
Cool Overview

CISC 471/672 : Compiler Construction



Disclaimer

The following does not describe the Cool language in depth. It is 
not designed to be used as a syntax reference, but rather as an 
introduction into programming with Cool, and also into object 
oriented programming in general.

For actually writing your own Cool compiler please read the Cool 
manual carefully.

Computer and Information Sciences Department | University of Delaware 1



What is Cool?

•  Classroom Object Oriented Language
•  Collection of classes spread over files
•  Main class with a main method.
•  Similar to Java
•  The more restricted the language, the easier to write a compiler

Computer and Information Sciences Department | University of Delaware 2



Computer and Information Sciences Department | University of Delaware 3

Cool	  source	  file	  

Class	  

A-ribute	  

var1	   var2	   var3	  

Method	  

main	   m1()	   m2()	  

…	  

.	  

.	  

…	  

.	   .	  



Class

•  Object is the super class for all other classes 
•  IO, Int, String and Bool are basic types (in JAVA parlance 

primitive types), and cannot be inherited
•  Multiple inheritance is not allowed
•  Restricted Function overriding

Computer and Information Sciences Department | University of Delaware 4



Attributes

•  Local variables
•  Scope lasts until the class
•  Garbage collection is automatic

Computer and Information Sciences Department | University of Delaware 5



Method

<id> (<param_id1> : <type>,...,< param_idn> : <type>): <type> { 
       <expr> 
          …
};

e.g.,
sum (num1 : Int, num2 : Int) : Int {
 total <- num1 + num2 
};

Computer and Information Sciences Department | University of Delaware 6



<expr>

•  Constant�
Example: 1 or “String”    �
The type of such an <expr> is the type of the constant

•  Identifier (id)�
Example:  a local variable�
 The type of such an <expr> is the type of the id

Computer and Information Sciences Department | University of Delaware 7



<expr>   cont’d

•  Assignment�
<id> <- <expr>�
 The type of such an <expr> is the type of  <expr> and should be the same as the <id>

•  Dispatch�
[<expr>[@<type>]].id(<expr>,...,<expr>)�
The type of dispatch is however more complicated, please read pg. 8 of the Cool manual

Computer and Information Sciences Department | University of Delaware 8



IO Example

class Main {
myIO : IO <- new IO;
myInput : Int;
main() : Int {{ 
 myIO.out_string("How many? ");
 myInput <- myIO.in_int();
 while 0 <  myInput loop
  myIO.out_string(''Hello world!'')
 pool;
 0;
}};

};

Computer and Information Sciences Department | University of Delaware 9



Inheritance

class Silly {
f() : Int {5};

};
class Sally inherits Silly { };
class Main {

x : Int <- (new Sally).f( );

main() : Int {x};
};
// remember restriction in function overriding.

Computer and Information Sciences Department | University of Delaware 10



Inheritance cont’d…
class Silly {

f() : Int {5};
};
class Sally inherits Silly { 

f() : Int {7};
};
class Main {

x : Int <- (new Sally)@Silly.f( );
 main() : Int {x};

};

Computer and Information Sciences Department | University of Delaware 11



The COOL  Manual

•  The Cool manual will be your main reference when working on any 
of the phases of your Cool compiler.

•  Sections 1 and 2 (2 pages) explain how to compile and run (using 
the SPIM interpreter) a Cool program.

•  Sections 2-11 (13 pages) are required to build the two phases of the 
syntax analysis.

•  Section 12 (5 pages) is sufficient for the semantic analyzer (together 
with earlier pages).

•  Section 13 (8 pages) are necessary for the code generator. 
Furthermore you should read the SPIM manual (<25 pages) 
explaining our target language.

Computer and Information Sciences Department | University of Delaware 12



Computer and Information Sciences Department | University of Delaware 13


