
Bottom-Up Parsing

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Parsing Techniques
Top-down parsers (LL(1), recursive descent)
• Start at root of the parse tree and grow toward leaves
• Pick a production & try to match the input
• Bad “pick” Þ may need to backtrack
• Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)
• Start at the leaves and grow toward root
• As input consumed, encode possibilities in internal state
• Start in a state valid for legal first tokens
• Bottom-up parsers handle a large class of grammars

Bottom-up Parsing (definitions)
The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps
S Þ g0 Þ g1 Þ g2 Þ … Þ gn–1 Þ gn Þ sentence

• Each gi is a sentential form
—If g contains only terminal symbols, g is a sentence in

L(G)
—If g contains 1 or more non-terminals, g is a sentential

form

Bottom-up Parsing (definitions)

S Þ g0 Þ g1 Þ g2 Þ … Þ gn–1 Þ gn Þ sentence

• To get gi from gi–1, expand some NT A Î gi–1 by
using A ®b
—Replace the occurrence of A Î gi–1 with b to get gi

—In a leftmost derivation, it would be first NT A Î gi–1

Bottom-up Parsing (definitions)

A left-sentential form occurs in a leftmost
derivation

A right-sentential form occurs in a rightmost
derivation

Bottom-up parsers build rightmost derivation in
reverse

Bottom-up Parsing (definitions)

A bottom-up parser builds derivation by
working from input sentence back toward
the start symbol S

S Þ g0 Þ g1 Þ g2 Þ … Þ gn–1 Þ gn Þ sentence

bottom-up
assuming A®b, match
some rhs b here

replace b with its
corresponding lhs, A here

Bottom-up Parsing (definitions)
In terms of parse tree, it works from leaves to

root
• Nodes with no parent in partial tree form upper fringe
• Each replacement of b with A shrinks the upper fringe,

we call this a reduction.
• “Rightmost derivation in reverse” processes words left to

right

<id,y>

<num,2>

Fact.

Fact.Term * upper fringe

Bottom-up Parsing (definitions)
In terms of parse tree, it works from leaves to

root
• Nodes with no parent in partial tree form upper fringe
• Each replacement of b with A shrinks the upper fringe,

we call this a reduction.
• “Rightmost derivation in reverse” processes words left to

right

<id,y>

<num,2>

Fact.

Fact.Term

Term

*

reduction

Finding Reductions

Consider the grammar

And the input string abbcde

0 Goal ® a A B e
1 A ® A b c
2 | b
3 B ® d

Sentential Next Reduction
Form Production Position

abbcde 2 2
a A bcde

“Position” specifies where the right end of b occurs
in the current sentential form.

We call this position k.

Finding Reductions

Consider the grammar

And the input string abbcde

0 Goal ® a A B e
1 A ® A b c
2 | b
3 B ® d

Sentential Next Reduction
Form Production Position

abbcde 2 2
a A bcde 1 4
a A de 3 3
a A B e 0 4

Goal — —

“Position” specifies where the right end of
b occurs in the current sentential form.

We call this position k.

Finding Reductions (Handles)
Parser must find substring b at parse tree’s frontier that

matches some production A ® b

(Þ b ® A is in Reverse Rightmost Derivation)

We call substring b a handle

Finding Reductions (Handles)
Formally,

A handle of a right-sentential form g is a pair <A®b,k>
where

A®b Î P and k is the position in g of b’s rightmost symbol.
If <A®b,k> is a handle, then replacing b at k with A

produces the right sentential form from which g is
derived in the rightmost derivation.

On ChalkBoard Example

A simple left-recursive
form of the classic
expression grammar

0 Goal ® Expr
1 Expr ® Expr + Term
2 | Expr - Term
3 | Term
4 Term ® Term * Factor
5 | Term / Factor
6 | Factor
7 Factor ® number
8 | id
9 | (Expr)

Bottom up parsers can handle
either left-recursive or
right-recursive grammars.

On ChalkBoard Example

A simple left-recursive form of
the classic expression grammar

Handles for rightmost derivation of x – 2 * y

0 Goal ® Expr
1 Expr ® Expr + Term
2 | Expr - Term
3 | Term
4 Term ® Term * Factor
5 | Term / Factor
6 | Factor
7 Factor ® number
8 | id
9 | (Expr)

Prod’
n

Sentential Form Handle

8 <id,x> - <num,2> * <id,y> 8,1
Factor - <num,2> * <id,y>

parse

On ChalkBoard Example

A simple left-recursive form of
the classic expression grammar Handles for rightmost derivation of x – 2 * y

0 Goal ® Expr
1 Expr ® Expr + Term
2 | Expr - Term
3 | Term
4 Term ® Term * Factor
5 | Term / Factor
6 | Factor
7 Factor ® number
8 | id
9 | (Expr)

Prod’
n

Sentential Form Handle

8 <id,x> - <num,2> * <id,y> 8,1
6 Factor - <num,2> * <id,y> 6,1
3 Term - <num,2> * <id,y> 3,1
7 Expr - <num,2> * <id,y> 7,3
6 Expr - Factor * <id,y> 6,3
8 Expr - Term * <id,y> 8,5
4 Expr - Term * Factor 4,5
2 Expr - Term 2,3
0 Expr 0,1
- Goal -

parse

Bottom-up Parsing (Abstract View)
A bottom-up parser repeatedly finds a handle A®b in

current right-sentential form and replaces b with A.

To construct a rightmost derivation
S Þ g0 Þ g1 Þ g2 Þ … Þ gn–1 Þ gn Þ w

Apply the following conceptual algorithm
for i ¬ n to 1 by –1

Find the handle <Ai ®bi , ki > in gi
Replace bi with Ai to generate gi–1

This takes 2n steps

of course, n is
unknown until
the derivation
is built

More on Handles
Bottom-up parsers finds rightmost derivation
• Process input left to right
• Handle always appears at upper fringe of

partially completed parse tree

LR parsing
• Keep upper fringe of the partially completed

parse tree on a stack
—Stack makes position information irrelevant
—Handles appear at top of the stack (TOS)

If G is unambiguous, then every right-sentential
form has a unique handle.

More on Handles
Prod’n Sentential Form Handle

8 <id,x> - <num,2> * <id,y> 8,1

6 Factor - <num,2> * <id,y> 6,1

3 Term - <num,2> * <id,y> 3,1

7 Expr - <num,2> * <id,y> 7,3

Expr

-
<num,2>

* <id,y>

Rest of input
from scanner

stack

TOS

7 Factor ® number

K=3

Shift-Reduce Parsing

To implement a bottom-up parser, we adopt the shift-
reduce paradigm

A shift-reduce parser is a stack automaton with four
actions

• Shift — next word is shifted onto the stack
• Reduce — right end of handle is at top of stack

Located handle (rhs) on top of stack
Pop handle off stack & push appropriate lhs

Shift is just a push and a call to the scanner
Reduce means found a handle, takes |rhs| pops & 1 push

But how does parser know when to shift and when to reduce?
It shifts until it has a handle at the top of the stack.

Shift-Reduce Parsing

• Accept — stop parsing & report success
• Error — call an error reporting/recovery routine

Accept if no input and Goal symbol on top of stack (TOS)
Error otherwise

Bottom-up Parser
A simple shift-reduce parser:

push INVALID
token ¬ next_token()
repeat until (top of stack = Goal and token = EOF)

if the top of the stack is a handle A®b
then // reduce b to A

pop |b| symbols off the stack
push A onto the stack

else if (token ¹ EOF)
then // shift

push token
token ¬ next_token()

else // need to shift, but out of input
report an error

What happens on an error?

• It fails to find a handle

• Thus, it keeps shifting

• Eventually, it consumes
all input

This parser reads all input
before reporting an error,
not a desirable property.

Bottom-up Parser
A simple shift-reduce parser:

push INVALID
token ¬ next_token()
repeat until (top of stack = Goal and token = EOF)

if the top of the stack is a handle A®b
then // reduce b to A

pop |b| symbols off the stack
push A onto the stack

else if (token ¹ EOF)
then // shift

push token
token ¬ next_token()

else // need to shift, but out of input
report an error

What happens on an error?

• It fails to find a handle

• Thus, it keeps shifting

• Eventually, it consumes
all input

This parser reads all input
before reporting an error,
not a desirable property.

Bottom-up Parser
A simple shift-reduce parser:

push INVALID
token ¬ next_token()
repeat until (top of stack = Goal and token = EOF)

if the top of the stack is a handle A®b
then // reduce b to A

pop |b| symbols off the stack
push A onto the stack

else if (token ¹ EOF)
then // shift

push token
token ¬ next_token()

else // need to shift, but out of input
report an error

What happens on an error?

• It fails to find a handle

• Thus, it keeps shifting

• Eventually, it consumes
all input

This parser reads all input
before reporting an error,
not a desirable property.

Bottom-up Parser
A simple shift-reduce parser:

push INVALID
token ¬ next_token()
repeat until (top of stack = Goal and token = EOF)

if the top of the stack is a handle A®b
then // reduce b to A

pop |b| symbols off the stack
push A onto the stack

else if (token ¹ EOF)
then // shift

push token
token ¬ next_token()

else // need to shift, but out of input
report an error

What happens on an error?

• It fails to find a handle

• Thus, it keeps shifting

• Eventually, it consumes
all input

This parser reads all input
before reporting an error,
not a desirable property.

Bottom-up Parser
A simple shift-reduce parser:

push INVALID
token ¬ next_token()
repeat until (top of stack = Goal and token = EOF)

if the top of the stack is a handle A®b
then // reduce b to A

pop |b| symbols off the stack
push A onto the stack

else if (token ¹ EOF)
then // shift

push token
token ¬ next_token()

else // need to shift, but out of input
report an error

What happens on an error?

• It fails to find a handle

• Thus, it keeps shifting

• Eventually, it consumes
all input

This parser reads all input
before reporting an error,
not a desirable property.

Bottom-up Parser
A simple shift-reduce parser:

push INVALID
token ¬ next_token()
repeat until (top of stack = Goal and token = EOF)

if the top of the stack is a handle A®b
then // reduce b to A

pop |b| symbols off the stack
push A onto the stack

else if (token ¹ EOF)
then // shift

push token
token ¬ next_token()

else // need to shift, but out of input
report an error

What happens on an error?

• It fails to find a handle

• Thus, it keeps shifting

• Eventually, it consumes
all input

This parser reads all input
before reporting an error,
not a desirable property.

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

0 Goal ® Expr

1 Expr ® Expr + Term

2 | Expr - Term
3 | Term
4 Term ® Term * Factor

5 | Term / Factor

6 | Factor
7 Factor ® number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

0 Goal ® Expr

1 Expr ® Expr + Term

2 | Expr - Term
3 | Term
4 Term ® Term * Factor

5 | Term / Factor

6 | Factor
7 Factor ® number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

0 Goal ® Expr

1 Expr ® Expr + Term

2 | Expr - Term
3 | Term
4 Term ® Term * Factor

5 | Term / Factor

6 | Factor
7 Factor ® number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

0 Goal ® Expr

1 Expr ® Expr + Term

2 | Expr - Term
3 | Term
4 Term ® Term * Factor

5 | Term / Factor

6 | Factor
7 Factor ® number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

0 Goal ® Expr

1 Expr ® Expr + Term

2 | Expr - Term
3 | Term
4 Term ® Term * Factor

5 | Term / Factor

6 | Factor
7 Factor ® number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

0 Goal ® Expr

1 Expr ® Expr + Term

2 | Expr - Term
3 | Term
4 Term ® Term * Factor

5 | Term / Factor

6 | Factor
7 Factor ® number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

Expr is not a handle at this point because reducing now
will cause backtracking.
While that statement sounds like oracular, we will see
that the decision can be automated efficiently.

0 Goal ® Expr

1 Expr ® Expr + Term

2 | Expr - Term
3 | Term
4 Term ® Term * Factor

5 | Term / Factor

6 | Factor
7 Factor ® number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

0 Goal ® Expr

1 Expr ® Expr + Term

2 | Expr - Term
3 | Term
4 Term ® Term * Factor

5 | Term / Factor

6 | Factor
7 Factor ® number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

0 Goal ® Expr

1 Expr ® Expr + Term

2 | Expr - Term
3 | Term
4 Term ® Term * Factor

5 | Term / Factor

6 | Factor
7 Factor ® number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id 7,3 reduce 7
$ Expr - Factor * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

0 Goal ® Expr

1 Expr ® Expr + Term

2 | Expr - Term
3 | Term
4 Term ® Term * Factor

5 | Term / Factor

6 | Factor
7 Factor ® number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id 7,3 reduce 7
$ Expr - Factor * id 6,3 reduce 6
$ Expr - Term * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

0 Goal ® Expr

1 Expr ® Expr + Term

2 | Expr - Term
3 | Term
4 Term ® Term * Factor

5 | Term / Factor

6 | Factor
7 Factor ® number

8 | id

9 | (Expr)

Back to x - 2 * y
Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id 7,3 reduce 7
$ Expr - Factor * id 6,3 reduce 6
$ Expr - Term * id none shift
$ Expr - Term * id none shift
$ Expr - Term * id

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

0 Goal ® Expr

1 Expr ® Expr + Term

2 | Expr - Term
3 | Term
4 Term ® Term * Factor

5 | Term / Factor

6 | Factor
7 Factor ® number

8 | id

9 | (Expr)

Back to x - 2 * y

5 shifts +
9 reduces +
1 accept

Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id 7,3 reduce 7
$ Expr - Factor * id 6,3 reduce 6
$ Expr - Term * id none shift
$ Expr - Term * id none shift
$ Expr - Term * id 8,5 reduce 8
$ Expr - Term * Factor 4,5 reduce 4
$ Expr - Term 2,3 reduce 2
$ Expr 0,1 reduce 0
$ Goal none accept

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

0 Goal ® Expr

1 Expr ® Expr + Term

2 | Expr - Term
3 | Term
4 Term ® Term * Factor

5 | Term / Factor

6 | Factor
7 Factor ® number

8 | id

9 | (Expr)

Goal

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact.Term

Term

*

Stack Input Action
$ id - num * id shift
$ id - num * id reduce 8
$ Factor - num * id reduce 6
$ Term - num * id reduce 3
$ Expr - num * id shift
$ Expr - num * id shift
$ Expr - num * id reduce 7
$ Expr - Factor * id reduce 6
$ Expr - Term * id shift
$ Expr - Term * id shift
$ Expr - Term * id reduce 8
$ Expr - Term * Factor reduce 4
$ Expr - Term reduce 2
$ Expr reduce 0
$ Goal accept

Back to x - 2 * y

Corresponding Parse Tree

An Important Lesson about Handles
A handle must be a substring of a sentential

form g such that :
—Must match rhs b of some rule A ® b;

and
• Simply looking for right hand sides that

match strings is not good enough

An Important Lesson about Handles

• Critical Question: How can we know when
we have found a handle without generating
lots of different derivations?

An Important Lesson about Handles

• Critical Question: How can we know when
we have found a handle without generating
lots of different derivations?
—Answer: We use left context, encoded in the

sentential form, left context encoded in a
“parser state”, and a lookahead at the next
word in the input. (Formally, 1 word beyond the
handle.)

—We build all of this knowledge into a handle-
recognizing DFA

LR(1) Parsers
• LR(1) parsers are table-driven, shift-reduce

parsers that use a limited right context (1
token) for handle recognition

• The class of grammars that these parsers
recognize is called the set of LR(1)
grammars

LR(1) means left-to-right scan of the input,
rightmost derivation (in reverse), and 1 word of
lookahead.

LR(1) Parsers

Informal definition:
A grammar is LR(1) if, given a rightmost

derivation
S Þ g0 Þ g1 Þ g2 Þ … Þ gn–1 Þ gn Þ sentence

We can
1. isolate the handle of each right-sentential form
gi, and

2. determine the production by which to reduce,
by scanning gi from left-to-right, going at

most 1 symbol beyond the right end of the
handle of gi

