
Game Theoretic Stochastic Routing for Fault
Tolerance and Security in Computer Networks

Stephan Bohacek, Member, IEEE, João P. Hespanha, Senior Member, IEEE,

Junsoo Lee, Member, IEEE, Chansook Lim, Member, IEEE, and Katia Obraczka, Member, IEEE

Abstract—We introduce the Game-Theoretic Stochastic Routing (GTSR) framework, a proactive alternative to today’s reactive

approaches to route repair. GTSR minimizes the impact of link and router failure by 1) computing multiple paths between source and

destination and 2) selecting among these paths randomly to forward packets. Besides improving fault tolerance, the fact that GTSR

makes packets take random paths from source to destination also improves security. In particular, it makes connection eavesdropping

attacks maximally difficult as the attacker would have to listen on all possible routes. The approaches developed are suitable for

network layer routing, as well as for application layer overlay routing and multipath transport protocols such as the Stream Control

Transmission Protocol (SCTP). Through simulations, we validate our theoretical results and show how the resulting routing algorithms

perform in terms of the security/fault-tolerant/delay/throughput trade-off. We also show that a beneficial side effect of these algorithms

is an increase in throughput, as they make use of multiple paths.

Index Terms—Multipath routing, stochastic routing, game theory, network security, fault tolerance.

Ç

1 INTRODUCTION

“TRADITIONAL ” routing protocols forward packets over
a single path from source to destination. This means

that, even if redundant resources are available, a single
failure (accidental or due to malicious activities) tempora-
rily interrupts all connections that use the compromised
route. Eventually, the underlying routing protocol will react
to the failure and correct it, but this can take a nonnegligible
amount of time, depending on how often routers ping/poll
one another and how frequently routing updates are
distributed. Another undesirable aspect of single-path
routing is that packet interception or eavesdropping can
be achieved with a minimum amount of resources because
the path over which the packets travel is predictable. For
example, by tapping into one of the links along a path, an
attacker can reconstruct an unencrypted file transfer from
eavesdropped packets and, by breaking into one router, a
man-in-the-middle attack can be launched on encrypted
transfers that utilize key exchange [1].

In this paper, we describe game-theoretic stochastic routing
(GTSR), which can be viewed as a proactive alternative to
today’s reactive approaches to route repair. GTSR explores

the existence of multiple paths between network nodes and
routes packets to minimize predictability. It discovers all
paths between a source-destination pair and determines the
next-hop probabilities, that is, the probability with which a
packet takes a particular next hop along one of the possible
paths. Unlike security and fault-tolerant mechanisms that are
based on detection and response, GTSR takes a proactive
approach to making connections less vulnerable to failures or
attacks.

Throughout this paper, we use nodes to refer to the
network elements that forward packets. Such nodes can be
network layer routers, end systems (or hosts) that partici-
pate in application layer routing (for example, in an overlay
network such as Resilient Overlay Networks (RON) [2]), or
act as transport layer end-points (for example, in Stream
Control Transmission Protocol (SCTP) that supports split-
ting of data streams over multiple paths [3]). From this
perspective, GTSR can operate at any layer of the protocol
stack. In the remainder of this section, we put GTSR in
perspective by reviewing some existing approaches to
failure prevention and recovery.

1.1 Failures, Interception, and Eavesdropping

The Internet is particularly vulnerable to failures and
attacks because data packets travel along a physical
infrastructure that is easily probed and are composed of
thousands of elements, each one of them vulnerable to
attacks and failures. Dynamic routing protocols are de-
signed to try to circumvent failures in network nodes and
links. However, these protocols are purely reactive and wait
for failures to be detected before taking corrective measures.
Although some failures can be easily discovered (for
example, if there is no carrier signal, the physical layer
interface will report an error), intermittent failures are
especially difficult to detect and routing often takes
considerable time to recover from them. In addition,
although some link-state algorithms can find alternate

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007 1

. S. Bohacek and C. Lim are with the Department of Electrical and Computer
Engineering, University of Delaware, Newark, DE 19716.
E-mail: bohacek@eecsi.udel.edu, cslim@usc.edu.

. J.P. Hespanha is with the Department of Electrical and Computer
Engineering, University of California Santa Barbara, Santa Barbara, CA
93106-9560. E-mail: hespanha@ece.ucsb.edu.

. J. Lee is with the Department of Computer Science, Sookmyung Women’s
University, Yongsan-ku, Seoul 140-742, Republic of Korea.
E-mail: jslee@sookmyung.ac.kr.

. K. Obraczka is with the Computer Engineering Department, University of
California Santa Cruz, Santa Cruz, CA 95064. E-mail: katia@cse.ucsc.edu.

Manuscript received 18 Aug. 2005; revised 15 Aug. 2004; accepted 4 Dec.
2006; published online 2 Jan. 2007.
Recommended for acceptance by G. Lee.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0375-0805.
Digital Object Identifier no. 10.1109/TPDS.2007.1000.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

paths relatively quickly, distance-vector algorithms may
require considerably more time in large, poorly connected
networks. In either case, during the detection of the cut/
failure and the search for a new route, the connection
remains broken.

Selective faults/attacks are especially challenging. Sup-
pose, for example, that a node of the network is
compromised and that it selectively intercepts packets from
specific end-to-end connections. If routing hello packets are
not intercepted, other nodes do not compute new routes to
exclude the compromised node. This means that application
or transport-layer retransmissions will keep following the
same route and will continue to be subject to interception. A
more “active” form of attack exploiting compromised nodes
is to have them generate spurious routing updates, each
reporting very low costs to all or some destinations. As a
result, other nodes will funnel packets to these compro-
mised nodes.

Privacy and integrity techniques (for example, end-to-
end encryption, Virtual Private Networks (VPNs), and
secure tunnels) are effective in protecting against eaves-
dropping and some forms of interception (for example,
selective interception). However, if an encryption key is
stolen or when defending against attackers with inside
information, these techniques lose much of their effective-
ness. Furthermore, man-in-the-middle attacks may still be
possible. To protect a data transmission network against a
wide range of attacks, one needs a suite of mechanisms
spanning several layers of the protocol stack. In particular,
end-to-end security mechanisms (for example, end-to-end
encryption for privacy and message authentication for
integrity/authenticity) should be complemented by security
mechanisms at other layers(for example, link-layer encryp-
tion). GTSR is one such mechanism and complements
security measures taken at other layers.

1.2 Exploring Multiple Paths

(Deterministic) flooding—that is, sending each packet along
every possible path—is the simplest form of multipath
routing and provides a routing mechanism that is extremely
robust with respect to link/node failures. However, this
type of routing is not practical because it greatly increases
overhead. Flooding also significantly simplifies packet
eavesdropping. We propose exploring multiple paths
through statistical flooding. In statistical flooding, packets
are sent through all available paths, but, generally, no
packet is sent more than once (except for the possibility that
error control at the transport layer may require a packet to
be resent). Flooding thus occurs “on the average” and is
randomized to minimize predictability.

Stochastic routing is the mechanism used to achieve
statistical flooding. In this type of routing, nodes select the
next hop to which to forward a packet in a random fashion.
The next-hop probabilities—that is, the probabilities of
selecting particular next-hop destinations—are design
parameters and determining these probabilities is the
subject of this paper. Our main challenge is determining
next-hop probabilities that ensure

1. delivery, that is, all packets reach their desired
destination with probability one,

2. timeliness, that is, the delay is acceptable, and
3. statistical flooding is achieved, that is, all paths are

explored by the packet ensemble.

With respect to item 3, some network elements may be
more susceptible to failures/attacks than others and, there-
fore, it may be desirable to have nonuniform statistical
flooding. For example, as a fault/attack detector starts to
suspect that a particular element is compromised, it can
adjust the next-hop probabilities to start avoiding that
element. With GTSR, this can be done progressively, which
allows for a measured response and provides additional
flexibility in addressing the trade-off between the false
alarm rate and detection speed (cf., [4] for a discussion on
this trade-off).

1.3 Scope

One question to ask is “where can the GTSR methodology
be effectively applied in today’s networks?” Clearly, GTSR
will only be effective if there are multiple paths to explore.
At the network layer, we see at least two domains in which
this technique may prove useful:

1. Inside Internet service providers (ISPs), where there
are often multiple independent paths to the exit
point for that ISP. GTSR would be part of the suite of
tools that the ISP utilizes to provide secure network-
ing to its clients.

2. Inside an organization that builds multipath redun-
dancy in its network to improve security (and also to
augment throughput). An organization may utilize
multiple connections to a single ISP or even use
multiple ISPs to connect to the outside network and
employ GTSR to spread data across independent
paths provided by distinct ISPs.

Although GTSR can also be used for interdomain
routing, it has been noted that Autonomous Systems
(ASs) typically have limited information about the network
topology and may have different (and often conflicting)
path-selection goals [5]. This can limit the viability of GTSR
for interdomain routing.

At application layer overlay networks, the applicability
of GTSR depends on the degree to which links in the
overlay network are truly independent (that is, do not share
any physical links/nodes). Although the presence of
dependent paths does not affect the applicability of GTSR,
if there are no independent paths at the network layer, then
GTSR may not significantly increase security/reliability. On
the other hand, if attacks target application layer routers
instead of packet transmission (that is, if the risk is that end
hosts taking part in the forwarding may be compromised),
then GTSR can increase reliability and security as long as
the overlay network has multiple distinct paths between the
source and the destination.

At the transport layer, protocols such as SCTP allow data
streams to be split over several paths. Again, the utility of
splitting the flow depends on whether the different physical
paths are distinct.

1.4 Outline

The remainder of this paper is organized as follows: In
Section 2, we review related work. Section 3 develops

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

techniques for designing “optimal” stochastic routing poli-
cies. Simulations of these stochastic routing policies are
presented in Section 4. Finally, Section 5 provides concluding
remarks and points toward future research. Detailed deriva-
tions of the results in Section 4 are included in the Appendix.
A subset of the results in this paper was presented in the
Proceedings of the 11th IEEE International Conference on
Computer Communications and Networks [6].

2 RELATED WORK

2.1 Network Robustness and Security

VPNs [7] have been used as a way to securely interconnect a
(typically small) number of sites. Although private net-
works use dedicated lines, VPNs try to implement private
networks atop a publicly accessible communication infra-
structure like the Internet. VPNs typically employ some
combination of encryption, authentication, and access
control techniques to allow participating sites to commu-
nicate securely.

The emergence of Internet Protocol security (IPsec) [8] as
an Internet Engineering Task Force (IETF) standardized
protocol has prompted VPN solutions to use IPsec as the
underlying network-layer protocol. As in any encryption-
based mechanism, the key challenge in IPsec is that secret
keys must remain secret. As previously discussed, if an
attacker is able to infiltrate a node or has “inside”
information, shared and/or private keys may be compro-
mised and the corresponding communication channels
become insecure.

Onion routing [9] is another approach to security that
focuses on hiding the identities of the communicators. It
uses several layers of encryption, where each layer is used
to encrypt the transmission between routers on each end of
a link. Because of the many layers of encryption, routers are
unable to decrypt the data or even the source and
destination addresses. All that a router can decipher is the
next-hop information. Although onion routing is very
effective for anonymity, it is computationally heavy: Each
connection must be built and torn down, routers must
encode and decode packets, and memory-intensive source
routing is used. The Secure Border Gateway Protocol (S-
BGP) [10] makes use of public key and an authorization
infrastructure, as well as IPsec to verify the authenticity and
authorization of control traffic generated by the Border
Gateway Protocol.

Another related effort is the RON project [2] whose goal
is to improve the performance and robustness of network-
layer routing. RON nodes monitor current routing paths
and decide whether to choose other routes (by selecting
alternate application-layer paths through other RON nodes)
in order to meet application-specific performance require-
ments. GTSR could be implemented in such networks to
improve security and fault tolerance.

The approach developed here is, in some ways, similar to
that presented in [11], where members of a group cooperate
to maintain their anonymity to the server. Specifically, users
send their request not directly to the server but to random
users in the group. Each user can then forward the request
either to the server or to another member of the group. In

GTSR, randomization is applied at the network layer with
the goal of protecting the data packet not from the
destination but from intermediate attackers.

Equal-Cost Multipath (ECMP) [12] and Open Shortest
Path First Protocol (OSPF) Optimized Multipath (OSPF-
OMP) [13] are, in a way, multipath routing algorithms.
Although these methods insist that the alternative paths be
of equal cost, MPLS allows different paths besides shortest
paths to be utilized. However, none of these methods is
stochastic; rather, routers employ techniques to ensure that
a connection will utilize a single path.1 Hence, a link failure
will result in cut connections and eavesdropping at a single
link will expose connections going through that link.
Furthermore, these algorithms were developed to increase
throughput, but not to make routing robust to attacks or
failures. Hence, there is no mechanism in place to avoid
links that may have been compromised or have been subject
to high failure rates. In short, these, as well as other load
balancing techniques, seek to optimize performance metrics
such as bit rate and delay, whereas, in GTSR, we optimize
fault tolerance and security.

2.2 Game Theoretical Approaches to Network
Routing

Game theoretical approaches have been proposed for many
resource allocation problems in computer networks, but
none is very closely related to GTSR. We review the most
relevant results in routing and refer the reader to the survey
in [14] for applications of game theory to other networking
problems such as bandwidth allocation, congestion control,
power control in wireless networks, and medium access
control.

Economides and Silvester [15] consider the selection of
one among L parallel queuing systems to transport (or
process) data. Two classes of packets need to be processed:
The �-class packets can be queued, whereas the �-class
packets are always blocked when the server is busy. The
problem is formulated as a game played between two
players P� and P�, each one controlling the fraction of
packets of a particular class that goes through each of the
L queues. This problem has a unique Nash equilibrium
(NE) when P� minimizes the queuing delay and P�
minimizes the blocking probability.

The paper by Yamaoka and Sakai [16] considers a
network with arbitrary topology in which every link has
two queues with different priorities. Both queues are first in
first out (FIFO), but transmission of packets from the low-
priority queue only takes place when the high-priority
queue becomes empty. An independent nonzero-sum game
is played at each node of the network, where one player
(router) decides which outgoing link to use and the other
player (network) decides whether the packet should be
placed in the high or the low-priority queue. The authors
show by simulation that the resulting routing algorithm
decreases the overall number of packets that are dropped
by time-out.

BOHACEK ET AL.: GAME THEORETIC STOCHASTIC ROUTING FOR FAULT TOLERANCE AND SECURITY IN COMPUTER NETWORKS 3

1. One reason that a connection is restricted to a single path is that many
of today’s implementations of TCP do not work well under persistent
packet reordering. However, as is discussed in Section 4, advancements in
TCP have relieved this limitation.

In [17], a group of nodes in a sensor network wants to
construct a routing tree rooted at a destination node. This
problem is formulated as a nonzero-sum game in which
every node is viewed as a player that independently
decides its next hop to maximize an estimate of end-to-
end path reliability from which it subtracts a next-hop
communication cost. For each candidate next-hop node, the
path-reliability estimate depends on the reliability of the
next-hop node and the probability that the link between the
two nodes will fail. It turns out that computing the NE for
this game is NP-hard.

Orda et al. [18] study the uniqueness of NE for the
“selfish routing” problem, where a number of players share
a network. Each player generates data at a fixed rate and
needs to decide how to split its transmission among a set of
alternative end-to-end paths. The players are selfish in the
sense that each one attempts to minimize its own objective
function, which depends on the overall distribution of flows
through the shared network. Under a similar problem
setup, [19] and [20] investigate how far the noncooperative
NE is from the cooperative social optimum. Under
appropriate simplifying assumptions on the network
structure and the cost functions, these papers establish the
worst-case bounds for the ratio between the noncooperative
and the cooperative solutions. This line of research was
further extended in [21] to the framework of repeated
games, where the routing game is played repeatedly with a
discounting factor. Although the abovementioned papers
are focused on theoretical studies, Qui et al. [22] present an
extensive simulation study showing that selfish routing can
achieve close to optimal average latency in Internet-like
environments.

The paper by Feigenbaum et al. [23] considers incentive-
based routing in which interdomain lowest cost paths are
computed based on per-packet costs reported by a network of
ASs. The game aspect derives from the fact that the ASs may
not report true costs in an attempt to engineer the flows so as
to maximize their own profits. It is shown that a Vickrey-
Clarke-Groves (VCG) mechanism produces “strategy-proof”
prices to be paid to each AS for forwarding packets in transit.
Strategy-proof essentially means that the ASs have no
incentive for lying about their costs and should therefore
report true values. However, Afergan [24] later showed that
the VCG mechanism is not strategy-proof in the context of
repeated games, which they argue that have more practical
significance. Blanc et al. [25] also consider the issue of
avoiding selfish behavior in routing. They propose a
reputation-based scheme to prevent some nodes from
refusing to carry other node’s traffic (the “free-loader’s”
problem).

3 ROUTING GAMES

Within each deterministic router, there exists a routing table
that associates each possible destination IP address with the
address and physical interface of a next-hop router. The goal
is to, at every hop, get “one step closer” to the destination or,
in case the final destination is in the local subnet, the address
and physical interface of the host.

Stochastic routing utilizes a distinct concept called next-
hop probabilities, which map each possible destination IP

with a probability distribution of the next hop. Packets are
forwarded by selecting the next hop at random but
according to the next-hop probability distribution. From
an end-to-end perspective, this results in data packets
following random paths. The main challenge in stochastic
routing is the determination of next-hop probabilities that
ensure delivery, timeliness, and statistical flooding.

The key technical insight explored here is to formalize
the stochastic routing problem as an abstract game between
two players: the designer of the routing algorithm, which is
represented by routers, and an attacker that attempts to
intercept packets. In practice, minimizing the impact of an
attack is equivalent to minimizing the impact of a worst-
case failure.

We consider zero-sum games in which routers target at
minimizing the time it takes for a packet to be safely
transmitted, whereas the attacker’s goal is to maximize this
time. It is well known from the game theory literature that
the solution to such games requires the use of mixed
(randomized) policies (cf., for example, [26]). In practice, the
mixed solution of the minimax problem provides the
probability distributions needed for the next-hop probabil-
ities. By formalizing the problem as an optimization with a
time cost, we achieve both delivery and timeliness.
Statistical flooding is a consequence of the saddle solution.

There are several alternatives to formalize a game that
results in adequate routing policies. In this paper, we
consider two alternatives: offline routing games and online
games.

In offline games, the attacker starts by selecting one link
or one physical interface at a particular node that she will
scan for packets. This choice is made before routing starts,
but is not conveyed to the router, whose task is to design the
next-hop probabilities to minimize the overall probability
that the packet will be intercepted, assuming that the
attacker made an intelligent choice. This setup can be
generalized to attacks at nodes and even mixed attacks at
both nodes and links. We shall see that the computation of
routing policies for online games amounts to solving a
linear program, requiring information about the overall
network topology as in link-state routing.

In online games, the attacker is not forced to select a
single link/node before routing starts. Instead, the attacker
is allowed to scan one physical interface at every node.
However, she will not be able to catch all packets that travel
through the interface selected, only a fraction of these. For
highly secure nodes, this fraction would be zero, whereas it
would have high values for less-secure nodes. The
computation of the routing policies that arise from this
game can be done using dynamic programming, amenable
to distributed computation as in distance-vector routing.

It is important to emphasize that the abstract games
described above are not intended to represent realistic attack
scenarios; they mostly intend to capture the facts that
1) simultaneous failures in multiple links/nodes are
unlikely and, therefore, one should optimize routing for
robustness against a finite number of worst-case faults and
that 2) an attacker will (hopefully!) have a finite set of
resources available. Moreover, we will show that the attack
models described above provide computational tools to

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

obtain stochastic routing polices with adequate properties.
Similarly, although the number of hops is generally a poor
measure of routing-path quality, minimum-hop optimiza-
tion is a useful tool to compute deterministic routing tables
because it generally provides adequate routing trees.

As with deterministic routing, topology changes require
the recomputation of the next-hop probabilities, regardless
of the type of game considered. Failure to do so will
generally result in lost packets. However, with stochastic
routing, some degree of functionality is preserved even
before the next-hop probabilities are updated. This is
because some of the packets will still make it through as
long as at least one of the paths from source to destination
remains viable.

3.1 Stochastic Routing Policies

We consider a data transmission network with nodes N :¼
f1; 2; . . . ; ng connected by unidirectional links. We denote
by L the set of all links and use the notation ~ji to represent a
link from node j to node i. We assume that all of the nodes
in the network are connected in the sense that it is possible
to reach any node from any other node through a finite
sequence of links. The source and destination nodes are
denoted by nsrc and nend, respectively.

In a stochastic routing framework, each stochastic routing
policy is characterized by a list of probabilities R :¼ fr‘ : ‘ 2
Lg such that X

‘2L½k�
r‘ ¼ 1; 8k 2 N ; ð1Þ

where the summation is taken over the set of links L½k� � L
that exit from nodek. Under this policy, when a packet arrives

at a node k 2 N , it will be routed with probability r‘ through

the link ‘ :¼k k0
�!
2 L to the next-hop node k0. The distribution

fr‘ : ‘ 2 L½k�g determines the entries of the next-hop prob-

abilities at node k, associated with the path from node nsrc to

node nend. In this case, the routing table will actually be a

matrix, as the next hop may depend not only on the final

destination node nend but also on the source node nsrc.
In the sequel, we denote byRsto the set of lists that satisfy

(1) and, therefore, Rsto represents the set of all stochastic
routing policies. In general, stochastic routing policies can
exhibit cycles. Since cycles introduce delivery delays and
can only increase the probability of packet interception, we
restrict our attention to cycle-free routing policies, that is,
policies for which a packet will never pass through the
same node twice. Formally, R 2 Rsto is cycle free when
there is no sequence of links

S :¼ fk1k2

�!
; k2k3

�!
; . . . ; kk�1kk

�!
; kkk1

�!
g � L ð2Þ

with positive probabilities r‘ > 0 for all ‘ 2 S starting and
ending at the same node k1. We denote by Rno�cycle the
subset of Rsto consisting of cycle-free policies. Fig. 1 shows
an example network and a cycle-free stochastic routing
policy.

3.2 Online Games

In online games, the attacker has the capability of scanning
a certain percentage of the packets that go through every

node. She then has to decide on which physical interfaces
she should concentrate her efforts. For each node k 2 N , we
denote by pk the total percentage of packets that the attacker
can scan on node k.

In the context of online games, a stochastic attack policy is

a list of probabilities A :¼ fa‘ : ‘ 2 Lg 2 Rsto that specifies

which percentage of the packets will be scanned on each

output interface of each node. The probability of a packet

being scanned in the node k interface connected to the link

‘ :¼k k
�!
0 2 L is therefore given by pk a‘. Since A 2 Rsto, all

probabilities a‘ that exit node k must add up to one and,

therefore, the total percentage of packets scanned in node k

is indeed pk. The selection of links by the router is done

according to a stochastic routing policy R :¼ fr‘ : ‘ 2 Lg 2
Rsto as described before.

For each link ‘ 2 L, we denote by �‘ > 0 the time it takes
for a packet to traverse it assuming that it was not
intercepted. When there is interception, we assume that
this time increases by T‘. Denoting by T� the amount of
time that takes a packet to get from the source node nsrc to
the destination node nend, the router selects a stochastic
routing policy R 2 Rsto so as to minimize the expected
value of T�, whereas the attacker selects a stochastic attack
policy A 2 Rsto to maximize it. The problem just formulated
is a zero-sum game for which we will attempt to find an
optimal saddle pair of policies R� 2 Rsto, A� 2 Rsto for
which

ER�;A� ½T�� ¼ min
R2Rsto

max
A2Rsto

ER;A½T��

¼ max
A2Rsto

min
R2Rsto

ER;A½T��:
ð3Þ

In the above equation, the subscripts on the expected value
E emphasize the fact that the expectation depends on the
routing/attack policies. The choice of a routing policy R�

for which (3) holds guarantees the best possible timeliness

BOHACEK ET AL.: GAME THEORETIC STOCHASTIC ROUTING FOR FAULT TOLERANCE AND SECURITY IN COMPUTER NETWORKS 5

Fig. 1. (a) Example of a network with four nodes N :¼ f1; 2; 3; 4g and
10 links L :¼ f‘1; ‘2; . . . ; ‘10g. In this network, all connections between
the nodes are assumed bidirectional, which corresponds to two
unidirectional links between every two nodes that are connected. (b)
Stochastic routing policy from the source node nsrc ¼ 1 to the destination
node nend ¼ 4. Under this policy, at each node, the packets are routed
with equal probability among the possible options. This policy is cycle

(smallest T�), assuming an intelligent attacker that does her best

to prevent this. This is achieved by statistical flooding as not

fully exploring the available paths would be used by the

attacker to her advantage.
The computation of the optimal routing and attack

policies can be done using dynamic programming. To this
effect, for each node k 2 N , we denote by V �k the optimal cost

to go from node k, which is the average time it takes to send a
packet from node k to node nend using optimal policies for
each player. Once the optimal cost to go has been computed
for all nodes, the optimal routing policy can be computed as
follows: For each node k, the next-hop routing distribution
fr�‘ : ‘ 2 L½k�g over the set of links L½k� that exit node k is the
solution to the following minimization:

arg min
r‘ :‘2L½k�P

‘
r‘¼1

max
a‘ :‘2L½k�P

‘
a‘¼1

X
~ki; ~kj2L½k�

r~kia ~kjm
�
ijk;

m�ijk :¼
V �i þ �~ki i 6¼ j; k 6¼ nend

V �i þ �~ki þ pkT~ki i ¼ j; k 6¼ nend

0 k ¼ nend:

8><
>:

ð4Þ

The optimal cost-to-go, V �k , can be computed with the help

of the following function T that transforms a vector of cost-

to-go V :¼ ½V1 V2 � � � VN � into another vector of cost-to-go

V 0 :¼ ½V 01 V 02 � � � V 0N � ¼ T ð½V1 V2 � � � VN �Þ, where the kth ele-

ment of V 0 is given by

V 0k ¼ min
r‘ :‘2L½k�P

‘
r‘¼1

max
a‘ :‘2L½k�P

‘
a‘¼1

X
~ki; ~kj2L½k�

r~kia ~kjmijk

mijk :¼
Vi þ �~ki i 6¼ j; k 6¼ nend

Vi þ �~ki þ pkT~ki i ¼ j; k 6¼ nend

0 k ¼ nend:

8><
>:

ð5Þ

We defer to Section 3.2.2 how these optimizations can be
performed and proceed to state several important proper-
ties of the policies just defined (refer to the Appendix for
their proofs).

Theorem 1. Assume that all of the �‘ > 0, ‘ 2 L. Then:

1. The vector V � :¼ ½V �1 V �2 � � � V �N � of optimal cost-to-go
is the unique fixed point of the function T defined by (5).

2. For any (not necessarily optimal) vector of cost-to-go
V ð0Þ, the optimal cost-to-go can be obtained using

V � ¼ lim
i!1

T ðT ð� � � ðT|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
i times

ðV ð0ÞÞÞ � � �Þ:

3. The stochastic routing policy R� 2 Rsto defined by (4)
and the stochastic attacker policy A� 2 Rsto defined by
a similar expression with the min and max inter-
changed form a saddle point pair for the game, that is,
(3) holds.

3.2.1 Heterogeneous Attacks

By choosing distinct percentages pk for different nodes, we

can take into account the fact that some nodes may be more

secure than others. In practice, by choosing high values for

pk, we are implicitly assuming that the node k is less secure.

One can also encode in the pk external information about
where an attack is more likely to occur and/or succeed. This
information could be obtained, for example, from intrusion
detection sensors that provide indications of where an
attack may be occurring. In this case, the routing algorithm
could actually adapt to the changing perception as the
intrusion detection sensors gain more confidence about
which hosts have been compromised.

The percentages pk can also be viewed as design
parameters that allow a traffic engineer to shape the
amount of data sent that goes through different sections
of the network. For example, by increasing the values of the
pk, one can obtain routing policies that avoid links that are
especially costly or that are somehow undesirable. To some
extent, the percentages pk can play the role of link costs in
the shortest path routing.

3.2.2 Computational Issues

As mentioned above, the optimal routing policies can be
obtained from (4) as soon as the vector of optimal cost-to-go
V � :¼ ½V �1 V �2 � � � V �N � is available. According to Statement 2
of Theorem 1, one can obtain V � using an iteration of the
form

V ðtþ 1Þ ¼ T
�
V ðtÞ

�
; ð6Þ

where T is defined by (5) and the initial vector V ð0Þ can be
anything (for example, equal to zeros for every node). In
general, V � is only obtained as t!1, but one can usually
stop the iteration after a finite number of steps at the
expense of getting a slightly suboptimal policy. Typically,
the iteration is stopped when there is a small change in V ðtÞ.
The number of steps needed is usually on the order of the
maximum diameter of the graph.

To compute each iteration of (6), we need to solve the
minimax optimization that appears in the definition (5) of
the operator T . This can be done using the following linear
program:

1

V 0k
¼ max

X
~ki2L½k�

~r~ki

subject to ~r~ki � 0;
X
~ki2L½k�

~r~kimijk � 1; 8 ~kj 2 L½k�;
ð7Þ

from which one obtains V 0k , which is the kth element of T ðV Þ
[26, Section 2.3]. The constants mijk that appear in (7) are
defined in (5). Once the optimal cost-to-go V � has been
obtained, the optimal next-hop routing distribution fr�‘ : ‘ 2
L½k�g over the set of links that exit node k can be obtained
from

r�~ki ¼
~r~kiP

~kj2L½k� ~r ~kj
;

where the ~r~ki are the solutions to a linear program like (7),
but with the mijk replaced by the m�ijk that appear in (4).

The computation of V 0k in (7) only requires knowledge of
the entries Vi corresponding to the neighbors i of k. In
practice, this means that the computation of the kth element
of the vector of cost-to-go V ðtþ 1Þ can be performed at the
node k, provided that this node knows the elements of the
vector V ðtÞ that correspond to their neighbors. Hence, the

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

computation of the optimal cost-to-go V � can be distributed
in the same way that RIP is. In RIP or similar distance-
vector routing computations, at each stage, the router
performs an operation with complexity OðdÞ, where d is
the out-degree of the router. In the case of online games, the
router must solve a linear programming problem with
worst-case complexity Oðd3Þ, but for which there are
methods that typically require much more modest complex-
ity. Fig. 2 shows an example of routing policies obtained for
online games.

3.3 Offline Games

In offline games, the attacker is only allowed to select a
single link for scanning and this choice must be done ahead
of time. As in online games, we assume that the attacker
may not possess sufficient resources to scan every packet in
the link selected. To this effect, we take as given percentages
of the packets p‘, ‘ 2 L, that the attacker would be able to
scan if she were to select link ‘. By choosing different
percentages for different links, we can take into account the
fact that some links may be more secure or more desirable
than others (cf., discussion in Section 3.2.1). Shortly, this
formulation will be extended to node attacks as opposed to
link attacks.

Assuming that there is more than one independent path
from source to destination, the optimal action for the
attacker is to select links according to some distribution. In
the context of offline games, a stochastic attack policy A ¼
fa‘ :

P
‘ a‘ ¼ 1; ‘ 2 Lg consists of a distribution over the set

of links L, where a‘ denotes the probability that the attacker

will scan link ‘. We denote by A the set of all stochastic
attack policies, that is, the set of distributions over L.

In offline games, the router selects a cycle-free stochastic
routing policy R 2 Rno�cycle so as to minimize the prob-
ability of a packet being intercepted, whereas the attacker
selects a stochastic attack policy A 2 A so as to maximize it.
Denoting by ��, a random variable that takes the value one
when a packet is intercepted and zero, otherwise, the
problem just formulated is a zero-sum game for which we
will attempt to find an optimal saddle pair of policies
R� 2 Rno�cycle, A

� 2 A for which

ER�;A� ½��� ¼ min
R2Rno�cycle

max
A2A

ER;A½���

¼max
A2A

min
R2Rno�cycle

ER;A½���:
ð8Þ

Note that the expected value of �� is precisely the probability
of a packet being intercepted. We will see shortly how this
quantity can be computed from the values of the policies A
and R.

The cost in (8) places no penalization on the number of
links that a packet will cross from the source to the
destination. However, in some cases, one may want to favor
shorter paths. This can be done by introducing a new
random variable ���, � � 0, that is equal to zero in case the
packet is not intercepted and equal to ð1þ �Þt�1 when the
packet is intercepted at the t hop. Suppose now that we
consider the zero-sum game

ER�;A� ½���� ¼ min
R2Rno�cycle

max
A2A

ER;A½����

¼max
A2A

min
R2Rno�cycle

ER;A½����:
ð9Þ

For � ¼ 0, ��� ¼ ��, and the cost is the same as in (8).
However, for � > 0, (9) penalizes longer paths since the cost
incurred increases as the number of hops increases. In fact,
as �!1, the potential burden of an extra hop is so large
that the optimal solution will only consider paths for which
the number of hops is minimal, leading to shortest path
routing, but not necessarily single path. In the remainder of
this section, we consider the game in (9), as (8) is a special
case of the former for � ¼ 0.

To compute ER;A½����, we need to construct the matrix C
that encodes the network connectivity. We define C to be a
square matrix with one column/row per link, with the ð‘1; ‘2Þ
entry equal to one if the link ‘2 ¼ ~ij ends at the node j, where
link ‘1 ¼ ~jk starts, and zero otherwise. We also define a
column vector swith one entry per link, which is equal to one
if the corresponding link exits the source node nsrc and zero
otherwise. In particular

C :¼ c‘;‘0 :¼ 1 9i; j; k 2 N : ‘0 ¼ ~ij; ‘ ¼ ~jk

0 otherwise

(" #
‘;‘02L

;

s :¼ s‘ :¼ 1 9k 2 N : ‘ ¼ nsrck
�!

0 otherwise:

(" #
‘2L

:

In the construction ofC and s, we should exclude all links that
enter the source node nsrc and exit the end node nend as these
links will never be used in cycle-free routing policies. The
order in which the links are associated with the rows/
columns of C and s must be consistent. The following result,

BOHACEK ET AL.: GAME THEORETIC STOCHASTIC ROUTING FOR FAULT TOLERANCE AND SECURITY IN COMPUTER NETWORKS 7

Fig. 2. Examples of routing policies obtained for an online game. When
the probability of traversing a link is not zero or one, the probability is
labeled near to the source end of the link. Dashed links are not used by
the policies. The destination is the bottom node, labeled 9, and the total
percentage of packets pk scanned at each node k was set to 10 percent.
(a) shows the routing policy obtained when T‘ 	 0, 8‘ 2 L, that is, when
interception poses no penalty. In this case, one obtains exactly ECMP
routing [12] with hop count as the metric. In (c), we see the case
T‘ ¼ 100, 8‘ 2 L. In this case, there is a heavy penalty incurred when a
packet is intercepted and, therefore, routing favors maximal flooding,
utilizing all possible paths. (b) shows the intermediate case (T‘ ¼ 45,
8‘ 2 L). Note that the link from node 7 to node 10 is not utilized, whereas
the link from node 7 to node 3 is. The reason for this is that, although
node 3 is no closer to the destination than node 10, there are many
alternate paths from node 3 to the destination, whereas there is only one
path from node 10 to the destination. Therefore, from the defender’s
perspective, node 3 is more appealing than node 10 because the
presence of alternate paths makes the attacker’s task more difficult. The
path {7, 6, 9} is similar to the path {7, 10, 2, 9} in that, once node 6 or
node 10 is selected, the rest of the path is deterministic and an online
attacker could easily catch the packets. However, the path {7, 6, 9} is
shorter. Hence, under no circumstances would the path {7, 10, 2, 9} be
selected. These results should be compared to the offline example in
Section 3.3.

proved in the Appendix, allows one to explicitly compute the
value of ER;A½����.
Lemma 2. Given � � 0, R 2 Rno�cycle, A :¼ fa‘ :

P
‘ a‘ ¼

1; ‘ 2 Lg 2 A

ER;A½���� ¼ row½A�x; ð10Þ

where row½A� denotes a row vector with one entry per link and
p‘a‘ in the entry corresponding to the link ‘ 2 L; x is the
unique solution to

x ¼ ð1þ �Þ diag½R�Cxþ diag½R�s ð11Þ

and diag½R� is a square diagonal matrix with the r‘ in the
main diagonal. tu

The main difficulty in solving the routing game (9) is that
the cost (10) is generally not convex on R 2 Rno�cycle.
However, the relation specified by (11) between the vectors
x and policies R is in some sense one-to-one and will allow
us to “convexify” the cost (10) by searching for “optimal”
vectors x instead of policies R. To this effect, let Cout and Cin

be matrices with one row per node and one column per link
such that the entry of Cout corresponding to the node k and
link ‘ is equal to one if link ‘ exits node k and zero
otherwise, and the entry of Cin corresponding to the node k
and link ‘ is equal to one if link ‘ enters node k, and this is
not the destination node nend and equal to zero otherwise,
that is, Cout :¼ ½ck;‘� and Cin :¼ ½dk;‘� with

ck;‘ :¼ 1 9i 2 N : ‘ ¼ ~ki

0 otherwise;

(

dk;‘ :¼ 1 9i 2 N : ‘ ¼ ~ik; k 6¼ nend

0 otherwise:

(

We further define ssrc to be a column vector with one entry
per node such that the entry corresponding to the source
node nsrc is equal to one and all others are equal to zero, that
is

ssrc :¼ sk :¼ 1 k ¼ nsrc

0 otherwise

�� �
k2N

:

In the construction of these matrices, we should exclude
all links that enter the source node nsrc and exit the end
node nend.

The following lemma establishes a one-to-one relation
between the set of cycle-free stochastic policies (which is not
convex in general) and a convex set. This will be the basis to
find a solution to the routing game (9).

Lemma 3. Let X denote the convex set of vectors x :¼ fx‘ � 0 :
‘ 2 Lg that satisfy

Coutx ¼ ð1þ �ÞCinxþ ssrc: ð12Þ

1. Given any R 2 Rno�cycle, there exists an x 2 X for
which

x ¼ ð1þ �Þ diag½R�Cxþ diag½R�s ð13Þ

and the norms of the vectors x 2 X can be bounded by
a constant that is independent of R 2 Rno�cycle.

2. Given any x :¼ fx‘ � 0 : ‘ 2 Lg 2 X that is cycle-
free in the sense that there is no sequence of links (2)
with x‘ > 0, 8‘ 2 S, there exists an R :¼ fr‘ :2 Lg 2
Rno�cycle for which (13) holds, which is given by

r‘ :¼ x‘P
‘02L½‘� x‘0

; 8‘ 2 L; ð14Þ

where the summation is over the set L½‘� of links that

exit from the same node as ‘.

Equation (12) can be interpreted as the flow-conservation

law, which states that the incoming flow to a node is equal

to the outgoing flow from the same node, possibly

amplified by ð1þ �Þ when � > 0. Because of this, we call

the elements of X flow vectors.
We are now ready to state the main result of this section

(proved in the Appendix), which provides the solution to

offline routing games. We defer to Section 3.3.2 details on

the computation of the optimal polices.

Theorem 4. For every � � 0, the routing game (9) has saddle-

point policies. Moreover, the flow game defined by

row½A��x� ¼ min
x2X

max
A2A
ðrow½A�xÞ

¼ max
A2A

min
x2X
ðrow½A�xÞ

ð15Þ

always has a saddle point ðx�; A�Þ 2 X
 A with x� cycle-free

from which we can construct a saddle point ðR�; A�Þ 2
Rno�cycle
A to the original routing game (9) by using (14) to

compute R� from x�.

3.3.1 Node-Attack Variations

Although, so far, we focused our discussion on link attacks,

one can easily solve the node attack problem by a suitable

transformation of the network graph. When one wants to

consider the possibility that one node can be attacked, one

simply expands the graph by unfolding the original node

into two nodes, one that is fed by all the incoming links and

another from which all outgoing links exit. The two new

nodes are connected by a single link from the former to the

latter that will carry all packets that pass through the

original node (cf., Fig. 3). An attack on the thus created

“bottleneck” link in the new graph is equivalent to an attack

to the node in the original graph. By choosing a suitable

percentage of packets scanned p‘ in the new link, we

effectively select the percentage of packets that can be

scanned in the original node. The percentage of packets that

can be scanned in the old links should be set to zero (unless

one wants to consider mixed link-node attacks) and,

therefore, the total number of links that are relevant for

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

Fig. 3. Converting a node attack to a link attack. An attack on (a) node 1

is transformed into an attack on (b) link 1.

optimization actually decreases, making the problem
computationally simpler.

3.3.2 Computational Issues and Max-Flow/Load-

Balancing Problems

Theorem 4 allows us to use the formula (14) to compute the
optimal routing policy R� from the saddle point ðx�; A�Þ to
the flow game (15), where x� is any vector in X that
achieves the following minimum:

min
x2X

max
A2A
ðrow½A�xÞ ð16Þ

[26, Theorem 2.4]. It turns out that the computation of x� in
(16) can be reduced to a linear-program optimization: Since
the cost is linear on A for fixed x, the inner maximization in
(16) is always achieved at a distribution of the form

A‘ ¼
�

0; 0; � � � ; 0; 1; 0; � � � ; 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
single 1 at the ‘th entry

	

for some ‘ 2 L. For such A‘, we have that row½A‘�x ¼ p‘x‘
and, therefore, (16) is equal to

min
x2X

max
‘2L
ðp‘ x‘Þ ¼ min

x2X
min

p‘ x‘��; 8‘
� ¼ min

0�p‘ x‘��; 8‘
Coutx¼ð1þ�ÞCinxþssrc

�: ð17Þ

In the first equality in (17), we used the fact that

maxf�1; �2; . . . ; �kg ¼ min�i��;8i �. Although (17) is already

in the form of a linear program, it is instructive to

reformulate it as a maximization by making the change of

variables �� :¼ ��1 and �x :¼ ��1x, which leads to

1

V �
¼ max

0�p‘ �x‘�1; 8‘
Cout �x¼ð1þ�ÞCin �xþ��ssrc

��: ð18Þ

One can recognize in this linear program a max-flow
optimization showing that the value of the game is equal to
the inverse of the maximum flow �� from source to
destination, consistent with the flow conservation law
Cout �x ¼ ð1þ �ÞCin �xþ ��ssrc and subject to the link-band-
width constraints:

�x‘ �
1

p‘
; 8‘ 2 L: ð19Þ

Note also that, since �x is simply a scaled version of x, the
optimal routing policy can be computed directly from �x
using (14). This means that the routing policies that arise
from the routing game (9) also maximize throughput subject to
the constraint (19). For � ¼ 0, this turns out to be a standard
max-flow problem, whereas, for � > 0, we obtain a general-
ized maximum flow with gain [27]. When this algorithm is
applied to the transformed graph that encodes node attacks,
the maximum node-flow is minimized. This means that the
policies arising from the routing game (9) also achieve load
balancing. If the links and nodes have heterogeneous p‘, then
a weighted load balancing is achieved. Fig. 4 shows an
example of routing policies obtained for offline games.

The routing computations in (18) require that each node
have knowledge of the entire topology, that is, this is a link-
state algorithm. However, it seems likely that a distributed
approach is feasible. In particular, in the case that � ¼ 0,
there are several algorithms that solve the max-flow
problem in a distributed fashion [28], [29]. The time

complexity of these algorithms can be as low as Oðn2Þ,
where n is the number of nodes. Furthermore, a hierarchical
version of GTSR would likely yield significant computa-
tional saving.

3.3.3 Routing Tables versus Routing Matrices

For online games without the back-to-start variation, the
function T used to compute the optimal cost-to-go and,
eventually, the optimal stochastic routing policies only
depend on the destination node nend and not on the source
node nsrc. In practice, this means that the optimal routing
policies only depend on the final destination, as in the usual
deterministic routing algorithms such as RIP, OSPF, and so
forth. However, for offline games, the matrices Cin and Cout

used to compute the optimal routing policies depend both on
the source and destination nodes (recall that we need to
remove from these matrices the contribution of the nodes
entering nsrc and exiting nend). In practice, this means that the
routing tables will actually be matrices as the choice of the
probability distributions for the next hop depends not only on
the final destination nodenend, butalso on the source nodensrc.
A hierarchical approach would result in next-hop probabil-
ities only depending on the source and destination prefix.

Another implementation approach is to use source
routing, whereby the end hosts define the path to be taken
by each packet and are then responsible for the randomiza-
tion of paths. The Dynamic Source Routing (DSR) protocol
is an example of a source routing mechanism which has
been proposed for use in multihop wireless ad hoc
networks (or MANETs) [30]. The use of source routing to
enhance security has been previously suggested in [31].

4 SIMULATION RESULTS

To evaluate the algorithm proposed in Section 3 applied to
network layer routing, we simulated the network in Figs. 2

BOHACEK ET AL.: GAME THEORETIC STOCHASTIC ROUTING FOR FAULT TOLERANCE AND SECURITY IN COMPUTER NETWORKS 9

Fig. 4. Examples of routing policies obtained for an offline game. When
the probability of traversing a link is not zero or one, the probability is
labeled near to the source end of the link. Dashed links are not used by
the policies. The source is the top node, labeled 7, and the destination is
the bottom node, labeled 9. The percentage p‘ of packets that the
attacker could scan at each link was assumed to be the same for every
link ‘, which is consistent with a network where all links are equally
secure. (c) shows the routing policy obtained when one selects � ¼ 0
and, therefore, delay is not penalized, leading to the maximal spreading
of packets. In (a), we see that, when each extra hop corresponds to a
severe cost penalty ð� ¼ 100Þ, one obtains minimum-hop routing.
(b) shows an intermediate case ð� ¼ 0:1Þ. In contrast to that in Fig. 2,
now, the link from node 7 to node 10 is, in general, utilized because it is
part of one of the three independent paths from source to destination.
However, in online games, if a packet was sent through node 10, it was
going to be caught with high probability since it necessarily had to be
sent toward node 2, so this option was not considered.

and 4 using the ns-2 network simulator [32]. In all
simulations presented, all links have a propagation delay
of 20 ms and a bandwidth of 10 megabits per second
(Mbps). Each queue implements drop-tail queuing disci-
pline with maximum queue size set to 200 packets for the
case of the constant bit rate (CBR) simulations and
100 packets for the Transmission Control Protocol (TCP)
simulations. All packets are 1,000 bytes long. The simula-
tion time for each trial was 100 seconds. Two types of
experiments were performed. In the first type, only CBR
traffic was used. In the second type, TCP-SACK traffic was
used. In both types of experiments, the security parameter �
is fixed during a trial, but varies from trial to trial.

We were interested in determining the effect of stochastic
routing on reliability, throughput, and packet transmission
delay. To evaluate how secure a particular routing policy is,
we determine the maximum fraction of packets that an
attacker could see by eavesdropping on one, two, or three
links. We assumed here that the attacker chooses the set of
links that maximizes the fraction of packets seen (that is, the
“worst”-case scenario). This is equivalent to determining
how reliable the routing policy is by examining the worst-
case fraction of packets lost when one, two, or three links
fail. Fig. 5 shows the simulation results obtained for offline
games with several values of the parameter � and for online
games with several values of the delay T‘ (the same for
every link). CBR traffic was used in all of these simulations.
As expected, routing is most secure for offline games with
� ¼ 0 since, in this case, all paths are equally good and the
packets will be spread the most across all paths. As �
increases, more packets are routed through the shorter
paths and, therefore, an attacker eavesdropping on those
will see a larger percentage of packets. In fact, for � ¼ 100,

we essentially have minimum-hop routing and, by attack-
ing a single link, it is possible to see every packet. Because,
in the network tested, there are only three independent
paths, when the attacker is allowed to eavesdrop on three
links, she will be able to see every packet, regardless of
which type of routing is used. Online games generally do
not result in maximum flow and, in this particular topology,
explore at most two of the three independent paths. As
mentioned before, this can be explained by the fact that
node 10 is heavily penalized by online games for having a
single output interface.

For offline games with � ¼ 0, we achieve maximum
throughput (from a sender’s perspective) since we make
use of all available paths (including the minimum cost one).
This is supported by the data in Fig. 6, where we plot the
drop rate as a function of the source’s sending rate. For
� ¼ 100, drops start occurring at sending rates around
10 Mbps, whereas, for � ¼ 0, drops only become significant
for sending rates higher than 30 Mbps. The price to pay for
security comes in terms of the average latency per packet.
This is because, to achieve high security, one needs to
explore all the paths from source to destination, including
those with high latency. Fig. 7 confirms that the delay does
increase as the value of � decreases.

Problems may arise when multipath routing is used in
conjunction with standard TCP (Reno, New Reno, or
SACK). Fig. 8a shows the average throughput of a long-
lived TCP-SACK (circles) and a modified version of TCP
called TCP-PR (hash marks), both operating under GTSR.
For TCP-SACK, the throughput for � ¼ 100 (essentially
minimum-hop routing) is roughly six times larger than that

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

Fig. 5. Worst-case fraction of packets from CBR traffic seen by an

attacker eavesdropping on one, two, or three links, using (a) offline and

(b) online games.

Fig. 6. Drop rate versus sending rate.

Fig. 7. Average packet transmission delay (CBR traffic). The triangle

over the vertical axis corresponds to � ¼ 0 (which could not be

represented in log scale).

for any other value of �. This is because packets sent
through longer paths are often assumed dropped by TCP as
they only arrived after several packets that were sent later,
but traveled through shorter paths. Because fast retransmit
is only triggered when three duplicate acknowledgments
are received, TCP-SACK is able to handle some degree of
out-of-order packets. However, in all of our simulations,
this proved insufficient to handle packets traveling through
paths with distinct propagation times. The fact that
standard TCP performs poorly when used in conjunction
with multipath routing has been observed in [13], [33].

TCP-PR was proposed in [34] and is one of several
transport layers capable of coping with out-of-order packet
delivery [35]. TCP-PR does not assume a packet is dropped
when out-of-order sequence numbers are observed but only
when a time-out occurs. Fig. 8a shows that, for � ¼ 0, the
throughput of TCP-PR is larger than all other configura-
tions. That is, the maximum-security posture actually
increases throughput as a by-product because it explores
all alternative paths and, hence, uses all available band-
width between the source and destination. Fig. 8b shows
the drop rate for the different TCP implementations and
different �.

A complete discussion of TCP-PR is beyond the scope of
this paper. However, it was shown in [34] that TCP-PR and
TCP-SACK compete fairly over a network that does not
implement multipath routing. Hence, it is possible to
maintain a single transport layer that is compatible with
today’s network and is also suitable for networks that
implement stochastic routing. One implication of this is that
multipath routing could be incrementally deployed. For

example, packets could be marked as being willing to be

routed stochastically. Then, flows that use TCP-PR and

multipath routing would compete fairly with flows that

request single path routing and use traditional implementa-

tions of TCP.

5 CONCLUSIONS

We proposed GTSR and demonstrated through simulations

that it improves routing security. By proactively forcing

packets to probabilistically take alternate paths, stochastic

routing mitigates the effects of interception, eavesdropping,

and improves fault tolerance. The routing policies proposed

proved efficient in achieving statistical flooding at the

expense of some increase in average packet delay. A

beneficial side effect of these policies is an increase in

throughput, as they explore multiple paths. The algorithms

developed are applicable not only to the network layer, but

also to application layer overlay networks and multipath

transport protocols such as SCTP. However, when used at

the network layer, a transport layer that is robust to out-of-

order packets such as TCP-PR [34] must be employed.
We presented two alternative techniques to generate

multipath routing tables. Routing based on offline games

maximizes the spread of packets across the network, but

requires link-state information and generally results in

routing matrices. Alternatively, routing based on online

games does not achieve the same degree of statistical

flooding, but the routing computation can be distributed as

in distance-vector algorithms.
A direction for future investigation is the development of

scalable algorithms to compute next-hop probabilities. One

promising approach is to make use of hierarchical decom-

position of routing. Since this type of approach generally

yields suboptimal routing policies, its impact on the GTSR

performance requires further investigation. Preliminary

results on the use of a hierarchical approach to compute

routing tables based on offline games appeared recently in

[36]. Alternatively, online games can be implemented under

distance-vectorrouting andarescalable. For thesealgorithms,

questions related to convergence need to be investigated.

APPENDIX A

DERIVATIONS FOR ONLINE GAMES

Proof of Theorem 1. The routing of a packet can be regarded

as a controlled Markov chain whose state qt 2 N is a

random variable denoting the node where the packet is

before the hop t 2 f0; 1; 2; . . .g. For a given routing policy

R :¼ fr‘ : ‘ 2 Lg 2 Rsto and attack policy A :¼ fa‘ : ‘ 2
Lg 2 Rsto, the transition probability function for the

Markov chain is given by P ðqtþ1 ¼ k0 j qt ¼ kÞ ¼ rk~k0 ,
8t � 0. Without loss of generality, we assume that the final

node nend is an absorbing state, that is, that P ðqtþ1 ¼ nend j
qt ¼ nendÞ ¼ 1, 8t � 0. The cost to be optimized can be

written as ER;A½T�� ¼ ER;A

hP1
t¼0 cðqtÞ

i
, where

BOHACEK ET AL.: GAME THEORETIC STOCHASTIC ROUTING FOR FAULT TOLERANCE AND SECURITY IN COMPUTER NETWORKS 11

Fig. 8. (a) Transmission rate and (b) drop rate of TCP-SACK and TCP-

PR for different security levels �. For � < 10, the TCP-SACK flow

experienced no drops. The point � ¼ 0 is indicated with a triangle on top

of the y-axis.

cðkÞ ¼
X

~ki; ~kj2L½k�

r~kia ~kjmijk;

mijk :¼
�~ki i 6¼ j; k 6¼ nend

�~ki þ pkT~ki i ¼ j; k 6¼ nend

0 k ¼ nend:

8><
>:

The two-person zero-sum game just defined falls in the
class of stochastic shortest path games considered in [37].
In particular, it satisfies the SSP assumptions in [37]:
[SSP1] There exists at least one proper policy for the
minimizer, that is, a policy that will lead to a finite cost
regardless of the policy chosen by the maximizer. This is
true because we assume that there exists a sequence of
links that connects node nsrc to node nend. [SSP2] For any
policies for which there is a positive probability that the
packet will not reach the destination node, the corre-
sponding cost is infinite. This is true provided that
�‘ > 0, 8‘ 2 L, because every hop that does not reach the
final node nend will contribute to the final cost with a
positive marginal cost.

Consider now the functionT defined by (5) and another
function ~T defined similarly, except that themax andmin
in (5) appear in the reverse order. These functions satisfy
the four regularity assumptions in [37]: [R1] The sets over
which the controls fa‘ : ‘ 2 L½k�g, fr‘ : ‘ 2 L½k�g take
values are compact for every k 2 N . [R2] The maps from
the controls fa‘ : ‘ 2 L½k�g, fr‘ : ‘ 2 L½k�g to the transition
probabilities rk~k0 and the costs cðkÞare continuous for every
k 2 N . [R3-4] The minimum and maximum in the defini-
tions of the functions T , and ~T are achieved and the two
functions are actually equal [26, Minimax Theorem].
Statements 1 and 3 then follow from [37, Proposition 4.6]
and statement 2 from [37, Proposition 4.7]. tu

APPENDIX B

DERIVATIONS FOR OFFLINE GAMES

Proof of Lemma 2. Denoting by x‘ðtÞ the probability that a
packet is routed through link ‘ 2 L at time t 2 f1; 2; . . .g
and has not yet been intercepted, we have that, for every
‘ 2 L,

x‘ð1Þ ¼
r‘ ‘ 2 L exits from node nsrc;
0 otherwise;

�
ð20Þ

x‘ðtþ 1Þ ¼ r‘
X
‘02L½‘�

ð1� a‘0p‘0 Þx‘0 ðtÞ 8t > 1; ð21Þ

where the summation is taken over the setL½‘� of links that
enter the node from which link ‘ exits. Stacking all the fx‘ :
‘ 2 Lg into a column vector x, we can write (20)-(21) as

xð1Þ ¼ diag½R� s; ð22Þ

xðtþ 1Þ ¼ diag½R�CðI � diag½A�ÞxðtÞ; 8t > 1; ð23Þ

where diag½R� and diag½A�denote diagonal matrices whose
main diagonal contains the r‘ and the a‘p‘, respectively.
From (22)-(23), we conclude that, for every t � 1,

xðtÞ ¼
�
diag½R�CðI � diag½A�Þ

�t�1
diag½R� s: ð24Þ

Since the probability that a packet is intercepted at time t

is given by row½A�xðtÞ, we can write

ER;A½���� ¼
X1
t¼1

ð1þ �Þt�1row½A�xðtÞ:

Moreover, because xðtÞ evolves according to (24), we

have that (10) holds with

x :¼
X1
t¼1

�
ð1þ �Þ diag½R�CðI � diag½A�Þ

�t�1
diag½R�s:

Since R is cycle free, the above series only has a finite

number of nonzero terms (at most one per hop).

Therefore, it must converge and be equal to

X1
t¼1

�
ð1þ �Þ diag½R�CðI � diag½A�Þ

�t�1

¼
�
I � ð1þ �Þ diag½R�CðI � diag½A�Þ

��1

[38]. Thus,

x ¼
�
I � ð1þ �Þ diag½R�CðI � diag½A�Þ

��1
diag½R�s;

which is equivalent to (11). tu
Proof of Lemma 3. The convexity of X is trivial since X is

given by the intersection of the (convex) positive orthant

with the (also convex) affine space corresponding to the

solution of the linear equation (12). To prove Condition 1

of Lemma 3, we show that, for a given R 2 Rno�cycle, we

can define

x :¼
X1
t¼1

�
ð1þ �Þ diag½R�AÞt�1 diag½R�c: ð25Þ

First, note that, since R 2 Rno�cycle, the series converges

because it only has a finite number of nonzero terms and,

therefore,

X1
t¼1

�
ð1þ �Þ diag½R�A

�t�1 ¼
�
I � ð1þ �Þ diag½R�AÞ

��1

[38]. From this and the definition of x, we immediately

conclude that (13) holds. To verify that the vector x

defined by (25) belongs to X , note that every entry of x is

nonnegative because it is the sum of nonnegative

numbers and also that, left multiplying (13) by Cout, we

obtain (12) because of the following two equalities that

are straightforward to verify:

Cin ¼ Cout diag½R�C; ssrc ¼ Cout diag½R�s: ð26Þ

Note also that, because the number of nonzero terms in

the series is always smaller than n and the R are

bounded, one can construct a bound on the vectors x

defined by (25), which is independent of R 2 Rno�cycle.
To prove Condition 2 of Lemma 3, note that the

division in (14) guarantees that the normalization
condition (1) holds and, therefore, that R 2 Rsto. More-
over, this definition guarantees that if x is cycle free, then
R is also cycle free. To finish the proof, it remains to

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

show that (13) holds. To this effect, note that, from the
definition of R, for every ‘ 2 L, we have that

x‘ ¼ r‘
X
‘02L½k�

x‘0 ¼ r‘Cout½k�x;

where L½k� denotes the set of links that exit from node k
from which ‘ exits and Cout½k� denotes the row of Cout

corresponding to node k. However, since x 2 X , we then
have

x‘ ¼ ð1þ �Þr‘Cin½k�xþ r‘�k;nsrc
; ð27Þ

where Cin½k� denotes the rows of Cin corresponding to the
node k and �k;nsrc

is equal to one if k ¼ nsrc and zero
otherwise. This finishes the proof because (13) is a vector
version of (27). tu

Proof of Theorem 4. First, we can conclude from von
Neumann’s Theorem [26] that the flow game (15) always
has a saddle point ðx�; A�Þ 2 X
A because the cost of
the game is bilinear on the policies x and A, which take
values in compact convex sets. Moreover, since remov-
ing cycles from a policy never increases the cost, x� can
be assumed cycle free. The set X is actually not bounded
and therefore not compact. However, in view of
Condition 1 in Lemma 3, we can restrict our attention
to a bounded subset of X .

Then, let ðx�; A�Þ 2 X
 A be the saddle point whose
existence was just proved. We show next that ðR�; A�Þ 2
Rno�cycle
A, withR� is constructed fromx� using (14), is a
saddle point for the routing game (9). To this effect, we
need to show that

ER�;A½���� � ER�;A� ½���� � ER;A� ½���� ð28Þ

for every R 2 Rno�cycle and every A 2 A. Because of (10),
(28) is actually equivalent to

row½A�x� � row½A��x� � row½A��x; ð29Þ

where x is the unique solution to (11). To verify that x
belongs to X note that, left multiplying (11) by Cout, we
obtain (12) because of (26). This means that (29) must hold
because ðx�; A�Þ is a saddle point of the flow game (15). tu

ACKNOWLEDGMENTS

The authors thank the reviewers for several comments that
significantly improved this paper. This material is based
upon work partially supported by the US National Science
Foundation (NSF) under Grant No. ANI-0322476 and by the
Institute for Collaborative Biotechnologies through grant
DAAD19-03-D-0004 from the US Army Research Office.
Professor Obraczka has also been partially supported by the
US Army Research Office under grant W911NF-05-1-0246.

REFERENCES

[1] S. Bengio, G. Brassard, Y. Desmedt, C. Goutier, and J. Quisquater,
“Secure Implementation of Identification Systems,” J. Cryptology,
vol. 4, pp. 175-183, 1991.

[2] D.G. Andersen, H. Balakrishnan, M.F. Kaashoek, and R. Morris,
“Resilient Overlay Networks,” Proc. 18th ACM Symp. Operating
Systems Principles (SOSP ’01), 2001.

[3] L. Ong and J. Yoakum, An Introduction to the Stream Control
Transmission Protocol (SCTP), RFC 3286, 2002.

[4] R. Blazek, H. Kim, B. Rozovskii, and A. Tartakovsky, “A Novel
Approach to Detection of “Denial-of-Service” Attacks via Adap-
tive Sequential and Batch-Sequential Change Point Detection
Methods,” Proc. Systems, Man, and Cybernetics Information Assur-
ance and Security Workshop, June 2000.

[5] W. Xu and J. Rexford, “MIRO: Multi-Path Interdomain Routing,”
Proc. ACM SIGCOMM ’06, Sept. 2006.

[6] S. Bohacek, J.P. Hespanha, K. Obraczka, J. Lee, and C. Lim,
“Enhancing Security via Stochastic Routing,” Proc. 11th IEEE Int’l
Conf. Computer Comm. and Networks, May 2002.

[7] A. Emmett, “VPNs,” Am. Networks, May 1998.
[8] S. Kent, Security Architecture for the Internet Protocol, RFC 2401,

1998.
[9] P.F. Syverson, M.G. Reed, and D.M. Goldschlag, “Onion Routing

Access Configurations,” Proc. DARPA Information Survivability
Conf. and Exposition (DISCEX ’00), vol. I, pp. 34-40, Jan. 2000.

[10] S. Kent, C. Lynn, J. Mikkelson, and K. Seo, “Secure Border
Gateway Protocol (s-BGP)—Real World Performance and Deploy-
ment Issues,” Proc. Network and Distributed System Security Symp.
(NDSS ’00), 2000.

[11] M.K. Reiter and A.D. Rubin, “Crowds: Anonymity for Web
Transactions,” ACM Trans. Information and System Security, vol. 1,
pp. 66-92, 1998.

[12] C. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm, RFC
2992, Nov. 2000.

[13] C. Villamizar, “OSPF Optimized Multipath (OSPF-OMP),” Inter-
net Draft (draft-ietf-ospf-omp-03), Internet Eng. Task Force, June
1999.

[14] E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez, and L. Wynter,
“A Survey on Networking Games in Telecommunications,”
Computers and Operations Research, vol. 33, no. 2, pp. 286-311, 2006.

[15] A. Economides and J.A. Silvester, “Multi-Objective Routing in
Integrated Services Networks: A Game Theory Approach,” Proc.
IEEE INFOCOM, 1991.

[16] K. Yamaoka and Y. Sakai, “A Packet Routing Based on Game
Theory,” Trans. Inst. of Electronics, Information, and Comm. Eng., B-I,
pp. 73-79, 1996.

[17] R. Kannan, S. Sarangi, and S.S. Iyengar, “Sensor-Centric Energy-
Constrained Reliable Query Routing for Wireless Sensor Net-
works,” J. Parallel and Distributed Computing, vol. 64, no. 7, pp. 839-
852, 2004.

[18] A. Orda, R. Rom, and N. Shimkin, “Competitive Routing in
Multiuser Communication Networks,” IEEE/ACM Trans. Network-
ing, vol. 1, no. 5, pp. 510-521, 1993.

[19] E. Koutsoupias and C. Papadimitriou, “Worst-Case Equilibria,”
Proc. 16th Ann. Symp. Theoretical Aspects of Computer Science,
pp. 404-413, 1999.

[20] T. Roughgarden and E. Tardos, “How Bad Is Selfish Routing,”
J. ACM, vol. 49, no. 2, pp. 236-259, 2002.

[21] R. La and V. Anantharam, “Optimal Routing Control: Repeated
Game Approach,” IEEE Trans. Automatic Control, Mar. 2002.

[22] L. Qiu, Y.R. Yang, Y. Zhang, and S. Shenker, “On Selfish Routing
in Internet-Like Environments,” Proc. ACM SIGCOMM ’03,
pp. 151-162, 2003.

[23] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker, “A
BGP-Based Mechanism for Lowest-Cost Routing,” Proc. 21st Ann.
Symp. Principles of Distributed Computing (PODC ’02), pp. 173-182,
2002.

[24] M. Afergan, “Using Repeated Games to Design Incentive-Based
Routing Systems,” Proc. IEEE INFOCOM, 2006.

[25] A. Blanc, Y.-K. Liu, and A. Vahdal, “Designing Incentives for
Peer-to-Peer Routing,” Proc. IEEE INFOCOM, 2005.

[26] T. Başar and G.J. Olsder, Dynamic Noncooperative Game Theory.
Academic Press, 1995.

[27] D.P. Bertsekas, Network Optimization: Continuous and Discrete
Models. Athena Scientific, 1998.

[28] A.V. Goldberg and R.E. Tarjan, “A New Approach to the
Maximum-Flow Problem,” J. ACM, vol. 35, pp. 921-940, 1988.

[29] D.P. Bertsekas, “An Auction Algorithm for the Max-Flow
Problem,” J. Optimization Theory and Applications, vol. 87, pp. 69-
101, 1995.

[30] D.B. Johnson, D.A. Maltz, and J. Broch, “DSR: The Dynamic
Source Routing Protocol for Multi-Hop Wireless Ad Hoc Net-
works,” Ad Hoc Networking, C.E. Perkins, ed., pp. 139-172,
Addison-Wesley, 2001.

BOHACEK ET AL.: GAME THEORETIC STOCHASTIC ROUTING FOR FAULT TOLERANCE AND SECURITY IN COMPUTER NETWORKS 13

[31] R. Perlman, “Network Layer Protocols with Byzantine Robust-
ness,” PhD dissertation, Massachusetts Inst. of Technology, 1988.

[32] “The VINT Project, a Collaboration between UC Berkeley, LBL,
USC/ISI, and Xerox PARC,” The ns Manual (formerly ns Notes and
Documentation), Oct. 2000.

[33] D. Thaler and C. Hopps, Multipath Issues in Unicast and Multicast
Next-Hop Selection, RFC 2991, Nov. 2000.

[34] S. Bohacek, J.P. Hespanha, J. Lee, C. Lim, and K. Obraczka, “TCP-
PR: TCP for Persistent Packet Reordering,” Proc. IEEE 23rd Int’l
Conf. Distributed Computing Systems, pp. 222-231, May 2003.

[35] E. Blanton and M. Allman, “On Making TCP More Robust to
Packet Reordering,” ACM Computer Comm. Rev., vol. 32, 2002.

[36] C. Lim, S. Bohacek, J.P. Hespanha, and K. Obraczka, “Hierarchical
Max-Flow Routing,” Proc. IEEE Global Telecomm. Conf. (GLOBE-
COM ’05), Nov. 2005.

[37] S.D. Patek and D.P. Bertsekas, “Stochastic Shortest Path Games,”
SIAM J. Control and Optimization, vol. 37, no. 3, pp. 804-824, 1999.

[38] R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge Univ.
Press, 1993.

Stephan Bohacek received the BS degree in
electrical engineering from the University of
California, Berkeley, in 1989 and the PhD
degree in electrical engineering from the Uni-
versity of Southern California in 1999. He is
currently an assistant professor in the Depart-
ment of Electrical and Computer Engineering at
the University of Delaware. His research inter-
ests include design, analysis, and control of data
networks. His current interests include conges-

tion control and routing for wireless and wireline networks, modeling
mobile wireless networks, and cross-layer design for wireless networks.
He is a member of the IEEE.

João P. Hespanha received the PhD degrees in
electrical engineering and applied science from
Yale University in 1998. He is currently a
professor of electrical and computer engineering
at the University of California, Santa Barbara.
His current research interests include hybrid and
switched systems, the modeling and control of
communication networks, distributed control
over communication networks, stochastic mod-
eling in biology, and game theory. More informa-

tion about his research can be found at http://www.ece.ucsb.edu/
~hespanha. He is a senior member of the IEEE.

Junsoo Lee received the BS and MS degrees in
computer science from Seoul National Univer-
sity, Seoul, and the PhD degree in computer
science from the University of Southern Califor-
nia, Los Angeles, in 2004. He is currently an
assistant professor of computer science at
Sookmyung Women’s University of Seoul. Be-
fore joining Sookmyung Women’s University, he
was a postdoctoral scholar at the University of
California, Santa Barbara, and the University of

California, Santa Cruz. He also worked for Samsung Electronics as a
senior researcher at the Network and Computer Division before
pursuing the PhD degree. He is a member of the IEEE.

Chansook Lim received the PhD degree in
computer science from the University of South-
ern California in 2006. She is currently a
postdoctoral scholar at the University of Dela-
ware. Her research interests include routing for
wired and wireless networks, network measure-
ment, and network dependability. She is a
member of the IEEE.

Katia Obraczka received the PhD degree in
computer science from the University of South-
ern California (USC) in 1994. She is currently an
associate professor of computer engineering at
the University of California, Santa Cruz (UCSC).
Before joining UCSC, she held a research
scientist position at USC’s Information Sciences
Institute and a research faculty appointment at
USC’s Computer Science Department. Her
research interests include computer networks,

more specifically, network protocol design and evaluation in wireline, as
well as wireless (in particular, multihop ad hoc) networks, distributed
systems, and Internet information systems. More information on her
research can be found at http://www.soe.ucsc.edu/~katia. She is a
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

