far is consistent with use of $A \rightarrow \beta \gamma$ at this point in the parse, and that the parser has already recognized β (that is, β is on TOS)
"partially complete"
$\left[A \rightarrow \beta \gamma^{\cdot}, a\right]$ means that parser has seen $\beta \gamma$, and that a lookahead symbol of \underline{a} is consistent with reducing to A.
"complete"

LR(1) Items

Production $A \rightarrow \beta, \beta=B_{1} B_{2} B_{3}$ and lookahead \underline{a}, gives rise to 4 items
[$\left.A \rightarrow \cdot B_{1} B_{2} B_{3}, \underline{a}\right]$
$\left[A \rightarrow B_{1} \cdot B_{2} B_{3}, \underline{a}\right]$
$\left[A \rightarrow B_{1} B_{2} \cdot B_{3}, a\right]$
$\left[A \rightarrow B_{1} B_{2} B_{3} \cdot, \underline{a}\right]$
The set of $\operatorname{LR}(1)$ items for a grammar is finite

Lookahead symbols?

- Helps to choose the correct reduction

LR(1) Table Construction : Overview
 Build Canonical Collection (CC) of sets of LR(1) Items, I

Step 1: Start with initial state, so

- [S \rightarrow SOSOF, along with any equivalent items
- Derive equivalent items as closure $\left(s_{0}\right)$

Grammar has an unique goal symbol

LR(1) Table Construction : Overview

Step 2: For each s_{k}, and each symbol X, compute goto (s_{k}, X)

- If the set is not already in CC, add it
- Record all the transitions created by goto()

This eventually reaches a fixed point

LR(1) Table Construction : Overview

Step 3: Fill in the table from the collection of sets of LR(1) items

The states of canonical collection are precisely the states of the Control DFA

The construction traces the DFA's transitions

Computing Closures

Closure(s) adds all the items implied by the items already in state s
s

$$
[A \rightarrow \beta \bullet C \delta, a]
$$

Closure $([A \rightarrow \beta \bullet C \delta, a])$ adds $[C \rightarrow \bullet \tau, x]$
where C is on the lhs and each $x \in \operatorname{FIRST}(\delta \underline{a})$

Since $\beta C \delta$ is valid, any way to derive $\beta C \delta$ is valid

Closure algorithm

Closure (s)

while (s is still changing)

\forall items $[A \rightarrow \beta \cdot C \delta, a] \in s$
\forall productions $C \rightarrow \tau \in P$
$\forall \underline{x} \in \operatorname{FIRST}(\delta \underline{a}) \quad / / \delta$ might be ε
if $[C \rightarrow \cdot \tau, \underline{x}] \notin S$ then $s \leftarrow s \cup\{[C \rightarrow \cdot \tau, \underline{x}]\}$

- Classic fixed-point method
- Halts because $s \subset$ Items
- Closure "fills out" a state

Closure algorithm

Closure (s)
while (s is still changing)
\forall items $[A \rightarrow \beta \cdot C \delta, a] \in s$
\forall productions $C \rightarrow \tau \in P$
$\forall \underline{x} \in \operatorname{FIRST}(\delta \underline{a}) \quad / / \delta$ might be ε
if $[C \rightarrow \cdot \tau, \underline{x}] \notin S$ then $s \leftarrow s \cup\{[C \rightarrow \cdot \tau, \underline{x}]\}$

- Classic fixed-point method
- Halts because $s \subset$ Items
- Closure "fills out" a state

Closure algorithm

Closure (s)

$$
\begin{aligned}
& \text { while }(s \text { is still changing) } \\
& \forall \text { items }[A \rightarrow \beta \cdot C \delta, \underline{a}] \in s \\
& \forall \operatorname{productions} C \rightarrow \tau \in P \\
& \forall \underline{x} \in \operatorname{FIRST}(\delta \underline{a}) \quad / / \delta \text { might be } \varepsilon \\
& \text { if }[C \rightarrow \cdot \tau, \underline{x}] \notin s \\
& \quad \text { then } s \leftarrow s \cup\{[C \rightarrow \cdot \tau, \underline{x}]\}
\end{aligned}
$$

- Classic fixed-point method
- Halts because $s \subset$ Items
- Closure "fills out" a state

Closure algorithm

Closure (s)

$$
\begin{aligned}
& \text { while }(s \text { is still changing) } \\
& \forall \text { items }[A \rightarrow \beta \cdot \alpha \delta, Q] \in s \\
& \forall \text { productions } C \downarrow \tau \in P \\
& \forall \underline{x} \in \operatorname{FIRST}(\delta \underline{a})] / / \delta \text { might be } \varepsilon \\
& \text { if }[C \rightarrow \cdot \tau, \underline{x}] \notin s \\
& \quad \text { then } s \leftarrow s \cup\{[C \rightarrow \cdot \tau, \underline{x}]\}
\end{aligned}
$$

- Classic fixed-point method
- Halts because $s \subset$ Items
- Closure "fills out" a state

Closure algorithm

Closure (s)

$$
\text { while (} s \text { is still changing) }
$$

\forall items $[A \rightarrow \beta \cdot C \delta, a] \in s$
\forall productions $C \rightarrow \tau \in P$
$\forall \underline{x} \in \operatorname{FIRsp}(\delta \underline{a}) / / \delta$ might be ε
if $[C \rightarrow \cdot \tau, \underline{x}] \notin S$ then $s \leftarrow s \cup\{[C \rightarrow \cdot \tau, \underline{x}]\}$

- Classic fixed-point method
- Halts because $s \subset$ Items
- Closure "fills out" a state

Example From SheepNoise

Initial step builds the item [Goal \rightarrow •SheepNoise,EOF] and takes its closure()

Closure([Goal \rightarrow •SheepNoise,EOF])

0	Goal	\rightarrow	SheepNoise
1	SheepNoise	\rightarrow	SheepNoise baa
2		\| baa	

Example From SheepNoise

Initial step builds the item [Goal \rightarrow •SheepNoise,EOF] and takes its closure()

Closure([Goal \rightarrow •SheepNoise,EOF])

0	Goal	\rightarrow	SheepNoise
1	SheepNoise	\rightarrow	SheepNoise baa
2		\mid	$\underline{\text { baa }}$

\#	Item	Derived from ...
1	[Goal \rightarrow • SheepNoise, EOF]	Original item
2	[SheepNoise \rightarrow • SheepNoise baa, EOF]	$1, \delta \underline{a}$ is EOF
3	[SheepNoise $\rightarrow \bullet$ baa, EOF]	$1, \delta \mathrm{a}$ is EOF
4	[SheepNoise \rightarrow •SheepNoise baa, baa]	$2, \delta \mathrm{a}$ is baa baa
5	[SheepNoise \rightarrow • baa, baa]	$2, \delta a$ is baa baa

So, S_{0} is
$\{[$ Goal \rightarrow • SheepNoise, EOF], [SheepNoise \rightarrow • SheepNoise baa, EOF],
[SheepNoise \rightarrow •baa, EOF], [SheepNoise \rightarrow •SheepNoise baa,baa],
[SheepNoise \rightarrow •baa,baa] \}

Computing Gotos

Goto(s, x) computes state parser would reach if it recognized x while in state s Goto $(\{[A \rightarrow \beta \bullet X \delta, \underline{a}]\}, X)$

Produces

$$
[A \rightarrow \beta X \bullet \delta, \underline{a}]
$$

- Creates new LR(1) item \& uses closure() to fill out the state

Goto Algorithm

Goto (s, X)
new $\leftarrow \varnothing$
\forall items $[A \rightarrow \beta \cdot X \delta, \underline{a}] \in s$
new \leftarrow new $\cup\{[A \rightarrow \beta X \cdot \delta, \underline{a}]\}$
return closure(new)

- Not a fixed-point method!
- Uses closure()
- Goto() moves us forward

Example from SheepNoise

S_{0} is $\{[$ Goal $\rightarrow \cdot$ SheepNoise,EOF], [SheepNoise $\rightarrow \cdot$ SheepNoise baa,EOF], [SheepNoise \rightarrow •baa,EOF], [SheepNoise $\rightarrow \cdot$ SheepNoise baa,baa], [SheepNoise \rightarrow •baa,baa] \}

Goto (S_{0}, baa)

0	Goal	\rightarrow
SheepNoise		
1	SheepNoise	\rightarrow
SheepNoise baa		
2		$\underline{\text { baa }}$

Example from SheepNoise

S_{0} is $\{[$ Goal $\rightarrow \cdot$ SheepNoise,EOF], [SheepNoise $\rightarrow \cdot$ SheepNoise baa,EOF], [SheepNoise \rightarrow •baa,EOF], [SheepNoise $\rightarrow \cdot$ SheepNoise baa, baa], [SheepNoise \rightarrow •baa,baa] \}

Goto(S_{0}, baa)

- Loop produces

0	Goal	\rightarrow
SheepNoise		
1	SheepNoise	\rightarrow
SheepNoise baa		
2		\| baa

Item	Source
[SheepNoise \rightarrow baa \bullet, EOF]	Item 3 in s_{0}
[SheepNoise \rightarrow baa \bullet, baa	Item 5 in s_{0}

- Closure adds nothing since - is at end of rhs in each item

In the construction, this produces S_{2}
$\left\{\left[\right.\right.$ SheepNoise \rightarrow baa \cdot ' \{EOF,$\left.\left.\underline{\text { baa }}{ }^{3}\right]\right\}$

New, but obvious, notation for two distinct items
[SheepNoise $\rightarrow \underline{b a a} \cdot$, EOF] \& [SheepNoise \rightarrow baa ${ }^{\circ}$, baa]

Canonical Collection Algorithm

```
so }\leftarrow\operatorname{closure([S'->\cdot S,EOF])
S\leftarrow{so}
k}\leftarrow
```

while (S is still changing)
$\forall s_{j} \in S$ and $\forall x \in(T \cup N T)$
$t \leftarrow \operatorname{goto}\left(s_{j}, x\right)$
if $t \notin S$ then
name t as s_{k}
$S \leftarrow S \cup\left\{s_{k}\right\}$
record $s_{j} \rightarrow s_{k}$ on x
$k \leftarrow k+1$
else
t is $s_{m} \in S$
record $s_{j} \rightarrow s_{m}$ on x

Add initial state; fill out state with closure

Canonical Collection Algorithm

```
\(s_{0} \leftarrow \operatorname{closure}\left(\left[S^{\prime} \rightarrow \cdot \operatorname{S,EOF}\right]\right)\)
\(S \leftarrow\left\{s_{0}\right\}\)
\(k \leftarrow 1\)
```

while (S is still changing)
$\forall s_{j} \in S$ and $\forall x \in(T \cup N T)$
$t \leftarrow \operatorname{goto}\left(s_{j}, x\right)$
if $t \notin S$ then
name t as s_{k}
$S \leftarrow S \cup\left\{s_{k}\right\}$
record $s_{j} \rightarrow s_{k}$ on x
$k \leftarrow k+1$
else
t is $s_{m} \in S$
record $s_{j} \rightarrow s_{m}$ on x

- Fixed-point computation
- Loop adds to S

Canonical Collection Algorithm

```
so }\leftarrow\mathrm{ closure([S'>}\cdot\,S,EOF]
S}\leftarrow{\mp@subsup{s}{0}{}
k\leftarrow1
```

while (S is still changing)

$$
\begin{aligned}
& \forall s_{j} \in S \text { and } \forall x \in(T \cup N T) \\
& t \leftarrow \text { goto }\left(s_{j}, x\right) \\
& \text { if } t \notin S \text { then } \\
& \text { name } t \text { as } s_{k} \\
& S \leftarrow S \cup\left\{s_{k}\right\} \\
& \text { record } s_{j} \rightarrow s_{k} \text { on } x \\
& k \leftarrow k+1 \\
& \text { else } \\
& t \text { is } s_{m} \in S \\
& \text { record } s_{j} \rightarrow s_{m} \text { on } x
\end{aligned}
$$

- Iterate through all items in state and all symbols

Canonical Collection Algorithm

```
so}\leftarrow\operatorname{closure([S'->\cdotS,EOF])
S}\leftarrow{\mp@subsup{s}{0}{}
k\leftarrow1
```

while (S is still changing)
$\forall s_{j} \in S$ and $\forall x \in(T \cup N T)$
$t \leftarrow \operatorname{goto}\left(s_{j}, x\right)$
if $t \notin S$ then
name t as s_{k}
$S \leftarrow S \cup\left\{s_{k}\right\}$
record $s_{j} \rightarrow s_{k}$ on x
$k \leftarrow k+1$
else
t is $s_{m} \in S$
record $s_{j} \rightarrow s_{m}$ on X

- Call goto function to get transition from s_{j} to new state \dagger

Canonical Collection Algorithm

```
so}\leftarrow\operatorname{closure([S'->\cdotS,EOF])
S}\leftarrow{\mp@subsup{s}{0}{}
k\leftarrow1
```

while (S is still changing)
$\forall s_{j} \in S$ and $\forall x \in(T \cup N T)$
$t \leftarrow \operatorname{goto}\left(s_{j}, x\right)$
if $t \notin S$ then
name t as s_{k}
$S \leftarrow S \cup\left\{s_{k}\right\}$
record $s_{j} \rightarrow s_{k}$ on X
$k \leftarrow k+1$
else
t is $s_{m} \in S$
record $s_{j} \rightarrow s_{m}$ on x

- Add t to CC and add transition in DFA

Canonical Collection Algorithm

```
so}\leftarrow\operatorname{closure([S'->\cdotS,EOF])
S}\leftarrow{\mp@subsup{s}{0}{}
k\leftarrow1
```

while (S is still changing)
$\forall s_{j} \in S$ and $\forall x \in(T \cup N T)$
$t \leftarrow \operatorname{goto}\left(s_{j}, x\right)$
if $t \notin S$ then
name t as s_{k}
$S \leftarrow S \cup\left\{s_{k}\right\}$
record $s_{j} \rightarrow s_{k}$ on x
$k \leftarrow k+1$
else
t is $s_{m} \in S$
record $s_{j} \rightarrow s_{m}$ on X

- \dagger is already in C^{\prime}; it is some state s_{m} add transition to DFA

Example from SheepNoise

Starts with S_{0}

$S_{0}:\{[$ Goal $\rightarrow \cdot$ SheepNoise, EOF], [SheepNoise $\rightarrow \cdot$ SheepNoise baa, EOF], [SheepNoise \rightarrow •baa, EOF], [SheepNoise \rightarrow •SheepNoise baa, baa], [SheepNoise \rightarrow •baa, baa]\}

$s_{0} \leftarrow \operatorname{closure}\left(\left[S^{\prime} \rightarrow \cdot S, E O F\right]\right)$
 $S \leftarrow\left\{s_{0}\right\}$
 $k \leftarrow 1$

0	Goal	\rightarrow
SheepNoise		
1	SheepNoise	\rightarrow
SheepNoise baa		
2		baa

Example from SheepNoise

Starts with S_{0}

$S_{0}:\{[$ Goal \rightarrow • SheepNoise, EOF], [SheepNoise \rightarrow • SheepNoise baa, EOF], [SheepNoise \rightarrow •baa, EOF], [SheepNoise \rightarrow •SheepNoise baa, baa], [SheepNoise \rightarrow •baa, baa] $\}$

Iteration 1 computes

$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise) $=$
$\{[$ Goal \rightarrow SheepNoise •, EOF], [SheepNoise \rightarrow SheepNoise • baa, EOF], [SheepNoise \rightarrow SheepNoise •baa, baa] $\}$
while (S is still changing)

$$
\begin{aligned}
& \forall s_{j} \in S \text { Snd } \forall x \in l \\
& \\
& t \leftarrow \operatorname{goto}\left(s_{j}, x\right)
\end{aligned}
$$

Example from SheepNoise

Starts with S_{0}

$S_{0}:\{[$ Goal \rightarrow •SheepNoise, EOF], [SheepNoise \rightarrow •SheepNoise baa, EOF], [SheepNoise \rightarrow •baa, EOF], [SheepNoise \rightarrow •SheepNoise baa, baa], [SheepNoise \rightarrow •baa, baa]\}

Iteration 1 computes

$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
\{[Goal \rightarrow SheepNoise •• EOF], [SheepNoise \rightarrow SheepNoise •baa, EOF], [SheepNoise \rightarrow SheepNoise •baa, baa]\}

$$
\begin{aligned}
S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa }}\right)=\{ & {[\text { SheepNoise } \rightarrow \text { baa } \cdot, \underline{\text { EOF }}] } \\
& {[\text { SheepNoise } \rightarrow \text { baa } \cdot, \underline{\text { baa }]\}}}
\end{aligned}
$$

0	Goal	\rightarrow	SheepNoise
1	SheepNoise	\rightarrow	SheepNoise baa
2		$\underline{\text { baa }}$	

Example from SheepNoise

$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
\{ [Goal \rightarrow SheepNoise •, EOF], [SheepNoise \rightarrow SheepNoise - baa, EOF], [SheepNoise \rightarrow SheepNoise - baa, baa]\}

```
Nothing more to
compute, since e is at
the end of every item
in S3.
```


Iteration 2 computes

$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[$ SheepNoise \rightarrow SheepNoise baa \cdot EOF $]$, [SheepNoise \rightarrow SheepNoise baa \cdot, baa] $\}$

0	Goal	\rightarrow	SheepNoise
1	SheepNoise	\rightarrow	SheepNoise baa
2		$\underline{\text { baa }}$	

Example from SheepNoise

$S_{0}:\{[$ Goal $\rightarrow \cdot$ SheepNoise, EOF], [SheepNoise $\rightarrow \cdot$ SheepNoise baa, EOF], [SheepNoise $\rightarrow \cdot \underline{\text { baa, EOF }}$], [SheepNoise $\rightarrow \cdot$ SheepNoise baa, baa], [SheepNoise \rightarrow •baa, baa]\}
$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
$\{[$ Goal \rightarrow SheepNoise \cdot, EOF], [SheepNoise \rightarrow SheepNoise •baa, EOF], [SheepNoise \rightarrow SheepNoise - baa, baa] \}
$\begin{aligned} S_{2}=\operatorname{Goto}\left(S_{0}, \underline{\text { baa })=}:\right. & \{[\text { SheepNoise } \rightarrow \underline{\text { baa } \cdot, ~ E O F ~}], \\ & {[\text { SheepNoise } \rightarrow \underline{\text { baa } \cdot, \underline{\text { baa }] ~}\}}\} }\end{aligned}$
$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[$ SheepNoise \rightarrow SheepNoise baa \cdot, EOF $]$,
[SheepNoise \rightarrow SheepNoise baa \cdot, baa] $\}$

0	Goal	\rightarrow	SheepNoise
1	SheepNoise	\rightarrow	SheepNoise baa
2		$\underline{\text { baa }}$	

Filling in the ACTION and GOTO Tables

The algorithm

$$
\forall \operatorname{set} S_{x} \in S
$$

\forall item $i \in S_{x}$
if i is $[A \rightarrow \beta \bullet \underline{a} \delta, \underline{b}]$ and $\operatorname{goto}\left(S_{x}, \underline{a}\right)=S_{k}, \underline{a} \in T$ then ACTION $[x, a] \leftarrow$ "shift k "
else if i is $\left[S^{\prime} \rightarrow S^{\bullet}\right.$, EOF $]$
then ACTION $[x, \mathrm{EOF}] \leftarrow$ "accept"
else if i is $[A \rightarrow \beta \cdot, \underline{a}]$
then $\operatorname{ACTION}[x, \underline{a}] \leftarrow$ "reduce $A \rightarrow \beta$ "
$\forall n \in N T$

$$
\begin{aligned}
& \text { if } \operatorname{goto}\left(S_{x}, n\right)=S_{k} \\
& \text { then GOTO }[x, n] \leftarrow k
\end{aligned}
$$

Fill ACTION table

Filling in the ACTION and GOTO Tables

```
The algorithm \(x\) is the state number
\(\forall \operatorname{set} S_{x}^{x} \in S\)
    \(\forall\) item \(i \in S_{x}\)
        if \(i\) is \([A \rightarrow \beta \cdot \underline{a} \delta, \underline{b}]\) and \(\operatorname{goto}\left(S_{x}, \underline{a}\right)=S_{k}, \underline{a} \in T\)
        then ACTION \([x, \underline{a}] \leftarrow\) "shift \(k\) "
    else if \(i\) is \(\left[S^{\prime} \rightarrow S \cdot\right.\), EOF \(]\)
        then ACTION \([x\), EOF \(] \leftarrow\) "accept"
    else if \(i\) is \([A \rightarrow \beta \cdot, \underline{a}]\)
        then \(\operatorname{ACTION}[x, \underline{q}] \leftarrow\) "reduce \(A \rightarrow \beta\) "
    \(\forall n \in N T\)
    if \(\operatorname{goto}\left(S_{x}, n\right)=S_{k}\)
        then GOTO[ \(x, n] \leftarrow k\)
```


Filling in the ACTION and GOTO Tables

The algorithm

```
set Sx
    item i\inSX
    if i is [A->\beta\cdot\underline{a}\delta,\underline{b}] and goto(Sx,\underline{a})=\mp@subsup{S}{k}{},\underline{a}\inT
        then ACTION[x,q]}\leftarrow"shiftk
    else if i is [ S'->S ',EOF]
        then ACTION [x,EOF] \leftarrow "accept"
    else if i is [A->\beta\bullet,\underline{]}
        then ACTION[x,\underline{q}]\leftarrow "reduce A->\beta"
    \foralln\inNT
    if goto(Sx,n) = Sk
        then GOTO[x,n] \leftarrowk
```


Filling in the ACTION and GOTO Tables

The algorithm
$\forall \operatorname{set} S_{x} \in S$
\forall item $i \in S_{x}$
if i is $[A \rightarrow \beta \bullet \underline{a} \delta, \underline{b}]$ and $\operatorname{goto}\left(S_{x}, \underline{a}\right)=S_{k}, \underline{a} \in T$ then ACTION $[x, \underline{a}] \leftarrow$ "shiftk"
else if i is $\left[S^{\prime} \rightarrow S \cdot\right.$, EOF $] \longleftarrow$ have Goal \Rightarrow then AcTION $[x$,EOF $] \leftarrow$ "accept" accep \dagger
else if i is $[A \rightarrow \beta \cdot, \underline{a}]$
then $\operatorname{ACTION}[x, \underline{a}] \leftarrow$ "reduce $A \rightarrow \beta$ "
$\forall n \in N T$
if $\operatorname{goto}\left(S_{x}, n\right)=S_{k}$
then GOTO $[x, n] \leftarrow k$

Filling in the ACTION and GOTO Tables

The algorithm

```
vet S}\mp@subsup{S}{x}{}\in
```

\forall item $i \in S_{x}$
if i is $[A \rightarrow \beta \cdot \underline{a} \delta, \underline{b}]$ and $\operatorname{goto}\left(S_{x}, \underline{a}\right)=S_{k}, \underline{a} \in T$ then ACTION $[x, \underline{\alpha}] \leftarrow$ "shiftk"
else if i is $\left[S^{\prime} \rightarrow S \cdot\right.$, EOF $]$ then AcTION $[x$, EOF $] \leftarrow$ "accept"
else if i is $[A \rightarrow \beta \cdot, \underline{a}]$ then $\operatorname{ACTION}[x, \underline{a}<$ "reduce $A \rightarrow \beta$ "
$\forall n \in N T$
if $\operatorname{goto}\left(S_{x}, n\right)=S_{k}$
then GOTO $[x, n] \leftarrow k$

- at end \Rightarrow reduce

Filling in the ACTION and GOTO Tables

The algorithm
$\forall \operatorname{set} S_{x} \in S$
\forall item $i \in S_{x}$
if i is $[A \rightarrow \beta \cdot \underline{a} \delta, \underline{b}]$ and $\operatorname{goto}\left(S_{x}, \underline{a}\right)=S_{k}, \underline{a} \in T$ then ACTION $[x, \underline{\alpha}] \leftarrow$ "shiftk"
else if i is $\left[S^{\prime} \rightarrow S \cdot\right.$, EOF $]$
then AcTION $[x$, EOF $] \leftarrow$ "accept"
else if i is $[A \rightarrow \beta \cdot, \underline{a}]$
then $\operatorname{ACTION}[x, a] \leftarrow$ "reduce $A \rightarrow \beta$ "
$\forall n \in N T$
if $\operatorname{goto}\left(S_{x}, n\right)=S_{k}$ then GOTO $[x, n] \leftarrow k$

Fill GOTO table

Example from SheepNoise

$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { ba }}\right.$ if i is $[A \rightarrow \beta \bullet \underline{a} \delta, \underline{b}]$ and $g o t o\left(S_{x}, \underline{a}\right)=S_{k}, \underline{a} \in T$ then ACTION $[x, \underline{a}] \leftarrow$ "shift k "

0	Goal	\rightarrow	SheepNoise
1	SheepNoise	\rightarrow	SheepNoise baa
2		1	baa

Example from SheepNoise

0	Goal	\rightarrow
SheepNoise		
1	SheepNoise	\rightarrow
2	SheepNoise baa	
2	baa	

Example from SheepNoise

$S_{0}:\{[$ Goal \rightarrow •SheepNoise, EOF], [SheepNoise \rightarrow •SheepNoise baa, EOF], [SheepNoise \rightarrow • baa, EOF], [SheepNoise \rightarrow •SheepNoise baa, baa], [SheepNoise \rightarrow - baa, baa]\}
$S_{1}=\operatorname{Goto}\left(S_{0}\right.$, SheepNoise $)=$
$\{[$ Goal \rightarrow SheepNoise •, EOF], SheepNoise \rightarrow SheepNoise baa, EOF],
[SheepNoise \rightarrow SheepNoise baa, baa]
$S_{2}=\operatorname{Goto}\left(S_{0}\right.$, baa $)=\{[$ SheepNoise \rightarrow baa \cdot, EOF $]$, [SheepNoise \rightarrow baa • baa]\}
$S_{3}=\operatorname{Goto}\left(S_{1}\right.$, baa $)=\{[$ SheepNoise \rightarrow SheepNoise baa •, EOF], [SheepNoise \rightarrow SheepNoise baa •, baa]\}

Example from SheepNoise

```
S : { [Goal }->\mathrm{ •SheepNoise, EOF], [SheepNoise }->\mathrm{ •SheepNoise baa, EOF],
    [SheepNoise }->\mathrm{ • baa, EOF], [SheepNoise }->\mathrm{ •SheepNoise baa, baa],
    [SheepNoise }->\mathrm{ • baa, baa]}
```


Example from SheepNoise

```
S : { [Goal }->\mathrm{ •SheepNoise, EOF], [SheepNoise }->\mathrm{ •SheepNoise baa, EOF],
    [SheepNoise }->\mathrm{ • baa, EOF], [SheepNoise }->\mathrm{ •SheepNoise baa, baa],
    [SheepNoise }->\mathrm{ • baa, baa]}
```

```
S = Goto(S S, SheepNoise) =
    { [Goal }->\mathrm{ SheepNoise •, EOF], [SheepNoise }->\mathrm{ SheepNoise • baa, EOF],
        [SheepNoise }->\mathrm{ SheepNoise - baa, baa]}
```


$S_{3}=\operatorname{Goto}\left(S_{1}, \underline{\text { baa }}\right)=\{[$ SheepNoise \rightarrow SheepNoise baa \cdot "reduce 2 " (clause 3)
[SheepNoise \rightarrow SheepNoise baa •, Daa]s
"reduce 2" (clause 3)
$\operatorname{ACTION}\left[S_{2}\right.$, baa $]$ is "reduce 2" (clause 3) Daajs

0	Goal	\rightarrow
1	SheepNoise	\rightarrow
2		1

else if i is $[A \rightarrow \beta \cdot, \underline{a}]$

then $\operatorname{ACTION}[x, \underline{q}] \leftarrow$ "reduce $A \rightarrow \beta$ "

Example from SheepNoise

$S_{0}:\{[$ Goal \rightarrow •SheepNoise, EOF], [SheepNoise \rightarrow •SheepNoise baa, EOF], [SheepNoise \rightarrow • baa, EOF], [SheepNoise $\rightarrow \cdot$ SheepNoise baa, baa], [SheepNoise \rightarrow - baa, baa]\}

```
ACTION[S3,EOF] is
e)=
"reduce 1" (clause 3) -, EOF], [SheepNoise }->\mathrm{ SheepNoise - baa, EOF],
```

 [SheepNoise \(\rightarrow\) SheepNoise - baa, baa]\}
 $S_{2}=\operatorname{Goto}\left(S_{p}, \underline{\text { baa }}\right)=\{[$ SheepNoise \rightarrow baa \cdot EOF $]$,
[SheepNoise \rightarrow baa •, baa] \}

ACTION[S 3 , baa] is
"reduce 1", as well

0	Goal	\rightarrow
1	SheepNoise	\rightarrow

Example from SheepNoise

The GOTO Table records Goto transitions on NTs
$s_{0}:\{[$ Goal $\rightarrow \cdot$ SheepNoise, EOF], [SheepNoise \rightarrow •SheepNoise baa, EOF],
[SheepNoise \rightarrow • baa, EOF], [SheepNoise \rightarrow •SheepNoise baa, baa],
[SheepNoise \rightarrow - baa, baa] \}

```
\(s_{1}=\operatorname{Goto}\left(S_{0}\right.\), SheepNoise \()=\)
\(\{[G o a l \rightarrow\) SheepNoise •, EOF], [SheepNoise \(\rightarrow\) SheepNoise • baa, EOF],
[SheepNoise \(\rightarrow\) SheepNoise • baa, baa] \}
```

Puts s_{1} in GOTO [s_{0}, SheepNoise $]$

$s_{3}=\operatorname{Goto}\left(S_{1}\right.$, baa $)=\{[$ SheepNoise \rightarrow SheepNoise baa •, EOF $]$, [SheepNoise \rightarrow SheepNoise baa •, baa]\}

Only 1 transition in the entire GOTO table

0	Goal	\rightarrow
SheepNoise		
1	SheepNoise	\rightarrow
SheepNoise baa		
2		$\underline{\text { baa }}$

Remember, we recorded these so we don't need to recompute them.

ACTION \& GOTO Tables

Here are the tables for the SheepNoise grammar
The tables

ACTION TABLE		
State	EOF	baa
0	-	shift 2
1	accept	shift 3
2	reduce 2	reduce 2
3	reduce 1	reduce 1

GOTO TABLE	
State	SheepNoise
0	1
1	0
2	0
3	0

The grammar

0	Goal	\rightarrow SheepNoise
1	SheepNoise	\rightarrow SheepNoise baa
2	\mid	baa

What can go wrong? Shift/reduce error

What if set s contains $[A \rightarrow \beta \cdot \underline{a} \gamma, \underline{b}]$ and $[B \rightarrow \beta \cdot, \underline{a}]$?

- First item generates "shift", second generates "reduce"
- Both set ACTION[s,a] - cannot do both actions
- This is ambiguity, called a shift/reduce error
- Modify the grammar to eliminate it (if-then-else)
- Shifting will often resolve it correctly

What can go wrong? Reduce/reduce conflict

What is set s contains $\left[A \rightarrow \gamma^{\bullet}, \underline{a}\right]$ and $\left[B \rightarrow \gamma^{\bullet}, \underline{a}\right]$?

- Each generates "reduce", but with a different production
- Both set ACTION[s, a] - cannot do both reductions
- This ambiguity is called reduce/reduce conflict
- Modify the grammar to eliminate it (PLII's overloading of (...))

In either case, the grammar is not $L R(1)$

Summary

LR(1) items

- Creating ACTION and GOTO table
- What can go wrong?

