
Lexical Analysis:
DFA Minimization



Automating Scanner Construction

PREVIOUSLY
RE®NFA  (Thompson’s construction) 
• Build an NFA for each term

• Combine them with e-moves
NFA ®DFA (subset construction) 
• Build the simulation
TODAY
DFA ®Minimal DFA

• Hopcroft’s algorithm                         



DFA Minimization

Details of the algorithm
• Group states into maximal size sets, optimistically
• Iteratively subdivide those sets, as needed 
• States that remain grouped together are equivalent



DFA Minimization

Remember DFA =(Q,S,d,q0,F)

Initial partition, P0 , has two sets: {DF} and {D-DF}

Splitting a set s (“partitioning a set by a”)
• Assume qi and qj Î s   and   d(qi,a) = qx and  d(qj,a) = qy

• If qx and qy are not in the same set, then s must be 
split
® qi has transition on a, qj does not Þ a splits s

• One state in the final DFA cannot have two transitions 
on a (otherwise we have an NFA!)



DFA Minimization (the algorithm)

P ¬ { DF, {D-DF}}
while ( P is still changing)

T ¬ Ø
for each set p Î P

T ¬ T È Split(p)
P ¬ T

Split(S)
for each a Î S

if a splits S into s1 and s2

then return {s1,s2}
return S

This is a another 
fixed-point algorithm!



Key Idea: Splitting S around a
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Key Idea: Splitting S around a
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Could we split S2 further?

Yes, will do this in another iteration!

S2 is everything 
in S - S1



DFA Minimization

What about  a ( b | c )* ?

First, the subset construction:

q0 q1 
a e

q4 q5 

b

q6 q7 
c

q3 q8 q2 q9 

e

e

e e

e e

e e

  e-closure(Delta(s,*)) 

 NFA states a b c 
s0 q0 q1, q2, q3, 

 q4, q6, q9 
none none 

 
s1 q1, q2, q3, 

q4, q6, q9 
none q5, q8, q9,  

q3, q4, q6 
q7, q8, q9,  
q3, q4, q6 

s2 q5, q8, q9, 
q3, q4, q6 

none s2 s3 

s3 q7, q8, q9, 
q3, q4, q6 

none s2 s3 
 

 

s3 

s2 

s0 s1

c

b

a

b

b

c

c

Final states



Apply DFA Minimization algorithm

s3 

s2 

s0 s1 

c

b

a

b

b

c

c

final 
states

P ¬ { DF, {D-DF}}
while ( P is still changing)

T ¬ Ø
for each set p Î P

T ¬ T È Split(p)
P ¬ T

Split(S)
for each a Î S

if a splits S into s1 and s2

then return {s1,s2}
return S



DFA Minimization

Then, apply the minimization algorithm

To produce the minimal DFA

s3 

s2 

s0 s1 

c

b
a

b

b

c

c

Split on
Current Partition a b c

P0 { s1, s2, s3} {s0} none none none

s0 s1 

a

b | c

In a previous lecture, we observed that a 
human would design a simpler automaton 
than Thompson’s construction & the 
subset construction did.

Minimizing that DFA produces the one 
that a human would design! 

final states



Abbreviated Register Specification

Start with a regular expression
r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9

minimal 
DFARE NFA DFA

The Cycle of  Constructions



Abbreviated Register Specification

Thompson’s construction produces
r 0

r 1

r 2

r 8

r 9

… …

s0 sf
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…

minimal 
DFARE NFA DFA

The Cycle of  Constructions

To make it fit, we’ve eliminated the e-
transition between “r” and “0...9”.



Abbreviated Register Specification

Thompson’s construction produces
r 0

r 1
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minimal 
DFARE NFA DFA

The Cycle of  Constructions

To make it fit, we’ve eliminated the e-
transition between “r” and “0...9”.

S0

e-closure(n0)



Abbreviated Register Specification

Thompson’s construction produces
r 0

r 1

r 2

r 8
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minimal 
DFARE NFA DFA

The Cycle of  Constructions

To make it fit, we’ve eliminated the e-
transition between “r” and “0...9”.

S0

S1
e-closure(Delta(s0,r))



Abbreviated Register Specification

Thompson’s construction produces
r 0

r 1
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DFARE NFA DFA

The Cycle of  Constructions

To make it fit, we’ve eliminated the e-
transition between “r” and “0...9”.

S0

S1 Sf0
e-closure(Delta(s1,0))



Abbreviated Register Specification

Thompson’s construction produces
r 0

r 1

r 2

r 8
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… …
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minimal 
DFARE NFA DFA

The Cycle of  Constructions

To make it fit, we’ve eliminated the e-
transition between “r” and “0...9”.

S0

S1
Sf1

e-closure(Delta(s1,1))



Abbreviated Register Specification

Thompson’s construction produces
r 0
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The Cycle of  Constructions

To make it fit, we’ve eliminated the e-
transition between “r” and “0...9”.
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e-closure(Delta(s1,2))



Abbreviated Register Specification

Thompson’s construction produces
r 0

r 1
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DFARE NFA DFA

The Cycle of  Constructions

To make it fit, we’ve eliminated the e-
transition between “r” and “0...9”.
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Sf8

e-closure(Delta(s1,8))



Abbreviated Register Specification

Thompson’s construction produces
r 0

r 1

r 2

r 8
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minimal 
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The Cycle of  Constructions

To make it fit, we’ve eliminated the e-
transition between “r” and “0...9”.

S0
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Sf9

e-closure(Delta(s1,9))



Abbreviated Register Specification

The subset construction builds

r

0
sf0

s0

sf11
sf22

sf9

sf8

…

9
8

minimal 
DFARE NFA DFA

The Cycle of  Constructions

This is a DFA, but it 
has a lot of states …



Abbreviated Register Specification

The subset construction builds

r

0
sf0

s0

sf11
sf22

sf9

sf8

…

9
8

minimal 
DFARE NFA DFA

The Cycle of  Constructions

P0 = {{sf0, sf1, sf2,…,sf8, sf9}, s0}



Abbreviated Register Specification

The DFA minimization algorithm builds

This looks like what a skilled compiler writer would do!

rs0 sf

0,1,2,3,4,
5,6,7,8,9

minimal 
DFARE NFA DFA

The Cycle of  Constructions


