Top-down Parsing Recursive Descent \& LL(1)

Roadmap (Where are we?)

- Predictive top-down parsing
-The LL(1) Property
-First and Follow sets
- Simple recursive descent parsers
- Table-driven LL(1) parsers

LL(1) Parser

- L = scan input left to right
- L = Leftmost derivation
- 1 = lookahead is enough to pick right production rule to use
- No Backtracking
- No Left Recursion

Predictive Parsing

Given production rules

$$
\begin{aligned}
& A \rightarrow \alpha \\
& A \rightarrow \beta
\end{aligned}
$$

the parser should be able to choose between α or β using one lookahead

Predictive Parser is a top-down parser free of backtracking

First Sets

For some rhs $\alpha \in \mathcal{G}$

FIRST(α) is set of tokens (terminals) that appear as firs \dagger symbol in some string deriving from α $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow^{*} \underline{x} \gamma$, for some γ

Some number of derivations gets us x at the beginning

Goal \rightarrow SheepNoise
SheepNoise \rightarrow SheepNoise baa
| baa

For SheepNoise:
$\operatorname{FIRST}($ Goal $)=\{\underline{\text { baa }\}}$ FIRST $(S N)=\{\underline{b a a}\}$
$\operatorname{FIRST}(\underline{b a a})=\{\underline{b a a}\}$

LL(1) Property

If $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar, we would like

$$
\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\varnothing
$$

This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

```
Almost correct! See the next slide
```


Does not have LL(1) Property

What about ε-productions?

If $A \rightarrow \alpha$ and $A \rightarrow \beta$ and $\varepsilon \in \operatorname{First}(\alpha)$, then we need to ensure

$$
\operatorname{FOLLOW}(A) \cap \operatorname{FIRST}(\beta)=\varnothing
$$

where,
Follow $(A)=$ the set of terminal symbols that can immediately follow A in a sentential form
Formally,
Follow $(A)=\left\{\dagger \mid\left(\dagger\right.\right.$ is a terminal and $\left.G \Rightarrow{ }^{*} \alpha A \pm \beta\right)$ or (\dagger is eof and $G \Rightarrow{ }^{*} \alpha A$) \}

Note: eof if A is at the end of the derived sentence

Follow Sets Intuition

c is in FOLLOW(A)

FIRST $^{+}$sets

Definition of FIRST $^{+}(A \rightarrow \alpha)$
if $\varepsilon \in \operatorname{First}(\alpha)$ then

$$
\operatorname{FIRST}^{+}(A \rightarrow \alpha)=\operatorname{FIRST}(\alpha) \cup \operatorname{FoLLOW}(A)
$$

else
$\operatorname{FIRST}^{+}(A \rightarrow \alpha)=\operatorname{FIRST}(\alpha)$
Grammar is LL(1) iff $A \rightarrow \alpha$ and $A \rightarrow \beta$ implies
$\operatorname{FIRST}^{+}(\boldsymbol{A} \rightarrow \alpha) \cap \operatorname{FIRST}^{+}(\boldsymbol{A} \rightarrow \beta)=\varnothing$

What If My Grammar Is Not LL(1)?

Can we transform a non-LL(1) grammar into an LL(1) grammar?

- In general, the answer is no
- In some cases, however, the answer is yes
- Perform:
-Eliminate left-recursion Previously
-Perform left factoring today

What If My Grammar Is Not LL(1)?

Given grammar G with productions

$$
\begin{aligned}
& A \rightarrow \alpha \beta_{1} \\
& A \rightarrow \alpha \beta_{2}
\end{aligned}
$$

if α derives anything other than ε and

$$
\operatorname{FIRST}^{+}\left(\boldsymbol{A} \rightarrow \alpha \beta_{1}\right) \cap \operatorname{FIRST}^{+}\left(\boldsymbol{A} \rightarrow \alpha \beta_{2}\right) \neq \varnothing
$$

This grammar is not LL(1)

Left Factoring

If we pull the common prefix, α, into a separate production, we may make the grammar $\operatorname{LL}(1)$.

$$
A \rightarrow \alpha A^{\prime}
$$

$$
\rightarrow A^{\prime} \rightarrow \beta_{1}
$$

$$
\mid \beta_{2}
$$

Now, if FIRST $\left(\boldsymbol{A}^{\prime} \rightarrow \beta_{1}\right) \cap \operatorname{FIRST}^{+}\left(\boldsymbol{A}^{\prime} \rightarrow \beta_{2}\right)=\varnothing$, G may be LL(1)

Left Factoring

For each nonterminal A
find the longest prefix a common to 2 or more alternatives for A
if $\alpha \neq \varepsilon$ then replace all of the productions

Repeat until no NT has rhs' with a common prefix

NT with common prefix

Left Factoring

For each nonterminal A
find the longest prefix a common to 2 or more alternatives for A
if $\alpha \neq \varepsilon$ then replace all of the productions $A \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \alpha \beta_{3}|\ldots| \alpha \beta_{n} \mid \mathrm{V}$ with

Repeat until no NT has rhs' with a common prefix
Put common prefix α into a separate production rule

Left Factoring

For each nonterminal A
find the longest prefix a common to 2 or more alternatives for A
if $\alpha \neq \varepsilon$ then replace all of the productions $A \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \alpha \beta_{3}|\ldots| \alpha \beta_{n} \mid \gamma$ with

$$
\begin{aligned}
& A \rightarrow \alpha A^{\prime} \mid \gamma \\
& A^{\prime} \rightarrow \beta_{1}\left|\beta_{2}\right| \beta_{3}|\ldots| \beta_{n}
\end{aligned}
$$

Repeat until no NT has rhs' with a common prefix
Create new Nonterminal (A^{\prime}) with all unique suffixes

Left Factoring

For each nonterminal A
find the longest prefix a common to 2 or more alternatives for A
if $\alpha \neq \varepsilon$ then
replace all of the productions
$A \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \alpha \beta_{3}|\ldots| \alpha \beta_{n} \mid \mathrm{V}$ with
$A \rightarrow \alpha A^{\prime} \mid \gamma$
$A^{\prime} \rightarrow \beta_{1}\left|\beta_{2}\right| \beta_{3}|\ldots| \beta_{n}$
Repeat until no NT has rhs' with a common prefix

Transformation makes some grammars into $\operatorname{LL}(1)$ grammars There are languages for which no LL(1) grammar exists ${ }_{15}$

Left Factoring not possible

Here is an example where a programming language fails to be $L L(1)$ and is not in a form that can be left factored

statement \rightarrow assign-stmt | call-stmt | other assign-stmt \rightarrow identifier $:=$ exp call-stmt \rightarrow identifier (exp-list)

identifier

FIRST ${ }^{+}$(assign-stmt) $\downarrow \operatorname{FIRST}^{+}$(call-stmt)

Left Factoring Example

Consider a simple right-recursive expression grammar

0	Goal	\rightarrow	Expr
1	Expr	\rightarrow	Term + Expr
2		\mid	Term-Expr
3		1	Term
4	Term	\rightarrow	Factor * Term
5		1	Factor/ Term
6		1	Factor
7	Factor	\rightarrow	number
8		1	id

To choose between 1, 2, \& 3, an LL(1) parser must look past the number or id to see the operator.

$$
\begin{gathered}
\operatorname{FIRST}(1)=\operatorname{FIRST}^{+}(2)=\operatorname{FIRST}^{+}(3) \\
\text { and } \\
\operatorname{FIRST}^{+}(4)=\operatorname{FIRST}^{+}(5)=\operatorname{FIRST}^{+}(6)
\end{gathered}
$$

Let's left factor this grammar.

Left Factoring Example

After Left Factoring, we have
$0 \mid$ Goal \rightarrow Expr
1 Expr \rightarrow Term Expr'

| 2 |
| :--- | :--- | :--- | :--- |
| 3 |
| 4 | \left\lvert\, \(\begin{array}{lll}1 \& \& Expr

\& \&

\& 1 \& - Expr

\& \& \varepsilon\end{array}\right.\)
5 Term \rightarrow Factor Term'
6 Term' \rightarrow *Term

7		\mid	$/$ Term
8		\mid	ε
9	Factor	\rightarrow	number
10		\mid	$\underline{i d}$

Clearly,

FIRST+(2), FIRST+(3), \& FIRST+(4)

are disjoint, as are

FIRST+(6), FIRST $^{+}(7), \&$ FIRST $^{+}(8)$
The grammar now has the $\operatorname{LL}(1)$ property

First Sets

First(α)
For some $\alpha \in(T \cup N T)^{\star}$, define $\operatorname{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α
That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow^{*} \underline{x} \gamma$, for some γ

Computing FIRST Sets

```
for each x }\inT,FIRST(x)\leftarrow{x
for each A \inNT, FIRST(A)\leftarrow\varnothing
while (FIRST sets are still changing) do
    for each }p\inP\mathrm{ , of the form }A->\beta\mathrm{ do
        if }\beta\mathrm{ is }\mp@subsup{B}{1}{}\mp@subsup{B}{2}{\ldots... }\mp@subsup{B}{k}{}\mathrm{ then begin;
        FS\leftarrowFIRST(B1)-{\varepsilon}
        for i}\leftarrow1\mathrm{ to }k-1\mathrm{ by 1 while }\varepsilon\in\operatorname{FIRST(B}\mp@subsup{B}{i}{})\mathrm{ do
        FS\leftarrowFS\cup(FIRST(Bi+1})-{\varepsilon}
        end // for loop
        end // if-then
        if i=k and }\varepsilon\in\operatorname{FIRST}(\mp@subsup{B}{k}{}
        then FS }\leftarrowFS\cup{\varepsilon
    FIRST}(A)\leftarrowFIRST(A)\cupF
    end // for loop
    end // while loop
```

Outer loop is monotone increasing for FIRST sets
$\rightarrow \mid$ T $\cup N T \cup \varepsilon \mid$ is bounded, so it terminates

Inner loop is bounded by the length of the productions in the grammar

Set terminals

Computing FIRST Sets

```
for each x }\inT,\operatorname{FIRST}(x)\leftarrow{x
for each A \inNT, FIRST (A)\leftarrow\varnothing
while (FIRST sets are still changing) do
    for each }p\inP\mathrm{ , of the form }A->\beta\mathrm{ do
        if }\beta\mathrm{ is }\mp@subsup{B}{1}{}\mp@subsup{B}{2}{\prime}...\mp@subsup{B}{k}{}\mathrm{ then begin;
        FS \leftarrowFIRST(B1)-{\varepsilon}
        for i}\leftarrow1\mathrm{ to k-1 by 1 while }\varepsilon\in\operatorname{FIRST}(\mp@subsup{B}{i}{})\mathrm{ do
        FS \leftarrowFS\cup(FIRST(B
        end // for loop
        end // if-then
        if i=k and }\varepsilon\in\operatorname{FIRST(B}\mp@subsup{B}{k}{}
        then FS }\leftarrowFSS\cup{\varepsilon
    FIRST(A)\leftarrowFIRST(A)\cupFS
    end // for loop
    end // while loop
```

Outer loop is monotone increasing for FIRST sets
$\rightarrow \wedge T \cup N T \cup \varepsilon \mid$ is bounded, so it terminates

Inner loop is bounded by the length of the productions in the grammar

Set empty set for First of nonterminals

Computing FIRST Sets

```
for each x }\inT,\operatorname{FIRST}(x)\leftarrow{x
for each A \inNT, FIRST(A)\leftarrow\varnothing
while (FIRST sets are still changing) do
    for each p }\inP\mathrm{ , of the form }A->\beta\mathrm{ do
        if }\beta\mathrm{ is }\mp@subsup{B}{1}{}\mp@subsup{B}{2}{\ldots}..\mp@subsup{B}{k}{}\mathrm{ then begin;
        FS \leftarrowFIRST(B)-{\varepsilon}
        for i}\leftarrow1\mathrm{ to }k-1\mathrm{ by 1 while }\varepsilon\in\operatorname{FIRST(B}\mp@subsup{B}{i}{})\mathrm{ do
        FS\leftarrowFS\cup(FIRST(Bi+1)})-{\varepsilon}
        end // for loop
        end // if-then
        if i=k and }\varepsilon\in\operatorname{FIRST}(\mp@subsup{B}{k}{}
        then FS }\leftarrowFS\cup{\varepsilon
    FIRST(A)\leftarrowFIRST(A)\cupFS
    end // for loop
    end // while loop
```

Outer loop is monotone increasing for FIRST sets
$T \cup N T \cup \varepsilon \mid$ is
bounded, so it terminates
Inner loop is bounded by the length of the productions in the grammar

Fixed point

 algorithm; Monotone because we always add to First sets; never delete from sets
Computing FIRST Sets

```
for each x }\inT,\operatorname{FIRST}(x)\leftarrow{x
for each A \inNT, FIRST(A)\leftarrow\varnothing
while (FIRST sets are still changing) do
    for each p }\inP\mathrm{ , of the form }A->\beta\mathrm{ do
        if }\beta\mathrm{ is }\mp@subsup{B}{1}{}\mp@subsup{B}{2}{\prime\ldots}\mp@subsup{B}{k}{\prime}\mathrm{ then begin;
        FS\leftarrowFIRST(B1)-{\varepsilon}
        for }i\leftarrow1\mathrm{ to }k-1\mathrm{ by 1 while }\varepsilon\in\operatorname{FIRST(B}\mp@subsup{B}{i}{})\mathrm{ do
        FS\leftarrowFS\cup(FIRST(Bi+1)})-{\varepsilon}
        end // for loop
        end // if-then
        if i=k and }\varepsilon\in\operatorname{FIRST}(\mp@subsup{B}{k}{}
        then FS }\leftarrowFS\cup{\varepsilon
    FIRST}(A)\leftarrowFIRST(A)\cupF
    end // for loop
    end // while loop
```

for each $x \in T, \operatorname{FIRST}(x) \leftarrow\{x\}$
for each $A \in N T, \operatorname{FIRST}(A) \leftarrow \varnothing$
while (FIRST sets are still changing) do
for each $p \in P$, of the form $A \rightarrow \beta$ do if β is $B_{1} B_{2} \ldots B_{k}$ then begin:
$F S \leftarrow \operatorname{FIRST}\left(B_{1}\right)-\{\varepsilon\}$
for $i \leftarrow 1$ to $k-1$ by 1 while $\varepsilon \in \operatorname{FIRST}\left(B_{i}\right)$ do $F S \leftarrow F S \cup\left(\operatorname{FIRST}\left(B_{i+1}\right)-\{\varepsilon\}\right)$ end // for loop
end // if-then
if $i=k$ and $\varepsilon \in \operatorname{FIRST}\left(B_{k}\right)$ then $F S \leftarrow F S \cup\{\varepsilon\}$
$\operatorname{FIRST}(A) \leftarrow \operatorname{FIRST}(A) \cup F S$
end // for loop
end // while loop

Outer loop is monotone increasing for FIRST sets
$\rightarrow|T \cup N T \cup \varepsilon|$ is
bounded, so it terminates
Inner loop is bounded by the length of the productions in the grammar

Iterate through each production

Computing FIRST Sets

```
for each x }\inT,\operatorname{FIRST}(x)\leftarrow{x
for each A \inNT, FIRST(A)\leftarrow\varnothing
while (FIRST sets are still changing) do
    for each }p\inP\mathrm{ , of the form }A->\beta\mathrm{ do
        if }\beta\mathrm{ is }\mp@subsup{B}{1}{}\mp@subsup{B}{2}{\ldots}..\mp@subsup{B}{k}{}\mathrm{ then begin;
        FS\leftarrowFIRST(B1)-{\varepsilon}
        for }i\leftarrow1\mathrm{ to }k-1\mathrm{ by 1 while }\varepsilon\in\operatorname{FIRST(B}\mp@subsup{B}{i}{})\mathrm{ do
        FS\leftarrowFS\cup(FIRST(B
        end // for loop
        end // if-then
        if i=k and }\varepsilon\in\operatorname{FIRST}(\mp@subsup{B}{k}{}
        then FS }\leftarrowFS\cup{\varepsilon
    FIRST}(A)\leftarrowFIRST(A)\cupF
    end // for loop
    end // while loop
```

Outer loop is monotone increasing for FIRST sets
$\rightarrow|T \cup N T \cup \varepsilon|$ is bounded, so it terminates

Inner loop is bounded by the length of the productions in the grammar

RHS is some set of T and NT.

Computing FIRST Sets

Computing FIRST Sets

```
for each x }\inT,\operatorname{FIRST}(x)\leftarrow{x
for each A \inNT, FIRST(A)\leftarrow\varnothing
while (FIRST sets are still changing) do
    for each }p\inP\mathrm{ , of the form }A->\beta\mathrm{ do
        if }\beta\mathrm{ is }\mp@subsup{B}{1}{}\mp@subsup{B}{2}{\ldots... }\mp@subsup{B}{k}{}\mathrm{ then begin;
        FS }\leftarrow\operatorname{FIRST}(\mp@subsup{B}{1}{})-{\varepsilon
        for i}\leftarrow1\mathrm{ to }k-1\mathrm{ by }1\mathrm{ while }\varepsilon\in\operatorname{FIRST(B})\mathrm{ )do
                FS\leftarrowFS\cup(FIRST(Bi+1)})-{\varepsilon}
                end // for loop
        end // if-then
        if i=k and }\varepsilon\in\operatorname{FIRST}(\mp@subsup{B}{k}{}
        then FS }\leftarrowFS\cup{\varepsilon
    FIRST(A)\leftarrowFIRST(A)\cupFS
    end // for loop
    end // while loop
```

Outer loop is monotone increasing for FIRST sets
$\rightarrow|T \cup N T \cup \varepsilon|$ is bounded, so it terminates

Inner loop is bounded by the length of the productions in the grammar

Iterate through symbols in production until have a symbol that does not have epsilon in First set

Expression Grammar

0	Goal	\rightarrow	Expr
1	Expr	\rightarrow	Term Expr'
2	Expr'	\rightarrow	+ Term Expr'
3		\mid	- Term Expr'
4		\mid	ε
5	Term	\rightarrow	Factor Term'
6	Term'	\rightarrow	* Factor Term'
7		\mid	/ Factor Term'
8		\mid	ε
9	Factor	\rightarrow	number
10		\mid	id
11		\mid	(Expr)

Symbol	FIRST
num	num
id	id
+	+
-	-
*	*
$/$	1
1	$($
$)$	$)$
eof	eof
ε	ε
Goal	num, id, (
Expr	num, id, (
Expr'	$+,-, \varepsilon$
Term	num, id, (
Term'	*, 1, ¢
Factor	num, id, (

